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El método de mayor generalidad para transformar canónicamente una hamiltoniana en otra de forma dada se fundamenta en el uso reiterado
de la ecuacíon de Hamilton-Jacobi. Es una técnica normalmente laboriosa y sólo ofrece soluciones particulares del problema. Exponemos un
nuevo ḿetodo general que sin acudir a ecuaciones de Hamilton-Jacobi resuelve más ćomodamente el problema y proporciona además todas
sus posibles soluciones.
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The more general method to perform a cononical transformation of a Hamiltonian into another one of a given form is based on the repeated
use of the Hamilton-Jacobi equation. This is usually a tedious technique which leads to some particular solutions of the problem. We present
a new general method which does not rely on the Hamilton-Jacobi equation and moreover it gives all the possible solutions.
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1.. Introducción

Sabemos que cuando un sistema mecánico posee natu-
raleza hamiltonianáesta queda preservada bajo la acción de
transformaciones canónicas. Por tanto si

q1, . . . , qn, p1, . . . , pn ↔ Q1, . . . , Qn, P1, . . . , Pn

es una transformación cańonica (TC) que actúa sobre un sis-
tema de hamiltonianaH(q1, . . . , qn, p1, . . . , pn, t) el corres-
pondiente sistema transformado poseerá tambíen una hamil-
toniana K(Q1, . . . , Qn, P1, . . . , Pn, t). Dada H aśı como
la TC el problema de determinarK est́a bien estudiado [1]
y en general no ofrece dificultad.

Hay sin embargo otro problema al que llamaremos pro-
blema de intercambio (PI) cuya posible resolución ya no
es tan simple: se trata de encontrar las TC que cambian
una hamiltoniana arbitrariaH1(q1, . . . , qn, p1, . . . , pn, t)
en otra H2(Q1, . . . , Qn, P1, . . . , Pn, t) cuya forma ha si-
do previamente fijada. El PI se dirá intemporal cuan-
do δH1/δt = ∂H2/∂t = 0 y temporal en caso contrario.
Se debe a Glass y Scanio [2] una primera investiga-
ción —muy limitada— sobre el citado PI. Por integra-
ción de una cĺasica ecuación de Hamilton-Jacobi (Ec. HJ)
los autores encuentran una TC que cambia la hamiltoniana
H1 = (p2 + m2w2q2)/2m (i.e. oscilador arḿonico) en otra
de la formaH2 = f(P ) con f arbitraria. Aplican luego tal
transformacíon al casof(P ) = P 2/2m (i.e., part́ıcula libre).
Seguidamente cabe mencionar la referencia [3] en la que se
propone una interesante conexión entre elámbito cúantico
(i.e., observables de “no demolición”) y el PI. En efecto: al
formalizar la interaccíon entre un oscilador cuántico y una
tı́pica sẽnal de excitacíon se recae en un planteamiento —con
analoǵıa cĺasica— que conlleva un PI intemporal. R. Lynch
ha estudiado este tipo de analogı́a cĺasico-cúantica [4] y en

relacíon con ella ha obtenido una TC que cambia la hamilto-
nianaH1 = (p2 − m2w2q2)/2m (i.e., “oscilador arḿonico
negativo”) en otra de la formaH2 = wQP . Posteriormente
las ideas expuestas en la Ref. 4 han sido ampliadas y siste-
matizadas por el propio Lynch [5] dando lugar a un méto-
do que en principio es aplicable a la eventual resolución de
cualquier PI. El que desde ahora denominaremos método de
Lynch (ML) consiste b́asicamente en la utilización reiterada
de la Ec. HJ con el acompañamiento de una serie de sustitu-
ciones algebraicas.

Siendo aśı que el ML parece v́alido para cualquier ńume-
ro n de grados de libertad y también para todo par de hamil-
tonianasH1 y H2 cabe pensar que el PI queda prácticamente
cerrado. De hecho no hemos encontrado trabajos posteriores
que aporten verdaderas novedades al tema.

2.. Una opcíon alternativa al método de Lynch;
comparación crı́tica

La finalidad de este artı́culo es ofrecer un nuevo ḿetodo
de resolucíon del PI tal que con el mismo ya no sea nece-
sario utilizar ecuaciones de Hamilton-Jacobi. Pensamos que
la técnica aqúı propugnada posee un cierto interés y que en
determinados aspectos puede mejorar al citado método de
Lynch. Veamos algunas de las posibles ventajas a destacar:

i) El aporte téorico que requiere el nuevo método es sen-
siblemente ḿas exiguo que el exigido por el ML: sólo
fundamentos b́asicos de TC y constantes de movimien-
to en el primer caso frente a sólido conocimiento de la
teoŕıa de HJ en el segundo [6].

ii ) Como la Ec. HJ es no lineal su manejo puede llegar a
ser algo laborioso en especial cuando sean > 1 y el
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tiempo aparezca explı́citamente; en el nuevo ḿetodo
sólo se consideran ecuaciones en derivadas parciales
de primer orden y tipo lineal lo cual implica una mayor
simplicidad mateḿatica.

iii ) Aun en la situacíon más sencilla (i.e., intemporali-
dad y n = 1) el ML requiere la integración de dos
ecuaciones de HJ ası́ como la realizacíon de ćalcu-
los complementarios no triviales; a este respecto el
propio Lynch reconoce una aparente complicación en
su t́ecnica [5]. Con el nuevo ḿetodo y para la misma
situacíon elemental basta integrar una sola ecuación
lineal y realizar dos sustituciones algebraicas.

iv) Es sabido que existen ḿultiples sistemas de integra-
les completas para una ecuación en derivadas parcia-
les de primer orden y no lineal [7]. Ahora bien co-
mo en el ML es necesario obtener integrales completas
de ecuaciones HJ las TC encontradas sólo seŕan una
“muestra” del conjunto de posibles soluciones del PI.
Contrariamente dado que el nuevo método utiliza so-
luciones generales de ecuaciones lineales esta técnica
suministraŕa todas las TC resolventes.

En la Ref. 5 Lynch expone su ḿetodo śolo para el PI
conn = 1 (temporal e intemporal) en tanto que omite deta-
lles para el cason > 1 al que contempla como una“straight-
forward generalization;”a t́ıtulo de ejemplo vuelve sobre el
oscilador negativo que ya estudió en la Ref. 4. Por nuestra
parte organizaremos la continuación de este artı́culo confor-
me al siguiente programa:

a) En la Sec. 3 desarrollaremos el nuevo método para
el PI intemporal y con śolo un grado de libertad.

b) La Sec. 4 se dedicará a ilustrar la teorı́a precedente con
casos concretos. A efectos comparativos presentare-
mos los problemas mencionados en las Refs. 2 y 5 (ver
Introduccíon) pero resolvíendolos ahora por el nuevo
método.

c) En la Sec. 5 explicaremos de manera resumida cómo
se adapta la teorı́a de la Sec. 3 al caso de la temporali-
dad y an > 1; para centrar ideas nos referiremos al PI
intemporal conn = 2 y al PI temporal cuandon = 1.

d) En un Aṕendice final nos referiremos a las perspectivas
de aplicacíon del PI.

3.. El problema de intercambio intemporal con
un solo grado de libertad

Consideremos dos sistemas autónomos y hamiltonianos
elegidos arbitrariamente pero con un solo grado de libertad
cada uno de ellos; denotemos por(q, p) y (Q,P ) sus res-
pectivas variables canónicas de descripción y seanH1(q, p)
y H2(Q, P ) sus correspondientes funciones hamiltonianas.
Para determinar el movimiento de estos sistemas dispondre-

mos de los dos grupos de ecuaciones canónicas de Hamilton:

q̇ =
∂H1

∂p
,

ṗ = −∂H1

∂q
, (1)

y

Q̇ =
∂H2

∂P
,

Ṗ = −∂H2

∂Q
. (2)

El problema que aquı́ se propone consiste en determinar
todas las posibles TC,

q = q(Q,P ),

p = p(Q,P ), (3)

que intercambianH1(q, p) y H2(Q,P ).
Comencemos por elegir una de las dos ecuaciones del

conjunto (3). Sea, por ejemplo laq = q(Q,P ). Derivando
esta relacíon con respecto al tiempo y teniendo en cuenta (1)
y (2) resultaŕa

∂H1

∂p
=

∂q

∂Q

∂H2

∂P
− ∂q

∂P

∂H2

∂Q
. (4)

Enseguida nos va a interesar expresarp en funcíon deq, Q
y P . Para ello observemos primero que al ser∂H1/∂t =
∂H2/∂t = 0 (como cumple a la autonomı́a) ambas hamil-
tonianas seŕan constantes de movimiento de sus respectivos
sistemas; por tanto si(q0, p0) representa cualquier estado
dinámico particular del “sistemaH1” se verificaŕa la conser-
vación

H1(q, p) = H1(q0, p0). (5)

Por otra parte como en (3) no aparece explı́citamente el tiem-
po la hamiltonianaH2 seŕa simplemente la transformada
deH1 por el cambio cańonico; tendremos pues

H2(Q,P ) = H1[q(Q, P ), p(Q,P )]. (6)

Denotemos por(Q0, P0) el transformado de(q0, p0) por las
Ecs (3) reversibilizadas; entonces de acuerdo con (6) deduci-
remos la nueva conservación:

H2(Q,P ) = H1[q(Q0, P0), p(Q0, P0)] = H1(q0, p0). (7)

Bastaŕa ahora identificar (5) y (7) para obtener la igualdad de
hamiltonianas:

H1(q, p) = H2(Q,P ). (8)

Esta ecuación (liberada ya de estados dinámicos particula-
res) quedaŕa satisfecha por todos los pares(q, p), (Q, P ) que
se correspondan “vı́a (3);” despejandop en (8) hallaremos
finalmente la relación de dependencia

p = p[q,H2(Q,P )] ≡ f(q,Q, P ), (9)
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que constituye la expresión dep que nos interesaba encon-
trar. Nótese que esencialmente (6) y (8) son una misma ecua-
ción; las etapas intermedias (5) y (7) —que podrı́an parecer
innecesarias— han sido introducidas por conveniencia del
desarrollo posterior.

Conseguido el resultado (9) llamemos

∂H2

∂P
≡ A(Q,P ),

∂H2

∂Q
≡ −B(Q,P ),

y

∂H1

∂p
≡ D(q, p) = D(q, f(q,Q, P )) ≡ E(q, Q, P );

con estas notaciones la Ec. (4) adoptará la forma

A(Q,P )
∂q

∂Q
+ B(Q,P )

∂p

∂P
= E(q, Q, P ). (10)

Estamos aśı ante una ecuación en derivadas parciales de pri-
mer orden lineal e inhomogénea con variables independien-
tesQ y P y función inćognitaq.

Cara a la resolución de (10) consideraremos su corres-
pondiente sistema diferencial asociado

dQ

A(Q,P )
=

dP

B(Q,P )
=

dq

E(q,Q, P )
; (11)

operando en el mismo podremos obtener el par de integrales
primeras independientes

f1(q, Q, P ) = C1

y

f2(q,Q, P ) = C2, (12)

dondeC1 y C2 son constantes arbitrarias. No es difı́cil de-
mostrar que la obtención def1 y f2 est́a ciertamente asegu-
rada. En efecto, como

A(Q,P )dP −B(Q,P )dQ =
∂H2

∂P
dP +

∂H2

∂Q
dQ

=dH2(Q,P ) = 0,

ya disponemos de una primera integralH2(Q,P ) = C1

con C1 ≡ H1(q0, p0) [ver Ec. (7)]. Despejando ahoraP
en esta conservación tendremosP = g(Q, C1); asimismo
despejandop en H1(q, p) = C1 [ver Ec. (5)] resultaŕa p =
h(q, C1). Escribiremos entonces

A(Q,P ) = A(Q, g(Q,C1)) ≡ A∗(Q,C1)

y

E(q, Q, P ) = D(q, h(Q,C1)) ≡ D∗(q, C1),

con lo cual a la vista de (11) nos quedará

dQ

A∗(Q, C1)
=

dq

D∗(q, C1)
, (13)

integrando (13) deduciremos

F (q, Q, C1) = F [q,Q, H2(Q, P )] ≡ G(q, Q, P ) = C2,

que es una nueva integral primera del sistema diferen-
cial (11). Naturalmente hemos admitido en esta prueba
queB 6= 0 (si B = 0 tenemosP = C1) y tambíen que las
integraciones de los dos miembros de (13) son expresables
de modo exacto o analı́tico. Es de observar que la demos-
tración realizada se asienta básicamente en el hecho de que
todos los sistemas hamiltonianos y autónomos conn = 1 son
integrables (i.e., aplicacíon del teorema de integrabilidad de
Liouville a n = 1 [8].)

Reconsiderando las dos integrales primeras (12) la solu-
ción general de la Ec. (10) poseerá entonces la forma

ϕ[f1(q,Q, P ), f2(q, Q, P )] = 0, (14)

dondeϕ es una funcíon arbitraria. En conclusión el conjunto
formado por (9) y (14) suministrará todas las posibles TC que
cambianH1 enH2 y rećıprocamente. Ha quedado ası́ resuel-
to el PI intemporal paran = 1.

Como una observación notar que si en (3) hubiésemos
elegido la ecuación p = p(Q,P ), nuestro PI se resolverı́a
de modo ańalogo al ya expuesto. Caso de suponer por ejem-
plo queq no fuese ćıclica (i.e., ∂H1/∂q 6= 0), deduciŕıamos
de (8) la relacíon q = q[p,H2(Q,P )] ≡ f∗(p,Q, P ); deno-
tando seguidamente

∂H1

∂q
≡ −L(q, p) = −L[f∗(p,Q, P ), p] ≡ −M(p,Q, P ),

la Ec. (10) se verı́a sustituida por

A(Q,P )
∂p

∂Q
+ B(Q,P )

∂p

∂P
= M(p,Q, P ),

y a partir de aqúı todo seŕıa repeticíon de la t́ecnica preceden-
te.

4.. Dos ejemplos de problemas intemporales de
intercambio conn = 1n = 1n = 1

I. Proponemos las hamiltonianas

H1 =
p2 + m2w2q2

2m

y

H2 =
P 2

2m
,

ya mencionadas en relación con la Ref. 2 (ver Sec. 2b e In-
troduccíon). La Ec. (9) tomaŕa entonces la forma concreta

p = (P 2 −m2w2q2)1/2, (15)

Rev. Mex. F́ıs. 48 (1) (2002) 4–9
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en tanto que la ecuación lineal (10) se escribirá

P
∂q

∂Q
= (P 2 −m2w2q2)1/2. (16)

El sistema diferencial (11) asociado a (10) será

dQ

P
=

dP

0
=

dq

(P 2 −m2w2q2)1/2
. (17)

Obviamente tenemosP = C1 lo cual —sustituido en la mis-
ma (17)— conduciŕa a la ecuación diferencial ordinaria

dQ =
C1

mw

mwdq

C1[
1−

(
mwq

C1

)2
]1/2

,

integrando esta ecuación obtendremos

Q + C2 =
C1

mw
arcsen

(
mwq

C1

)
,

de donde

q =
C1

mw
sen

(
mwQ

C1

+
mwC2

C1

)
. (18)

Para conseguir la solución general de (16) pondremos
C2 = ϕ(C1) = ϕ(P ), siendoϕ una funcíon arbitraria [ver
Ec. (14)]. Reconsiderando la Ec. (18), sustituyamos en ella
C1 por P y C2 por ϕ(P ) y, a continuacíon reemplacemos la
ecuacíon resultante en la relación (15). Como consecuencia
de este proceso deduciremos

q =
P

mw
sen

[
mwQ

P
+

mwϕ(P )
P

]
,

p = P cos
[
mwQ

P
+

mwϕ(P )
P

]
. (19)

Estas ecuaciones constituirán el conjunto de todas las TC que
realizan el intercambioH1 ↔ H2. Si en particular realiza-
mos la eleccíon,ϕ(P ) = 2πlP/mw, conl = 1, 2, 3, . . ., las
ecuaciones (19) pasarán a ser

q =
P

mw
sen

(
mw

Q

P

)

y

p = P cos
(

mw
Q

P

)

y estaremos entonces justamente ante la solución ofrecida en
la Ref. 2.

II. Consideremos ahora las hamiltonianas

H1 = (p2 −m2w2q2)/2m,

y

H2 = wQP,

ya citadas con respecto a las Refs. 4 y 5 (ver Sec. 2b e Intro-
duccíon).

En el presente caso (9) tomará la forma

p = (m2w2q2 + 2mwQP )1/2, (20)

por su parte la Ec. (10) será

wQ
∂q

∂Q
= −wP

∂q

∂P
=

1
m

(m2w2q2 + 2mwQP )1/2. (21)

El sistema diferencial (11) quedará entonces

dQ

wQ
= − dP

wP
=

mdq

(m2w2q2 + 2mwQP )1/2
. (22)

Por simple observación se deduce la integral primera
QP = C1, la cual —reemplazada en la misma (22)— dará lu-
gar a la ecuación diferencial ordinaria

dQ

Q
=

(
mw

2C1

)1/2

dq

[
1 +

(√
mw

2C1

q

)2
] ;

esta ecuación es inmediatamente integrable y obtenemos

Q = C2

[(
mw

2C1

)1/2

q +
(2C1 + mwq2)1/2

√
2C1

]

=
C2

(2C1mw)1/2

[
mwq + (m2w2q2 + 2mwC1)

1/2
]

=
C2√

C1

√
2mw

(mwq + p), (23)

habiendo usadoQP = C1, aśı como la relacíon (20).
Para determinar la solución general de (21) pondremos
C2 = ϕ(C1) = ϕ(QP ); sustituyendo esto en (23) resultará

Q =
Ψ(QP )√

2mw
(mwq + p), (24)

donde hemos denotadoΨ(QP ) = ϕ(QP )/
√

QP . Todav́ıa
llevando (24) a la Ec. (20) encontraremos

p2 −m2w2q2 = 2mwP
Ψ(QP )√

2mwq
(p + mwq),

o sea,

P =
√

2mw

Ψ(QP )

(
p

2mw
− q

2

)
. (25)

Las Ecs. (24) y (25) expresan el conjunto de todas las TC que
resuelven este problema de intercambio.

Si ahora realizamos la elección particular,

ϕ(QP ) =
√

2mw
√

QP,

las Ecs. (24) y (25) presentarán la forma concreta

Q = mwq + p,

P = −q

2
+

p

2mw
; (26)

pero estas ecuaciones constituyen precisamente la TC parti-
cular que propone Lynch como solución del problema [5].
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Notar que:

1) Haciendo abstracción tanto del ML como del nuevo
método la TC (26) podrı́a haberse obtenido por simple
inspeccíon deH1 y H2. En efecto como

H1 = (p + mwq)
p−mwq

2m
,

parece natural introducir las nuevas variables

Q = mwq + p

y

P =
(p−mwq)

2mw
,

con lo cualH1 = wQP = H2. Pero este cambio de va-
riables lineal y reversible (determinante de coeficientes
unitario) es t́ıpicamente cańonico.

2) Se ha demostrado que las hamiltonianas cuadráticas
aut́onomas y conn = 1, son clasificables mediante
tres tipos de representantes canónicos: la hamiltonia-
na del oscilador arḿonico la del “oscilador arḿonico
negativo” y la de la partı́cula libre [9]. Es de observar
que estos tipos canónicos coinciden, precisamente, con
tres de las hamiltonianas consideradas en los ejemplos
de esta Sección.

5.. Problemas de intercambio temporales y con
más de un grado de libertad

5.1.. El PI temporal conn = 1n = 1n = 1

Supongamos, para generalizar, que∂H1/∂t 6= 0 y
∂H2/∂t 6= 0; admitamos asimismo que, los correspondien-
tes sistemas son integrables analı́ticamente. Incluiremos tam-
bién el tiempo en las Ecs. (3) y elegiremos, por ejemplo, la
relacíon de cambioq = q(Q,P, t). El primer miembro de la
ecuacíon lineal (10) comportará entonces el término adicio-
nal∂q/∂t y, por su parte, los coeficientesA y B dependeŕan
deQ,P y t.

Ahora bien, la presencia explı́cita del tiempo nos impi-
de aqúı plantear la igualdad (6) entre las hamiltonianas (i.e.,
habŕıa que ãnadir la derivada parcial en t de una función gene-
ratriz); consecuentemente, necesitaremos una alternativa que
proporcione la dependencia de p conq,Q, y P . A tal fin,
calcularemos una constante de movimiento (dependiente del
tiempo) en cada uno de los dos sistemas y, seguidamente eli-
minaremost entre las mismas; quedará aśı la expresíon de-
seadap = f(q,Q, P ; K1, K2), pero habremos introducido
las inćomodas constantes arbitrariasK1 y K2.

El sistema diferencial (11) se escribirá pues

dQ

A(Q,P, t)
=

dP

B(Q,P, t)
= dt

=
dq

E(q, Q, P, t; K1, K2)
, (27)

donde

∂H1

∂p
≡ D(q, f(q,Q, P ; K1,K2), t)

≡ E(q, Q, P, t; K1, K2).

Al resolver (27) obtendremos tres integrales primeras inde-
pendientesGi(q, Q, P, t; K1, K2) = Ci, i = 1, 2, 3 y la solu-
ción general de la ecuación lineal adquiriŕa entonces la forma

ϕ
[
G1(q, Q, P, t; K1, K2), . . . , G3(q, Q, P, t; K1,K2)

]
= 0.

Recordando la arbitrariedad deϕ escojamos ahora tres solu-
ciones particulares e independientes

ϕi(G1, G2, G3) ≡ Ψi(q, Q, P, t; K1,K2) = 0,

para i = 1, 2, 3; dos de ellas servirán para deducir
Ki = Ki(q,Q, P, t), i = 1, 2, y estas relaciones sustituidas
en la tercera solución nos proporcionarán

q = R(Q, P, t). (28)

Teniendo en cuenta (28) denotaremos

Ki = Ki[R(Q,P, t), Q, P, t] ≡ K∗
i (Q,P, t),

parai = 1, 2, y finalmente quedará la nueva ecuación

p = f [R(Q,P, t), Q, P, K∗
1 (Q, P, t),K∗

2 (Q,P, t)]

≡ S(Q,P, t). (29)

El conjunto formado por (28) y (29) constituye una TC par-
ticular que intercambiaH1(q, p, y) y H2(Q,P, t); en cuanto
a las restantes TC su proceso de construcción ya es obvio a
tenor de lo expuesto.

5.2.. EL PI intemporal conn > 1n > 1n > 1

Para centrar ideas imaginemos quen = 2. Sean pues
H1(q1, q2, p1, p2) y H2(Q1, Q2, P1, P2) las hamiltonianas
consideradas y volvamos a admitir la integrabilidad analı́ti-
ca de los sistemas. Las relaciones (3) se escribirán ahora
qi = qi(Q1, . . . , P2), pi = pi(Q1, . . . , P2), i = 1, 2 y, si ele-
gimosq1 = q1(Q1, . . . , P2), la Ec. (4) quedará en la forma

∂H1

∂p1

=
2∑

i=1

Ai(Q1, . . . , P2)
∂q1

∂Qi

+
2∑

i=1

Bi(Q1, . . . , P2)
∂q1

∂Pi

, (30)

dondeAi ≡ ∂H2/∂Pi y Bi ≡ −∂H2/∂Qi, i = 1, 2.
Lo mismo que en (8), propondremos la igualdad de ha-

miltonianas y, por ejemplo, se deducirá

p2 = f(q1, q2, p1, Q1, . . . , P2).
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Seguidamente pasaremos a calcular dos constantes de movi-
miento del primer sistema, distintas ambas deH1 y tales que
sean independientes entre sı́ y tambíen del tiempo. Represen-
tando esas constantes porgi(q1, q2, p1, p2) = ci, i = 1, 2,
reemplazaremos en ellasp2 por f(q1, q2, p1, Q1, . . . , P2) y
se obtendŕan las expresiones de dependencia

q2 =u(q1; Q1, . . . , P2, c1, c2),

p1 =v1(q1; Q1, . . . , P2, c1, c2),

p2 =f [q1, u(q1, . . . , c2), v1(q1, . . . , c2), Q1, . . . , P2],

≡v2(q1; Q1, . . . , P2, c1, c2). (31)

El sistema diferencial asociado a (30) será por tanto

dQ1

A1(Q1, . . . , P2)
=

dQ2

A2(Q1, . . . , P2)

dP1

B1(Q1, . . . , P2)
=

dP2

B2(Q1, . . . , P2)

=
dq1

E(q1; Q1, . . . , P2, c1, c2)
, (32)

siendoE(q1; Q1, . . . , P2, c1, c2) el resultado de sustituir (31)
en∂H1/∂p1 ≡ D(q1, q2, p1, p2). Al resolver (32) determina-
remos cuatro integrales primeras

Fi(q1; Q1, . . . , P2, c1, c2) = Ci,

parai = 1, . . . , 4 y entonces la solución general de (30) ten-
drá la estructura

ϕ[Fi(q1; Q1, . . . , c2), . . . , F4(q1; Q1, . . . , c2)] = 0.

Realizando ahora tres elecciones particulares e inde-
pendientes de la función arbitraria ϕ y actuando de la
misma manera que en 5.1 deduciremos las relaciones
ci = ci(q1, Q1, . . . , P2), i = 1, 2 aśı como la ecuación

q1 = R1(Q1, Q2, P1, P2). (33)

Denotemos áun

ci = ci[R1(Q1, . . . , P2), Q1, . . . , P2] ≡ c∗i (Q1, . . . , P2),

parai = 1, 2 y, finalmente llevemos las funcionesc∗1, c∗2 y R1

a las expresiones (31). Como resultado de esto concluimos
que

q2 = R2(Q1, Q2, P1, P2)

y

pi = Si(Q1, Q2, P1, P2), (34)

parai = 1, 2.
El conjunto constituido por (33) y (34) es la representa-

ción de una TC particular para el intercambio entreH1 y H2.
Pensamos que ya queda bastante claro cómo construir nuevas
TC y cómo generalizar el ḿetodo an > 2.

Cabe imaginar otras opciones resolutivas (y menos labo-
riosas) para 5.1 y 5.2; no obstante la que aquı́ exponemos es
posiblemente la prolongación más natural de la Sec. 3.

Apéndice

Al revisar la Ref. 5 se comprueba que el autor omite ejem-
plos de PI tanto en el cason > 1 como en el caso temporal;
adeḿas, tampoco nos informa sobre las posibles repercusio-
nes del PI en otrośambitos de la mećanica. Estos hechos po-
dŕıan hacernos pensar que el problema de intercambio es una
simple çuriosidad académica”sin trascendencia práctica. En
nuestra opiníon tal punto de vista serı́a rechazable.

En primer lugar, creemos que la citada omisión de ejem-
plos no se debe tanto a una eventual carencia de interés en los
mismos sino ḿas bien a la excesiva complicación de ćalculo
que exigiŕıa el ML para resolverlos. Con el nuevo método,
tales ejemplos resultarı́an manejables en razón de una opera-
tividad que, aunque laboriosa, serı́a más simple que la exigida
por el ML.

En segundo lugar como consecuencia de recientes inves-
tigaciones (áun no comunicadas), hemos encontrado que la
resolucíon del PI intemporal conn = 2 ofrece aplicacio-
nes destacables en relación con sistemas de fuerzas centrales
elásticas (tipo Hooke) y de dirección constante. Asimismo
el PI se manifiestáutil como instrumento de conexión e inter-
pretacíon entre las constantes de movimiento de los sistemas
hamiltonianos. En el curso de las citadas investigaciones he-
mos tenido ocasión de aplicar el nuevo ḿetodo a PI tempora-
les (conn = 1) e intemporales (conn = 2). Seŕıa interesante
presentarlos aquı́ como ilustracíon de 5.1 y 5.2, pero, a fin
no alargar ḿas este artı́culo, hemos decidido reservarlos para
posibles trabajos posteriores.

Pretendemos que estas ideas, con las que concluimos el
art́ıculo, sirvan para que el problema de intercambio sea me-
recedor de un ḿas detenido y avanzado estudio.
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