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El método de mayor generalidad para transformaboaamente una

hamiltoniana en otra de forma dada se fundamenta en el uso reiterado

de la ecuadin de Hamilton-Jacobi. Es un@dnica normalmente laboriosals ofrece soluciones particulares del problema. Exponemos un
nuevo netodo general que sin acudir a ecuaciones de Hamilton-Jacobi resusvédmodamente el problema y proporciona adertodas

sus posibles soluciones.
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The more general method to perform a cononical transformation of a Hamiltonian into another one of a given form is based on the repeated
use of the Hamilton-Jacobi equation. This is usually a tedious technique which leads to some particular solutions of the problem. We present

a new general method which does not rely on the Hamilton-Jacobi

equation and moreover it gives all the possible solutions.
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1. Introduccion

Sabemos que cuando un sistema améo posee natu-
raleza hamiltonianésta queda preservada bajo la anaile
transformaciones cénicas. Por tanto si

Q1a"'aQn7p17"'7pnHQla"'aQnaP17"'7Pn

es una transformatn cardbnica (TC) que adia sobre un sis-
tema de hamiltonian® (¢, ..., q,,p1,---,P,,t) €l corres-

pondiente sistema transformado poggambén una hamil-
toniana K(Q,,...,Q,,, P,...,P,,t). DadaH ad como

la TC el problema de determindf est bien estudiado [1]
y en general no ofrece dificultad.

Hay sin embargo otro problema al que llamaremos pro
blema de intercambio (PI) cuya posible resoluciya no
es tan simple: se trata de encontrar las TC que cambi
una hamiltoniana arbitrariaf; (¢, ..., ¢y, P1s- - Ppyt)
en otra Hy(Q4,...,Q,, P,,...,P,,t) cuya forma ha si-
do previamente fijada. El Pl se dirintemporal cuan-
do 0H, /6t = OH,/0t =0 y temporal en caso contrario.

Se debe a Glass y Scanio [2] una primera investiga-

cibn —muy limitada— sobre el citado PIl. Por integra-
cion de una dsica ecuadin de Hamilton-Jacobi (Ec. HJ)

a

relacbn con ella ha obtenido una TC que cambia la hamilto-
nianaH, = (p? — m?w?q?)/2m (i.e. “oscilador arndnico
negativo”) en otra de la formé&l, = wQP. Posteriormente
las ideas expuestas en la Ref. 4 han sido ampliadas y siste-
matizadas por el propio Lynch [5] dando lugar a udtm
do que en principio es aplicable a la eventual resolucie
cualquier PI. El que desde ahora denominaremetodo de
Lynch (ML) consiste Bsicamente en la utilizam reiterada
de la Ec. HJ con el acompamiento de una serie de sustitu-
ciones algebraicas.

Siendo asque el ML parece &lido para cualquierime-
ron de grados de libertad y tan@n para todo par de hamil-
tonianasH, y H, cabe pensar que el Pl queda@icamente

cerrado. De hecho no hemos encontrado trabajos posteriores
que aporten verdaderas novedades al tema.

2. Una opcbn alternativa al método de Lynch;
comparacion critica

La finalidad de este adulo es ofrecer un nuevoé&todo
de resoludn del PI tal que con el mismo ya no sea nece-
sario utilizar ecuaciones de Hamilton-Jacobi. Pensamos que

los autores encuentran una TC que cambia la hamiltoniana técnica aqupropugnada posee un cierto iréiery que en

H, = (p? + m*w?q?)/2m (i.e. oscilador armnico) en otra

de la formaH, = f(P) con f arbitraria. Aplican luego tal
transformadn al casof (P) = P?/2m (i.e,, parfcula libre).

Seguidamente cabe mencionar la referencia [3] en la que se

propone una interesante con@xientre elambito cuntico
(i.e., observables de “no demolai”) y el PIl. En efecto: al
formalizar la interacdn entre un oscilador @ntico y una

tipica séal de excitadn se recae en un planteamiento —con

analoda clasica— que conlleva un Pl intemporal. R. Lynch
ha estudiado este tipo de andmglasico-c@ntica [4] y en

determinados aspectos puede mejorar al citadtodo de
Lynch. Veamos algunas de las posibles ventajas a destacar:

i) El aporte térico que requiere el nuevoatodo es sen-
siblemente ras exiguo que el exigido por el MLok
fundamentos éisicos de TC y constantes de movimien-
to en el primer caso frente alglo conocimiento de la
teoiia de HJ en el segundo [6].

iil) Como la Ec. HJ es no lineal su manejo puede llegar a
ser algo laborioso en especial cuando sea 1y el
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tiempo aparezca expitamente; en el nuevo @odo  mos de los dos grupos de ecuacionecaas de Hamilton:
sblo se consideran ecuaciones en derivadas parciales

de primer orden y tipo lineal lo cual implica una mayor q= %,
simplicidad materatica. p
o o _ ,_of,
i) Aun en la situadn mas sencilla i(e., intemporali- ==, (1)
dad yn = 1) el ML requiere la integraéin de dos
ecuaciones de HJ lasomo la realizadéin de @lcu-
los complementarios no triviales; a este respecto el . O0H,
propio Lynch reconoce una aparente compliéagn Q= P’
su &cnica [5]. Con el nuevo atodo y para la misma . oH,
situacbn elemental basta integrar una sola ecbrci P = 90 (2)

lineal y realizar dos sustituciones algebraicas. i ) )
El problema que adise propone consiste en determinar
iv) Es sabido que existenttiples sistemas de integra- todas las posibles TC,

les completas para una ecuatien derivadas parcia-

les de primer orden y no lineal [7]. Ahora bien co- q=4q(Q,P),

mo en el ML es necesario obtener integrales completas »=p(Q, P), 3)
de ecuaciones HJ las TC encontradal® seén una

“muestra” del conjunto de posibles soluciones del Pl.que intercambiatl, (¢, p) y Hy(Q, P).

Contrariamente dado que el nuev@tado utiliza so- Comencemos por elegir una de las dos ecuaciones del
luciones generales de ecuaciones lineales éstida  conjunto (3). Sea, por ejemplo la= ¢(Q, P). Derivando
suministraa todas las TC resolventes. esta reladn con respecto al tiempo y teniendo en cuenta (1)

. 3 y (2) resultaa
En la Ref. 5 Lynch expone suétodo $lo para el Pl

conn = 1 (temporal e intemporal) en tanto que omite deta- OH, _ 0q 0H, 0q 0H, @

lles para el case > 1 al que contempla como utistraight- op  0Q OP  OP 0Q

forWard genera”zation;”a ﬁtu|0 de ejemp|0 VUeIVe SObI’e el Enseguida nos va a interesar exprqsmn funcbn deq7 Q
oscilador negativo que ya estaden la Ref. 4. Por nuestra y p_ para ello observemos primero que al 86f, /0t =
parte organizaremos la continu@eide este aitulo confor- dH,/dt = 0 (como cumple a la autonda) ambas hamil-
me al siguiente programa: tonianas sém constantes de movimiento de sus respectivos

a) En la Sec. 3 desarrollaremos el nuevétato para SiStemas; por tanto sig,p,) representa cualquier estado

el Pl intemporal y con&lo un grado de libertad. dinamico particular del “sistem&” se verificaa la conser-
vacion
b) La Sec. 4 se dedicam ilustrar la teda precedente con
casos concretos. A efectos comparativos presentare- H,(g,p) = Hy(40,P0)- ®)

mos los problemas mencionados en las Refs. 21y 5 (vgbor otra parte como en (3) no aparece igmente el tiem-
Introduccdn) pero resohgndolos ahora por el nuevo g |3 hamiltonianaf, seé simplemente la transformada
método. de H, por el cambio cabnico; tendremos pues

c) Enla Sec. 5 e>,<pllcaremos de manera resumiacc . H,(Q, P) = H,[q(Q, P),p(Q, P)]. (6)
se adapta la tet de la Sec. 3 al caso de la temporali-
dad y an > 1; para centrar ideas nos referiremos al PIDenotemos po(Q,, P,) el transformado dég,, p,) por las
intemporal com = 2y al Pl temporal cuanda = 1. Ecs (3) reversibilizadas; entonces de acuerdo con (6) deduci-

g . _remos la nueva conservaai
d) Enun Agendice final nos referiremos a las perspectivas

de aplicaodn del PI. Hy(Q, P) = Hy[q(Qq, Fy),p(Qo: o)l = Hi(q9,p0)- (7)

Bastaa ahora identificar (5) y (7) para obtener la igualdad de
3. El problema de intercambio intemporal con hamiltonianas:
un solo grado de libertad H,(q,p) = Hy(Q, P). ®)

Consideremos dos sistemas@amos y hamiltonianos Esta ecuadin (liberada ya de estados dmicos particula-
elegidos arbitrariamente pero con un solo grado de libertages) quedar satisfecha por todos los paresp), (Q, P) que
cada uno de ellos; denotemos fatp) y (Q, P) sus res- se correspondan fa (3);” despejandg en (8) hallaremos
pectivas variables cémicas de descripan y seanf, (¢, p) finalmente la reladin de dependencia
y H,(Q, P) sus correspondientes funciones hamiltonianas.

Para determinar el movimiento de estos sistemas dispondre- p=ple, H5(Q, P)] = f(¢. Q. P), 9)

Rev. Mex. 5. 48 (1) (2002) 4-9



6 ALBERTO GOMEZ TRAPOTE

que constituye la exprési dep que nos interesaba encon- con lo cual a la vista de (11) nos quedar
trar. Notese que esencialmente (6) y (8) son una misma ecua-

cion; las etapas intermedias (5) y (7) —que padrmarecer dQ = dq , (13)
innecesarias— han sido introducidas por conveniencia del A*(Q,Cy)  D*(g,C)
desarrollo posterior. integrando (13) deduciremos
Conseguido el resultado (9) llamemos
F(Qvacl) - F[anaHQ(Qap)] = G(quv‘P) = 027
0H,
P =A@, P), que es una nueva integral primera del sistema diferen-
OH. cial (11). Naturalmente hemos admitido en esta prueba
—2=_B(Q,P), queB # 0 (si B = 0tenemosP = () y tambén que las
oQ integraciones de los dos miembros de (13) son expresables
y de modo exacto o ariito. Es de observar que la demos-
tracion realizada se asientasicamente en el hecho de que
OH, - ; T - _
—L=D(¢,p)=D(q, f(¢.Q, P)) = E(q,Q, P); todos los sistemas hamiltonianos y@umos com = 1 son
op integrablesi(e., aplicacon del teorema de integrabilidad de

Liouvillean = 11[8].)
Reconsiderando las dos integrales primeras (12) la solu-
cion general de la Ec. (10) posa@entonces la forma

‘p[fl(anap)’fé(quaP)] =0, (14)

dondey es una fundn arbitraria. En conclugn el conjunto
formado por (9) y (14) suministratodas las posibles TC que
cambianH, en H, y redprocamente. Ha quedadd assuel-
to el Pl intemporal para = 1.
Como una observa@n notar que si en (3) hulsemos
) elegido la ecuadin p = p(Q, P), nuestro Pl se resolver
A(Q, P) - B(Q, P) - E(q,Q,P)’ (11) de modo aalogo al ya expuesto. Caso de suponer por ejem-
plo queq no fuese lica (.e., 9H, /dq # 0), deducitfamos
operando en el mismo podremos obtener el par de integraleg (8) la reladin g = ¢[p, H,(Q, P)] = f*(p,Q, P); deno-

con estas notaciones la Ec. (4) adoptarforma

9q Ip
Estamos dsante una ecuatn en derivadas parciales de pri-
mer orden lineal e inhom@&yea con variables independien-
tes@ y Py funcibn incbgnitag.
Cara a la resolubn de (10) consideraremos su corres-
pondiente sistema diferencial asociado

dQ dP dq

E(q,Q, P). (10

primeras independientes tando seguidamente
— OH «
fl(QvQ7P) Ol quE— (q7p):_L[f (p,Q,P%p}E—M(p,Q,P),
y

la Ec. (10) se véa sustituida por

£(0.Q.P) = Gy, (12) 40,72 1 50,722~ Mp.o.p),

0 oP
dondeC; y C, son constantes arbitrarias. No esidifde- . i ¢ i o _
mostrar que la obtenmh de f, y f, est ciertamente asegu- Y & partir de agitodo sefa repeticdn de la écnica preceden-

rada. En efecto, como te.
OH, OH, . :
A(Q, P)dP — B(Q, P)dQ =>5p 4F+ %dQ 4. Dos ejemplos de problemas intemporales de
intercambio conn =1
:dHZ(QaP) = 07

I. Proponemos las hamiltonianas
ya disponemos de una primera integfd}(Q, P) = C,

conC, = H,(qy,p,) [ver Ec. (7)]. Despejando ahor& H, = P’ +miwie?
en esta conservam tendremosP = ¢(Q,C,); asimismo 2m
despejande en H,(q,p) = C, [ver Ec. (5)] resultaéap = Yy
h(q, C;). Escribiremos entonces P
2= 5
ya mencionadas en reléaci con la Ref. 2 (ver Sec. 2b e In-

y troduccbn). La Ec. (9) tomax entonces la forma concreta

B(q,Q,P) = D(q,h(Q,Cy)) = D*(q,Cy), p= (P —m*w?¢*)'/?, (15)
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en tanto que la ecudmi lineal (10) se escritir ya citadas con respecto a las Refs. 4 y 5 (ver Sec. 2b e Intro-
9 duccbn).
P% = (P? — m2w?¢®)V2. (16) En el presente caso (9) torada forma
— (n2,,2,,2 1/2
. . . . , = 2 P)/=, 20
El sistema diferencial (11) asociado a (10)%ser p = (M wq” + 2mwQP) (20)
iQ dp dq an por SL(;parte la Ecé(lo) §e£r
P 0 (P2-mPuwg?)l/? wQ% =—w a—}qD = E(meQQZ + meQP)l/Q. (21)
Obviamente tenemaB = | lo cual —sustituido en la mis- £ sistema diferencial (11) quedeaentonces
ma (17)— conduci a la ecuadin diferencial ordinaria
4Q _ _dpP _ mdg (22)
muwdq w@Q  wP  (m2w2q® + 2mwQP)Y/?’
dQ = & ¢ Por simple observaoh se deduce la integral primera
mw mwq\ 2 12 QP = C,, lacual —reemplazada en la misma (22)—a&dar
l - ( c ) ] gar a la ecuadin diferencial ordinaria
! o, /2
integrando esta ecu#@ci obtendremos () dgq
g aQ 20,
C 2
Q+Cy= 1arcsen<qu>, © 1+ @q
mw o 20,
de donde esta ecuadin es inmediatamente integrable y obtenemos
q= % sen (méUQ + mgCé). (18) Q=cC [(mw) 1/2q + (20 + qu2)1/2}
- Y2
1 1 201 201
Para conseguir la sol@m general de (16) pondremos C
Cy, = o(C)) = ¢(P), siendop una funcon arbitraria [ver = 20721/2 [mwq + (m*w?q® + 2mwCy)/?]
Ec. (14)]. Reconsiderando la Ec. (18), sustituyamos en ella (2Cymw)
C, por Py C, poro(P)y, a continuadn reemplacemos la B C, 23
ecuachn resultante en la reldm (15). Como consecuencia o VOV 2muw (mwq +p), (23)

de este proceso deduciremos . . .
P habiendo usado@P = C,, a3 como la reladn (20).

P {mw@ mw<p(P)] Para determinar la soldm general de (21) pondremos
n )

= w ™° P P C, = o(C,) = p(QP); sustituyendo esto en (23) resuétar
P _v(@Pp)
p = Pcos [miQ + mw;a( )} . (19) Q= o (mwq + p), (24)

donde hemos denotadB(QP) = ¢(QP)//QP. Todava

Estas ecuaciones constitarel conjunto de todas las TC que
J 9 llevando (24) a la Ec. (20) encontraremos

realizan el intercambid{, < H,. Si en particular realiza-

mos Ie_l eleca:'in,cp(P), = 2wlP/mw, conl = 1,2,3,..., las P — mw2@ = 2mwP v(QP) (p + mawg),
ecuaciones (19) pasar a ser V2mwq
P ( Q) o0 sea,
q= ——sen | mw— V2
muw P pP= mwi_r_ 43, (25)
y U(QP)\2mw 2
Las Ecs. (24) y (25) expresan el conjunto de todas las TC que
_p ( Q resuelven este problema de intercambio.
p = Pcos | mw . . L .
P Si ahora realizamos la eleéci particular,
y estaremos entonces justamente ante la Soiumfrecida en ©(QP) = V2mw+/QP,
la Ref. 2.
Il. Consideremos ahora las hamiltonianas las Ecs. (24)y (25) presentarla forma concreta
Q = mwq + p,
H, = (p* — m*w’q®)/2m,
p=-3,_P . (26)
y 2 2mw
pero estas ecuaciones constituyen precisamente la TC parti-
H, = wQP, cular que propone Lynch como solanidel problema [5].

Rev. Mex. 5. 48 (1) (2002) 4-9
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Notar que: donde
1) Haciendo abstraoon tanto del ML como del nuevo O0H, _ .
método la TC (26) poda haberse obtenido por simple op Dla, (2, Q, P; Ky, K5), 1)

inspeccdbn deH, y H,. En efecto como
p 1y 2 EE(quapat;KlaKQ)'

. p — mwq
H, = (p+mwq) om Al resolver (27) obtendremos tres integrales primeras inde-
parece natural introducir las nuevas variables pendientesr; (¢, Q, P, ; Ky, K;) = Cj,i = 1,2,3y lasolu-
cion general de la ecuadi lineal adquiria entonces la forma
Q = mwq +p
y @[Gl(qa Qa P7t7 Kl? K2)7 ct G3(Qa Q7P7ta K17K2)] = 0.
(p — mwq) Recordando la arbitrariedad geescojamos ahora tres solu-
P = o ciones particulares e independientes
con lo Cl'JalHl = wQE = H,. Pero este cambio Qg va- 0;(G, Gy, Gs) = U,(q,Q, Pt K|, Ky) =0
riables lineal y reversible (determinante de coeficientes
unitario) es fpicamente cabnico. parai = 1,2,3; dos de ellas senan para deducir

K, =K,(q,Q, P,t),i = 1,2, y estas relaciones sustituidas

2) Se ha demostrado que las hamiltonianas @tads /! L
en la tercera soludn nos proporcionan

aubnomas y com = 1, son clasificables mediante
tres tipos Qe repres,er_nantes na:mos: la ham|!to.n|a— ¢ = R(Q, P,t). (28)
na del oscilador ardnico la del “oscilador ar@nico
negativo” y la de la paitula libre [9]. Es de observar Teniendo en cuenta (28) denotaremos
gue estos tipos camicos coinciden, precisamente, con
tres de las hamiltonianas consideradas en los ejemplos K, = K,[R(Q, P,t),Q, P,t] = K} (Q, P, t),
de esta Secon.
parai = 1,2, y finalmente quedarla nueva ecuagn

5. Problemas de intercambio temporales y con p= f[R(Q,P,1),Q, P,K:(Q, P,t), K3(Q, P,1)]

mas de un grado de libertad

=5(Q, P,t). (29)
5.1. ElIPltemporal conn =1
El conjunto formado por (28) y (29) constituye una TC par-

Supongamos, para generalizar, g&, /0t # 0y  ticular que intercambidf, (¢, p,y) y Ho(Q, P,t); en cuanto
O0H, /0t # 0; admitamos asimismo que, los correspondien-a las restantes TC su proceso de constéucyga es obvio a
tes sistemas son integrables aiedmente. Incluiremos tam- tenor de lo expuesto.
bién el tiempo en las Ecs. (3) y elegiremos, por ejemplo, la
relacbn de cambiag; = ¢(Q, P, t). El primer miembro de la 5.2, EL Plintemporal conn > 1
ecuacbn lineal (10) comport@r entonces ekrmino adicio-
nal dq/0t y, por su parte, los coeficientesy B dependean Para centrar ideas imaginemos que= 2. Sean pues
deQ,Pyt. H,(q1,G2:p1,P2) Y Hy(Qy,Qo, Py, ) las hamiltonianas

Ahora bien, la presencia esxpita del tiempo nos impi- consideradas y volvamos a admitir la integrabilidad @ral
de aqii plantear la igualdad (6) entre las hamiltoniarias,(  ¢a de los sistemas. Las relaciones (3) se esaribahora

habiia que dadir la derivada parcial entde una fumcigene-  ; = 4;(Q1-- - P2), p; = pi(Qq, ..., P), 1 =1,2Y, si ele-
ratriz); consecuentemente, necesitaremos una alternativa qei#nosq; = ¢;(Q1, - .., ), la Ec. (4) queda en la forma
proporcione la dependencia de p car, y P. A tal fin,
calcularemos una constante de movimiento (dependiente déif, Z A,(Q ) 3<I1
tiempo) en cada uno de los dos sistemas y, seguidamente elép, v
minaremos: entre las mismas; quedaas la expresbn de-
seady = f(q,Q, P; K, K,), pero habremos introducido 2 0q,
las inddmodas constantes arbitrariés y K. Z Qs+, )8P , (30)
El sistema diferencial (11) se escrébjpues =
dQ dP dOI’]deAi-E 8H2/83yBi = —6H2/8Qi,i:_172.
AQ.Pt)  B@Q P dt . Lo_mlsmo que en (8), propond(emos la igualdad de ha-
miltonianas y, por ejemplo, se dedikir
= dg @27)
E’((]a627P7t;‘K717I<2)7 p2:f(qlaQvavah'"?PQ)'

Rev. Mex. 5. 48 (1) (2002) 4-9
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Seguidamente pasaremos a calcular dos constantes de moyi-
miento del primer sistema, distintas ambaddfiey tales que

sean independientes entfeygambién del tiempo. Represen- p; = S;(Q1,Qq, Py, ), (34)
tando esas constantes pefq,, g5, p1,P2) = ¢;, 4 = 1,2, )
parai = 1,2.
reemplazaremos en ellas por f(q;, 9,01, Q1,---, Ps) ¥ i o
se obtendin las expresiones de dependencia El conjunto constituido por (33) y (34) es la representa-
cibn de una TC particular para el intercambio etffrey H,.
gy =u(qq; Qs -, Py, ey, o), Pensamos que ya queda bastante claneccconstruir nuevas

TC y cobmo generalizar el &todo an > 2.

Cabe imaginar otras opciones resolutivas (y menos labo-
Dy =fla,u(qy, - C9),01(qys - 3¢9), Qqy -y Psl, riosas) para 5.1 y 5.2; no obstante la quei agponemos es
posiblemente la prolongam mas natural de la Sec. 3.

P1 :711((11;@1;---’]32701702),

=vy(q1; Q15 -+, Pay 9, 69)- (31)
El sistema diferencial asociado a (30)&por tanto L.
Apéndice
dQ,  _  dQ,
A(Qq,...,Py)  Ay(Qq,..., P) Alrevisar la Ref. 5 se comprueba que el autor omite ejem-
P, P, plos de PI tanto en el caso> 1 como en el caso temporal;

= adenas, tampoco nos informa sobre las posibles repercusio-
B .., P B ..., P ’ o L.
1@y, F) 2@y s Po) nes del Pl en otro@mbitos de la meémica. Estos hechos po-
_ dq 32) drian hacernos pensar que el problema de intercambio es una
E(q;Qq,---, Py,cq509)] simple curiosidad ac&uica”sin trascendenciagmtica. En

siendoE(q,; Qy, .. ., Py, ¢y, ¢,) el resultado de sustituir (31) nuestra opirdn tal punto de vista skxrechazable.

endH, /dp, = D(qy, 4y, Py, py). Al resolver (32) determina- En primer lugar, creemos que la citada qmisi,jg ejem-
remos cuatro integrales primeras plos no se debe tanto a una eventual carencia dé&gerlos

mismos sino ras bien a la excesiva complicanide @lculo
F(q;Qq, ..., Pyycq,09) =C, gue exigifa el ML para resolverlos. Con el nuevcéetndo,
tales ejemplos result@n manejables en ram de una opera-

pa}raz = 1,..., 4y entonces la soluoh general de (30) ten- tividad que, aunque laboriosa, Eemas simple que la exigida
dra la estructura
por el ML.
O[Fi(q1;Qqy---5C)s s Fulqy;Qq,- .. c9)] = 0. En segundo lugar como consecuencia de recientes inves-

] ) ) . tigaciones (&n no comunicadas), hemos encontrado que la
Realizando ahora tres elecciones particulares e indgasolucon del Pl intemporal com = 2 ofrece aplicacio-

pendientes de la funon arbitrariay y actuando de la eg destacables en relgicon sistemas de fuerzas centrales
misma manera que en 5.1 deduciremos las relacionggasticas (tipo Hooke) y de direéui constante. Asimismo

¢; = ¢(q1, Q1+, Py), i = 1,2 ad como la ecuadin el Pl se manifiestéatil como instrumento de conéxi e inter-
¢ = Ry (Q,Q,, P, Py). (33) preta_lcon_entre las constantes de m_OV|m|e_nto de_ los _S|stemas
hamiltonianos. En el curso de las citadas investigaciones he-
Denotemos @n mos tenido ocaéin de aplicar el nuevo étodo a Pl tempora-
. les (conn = 1) e intemporales (con = 2). Sefa interesante
¢ =GRy (Qy, -+, ), Qus -, Pl = (@, -, P), presentarlos adcomo ilustraddn de 5.1y 5.2, pero, a fin

parai = 1,2y, finalmente llevemos las funciones ¢ y R, no alargar ras este artulo, hemos decidido reservarlos para
a las expresiones (31). Como resultado de esto concluimd¥sibles trabajos posteriores.

que Pretendemos que estas ideas, con las que concluimos el
arficulo, sirvan para que el problema de intercambio sea me-
@2 = Ry(Q1, @y, P, Py) recedor de un @s detenido y avanzado estudio.
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