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It is shown in this paper that, using only common concepts of well known modern physics and quantum mechanics textbooks (as one- and
two-electron atoms, perturbation theory), we can develop a simple and powerful method to calculate the binding energies of complex electron
configurations, as well as ionization energies, X-ray levels, etc.
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En este artı́culo se muestra que usando solamente conceptos comunes bien conocidos que aparecen en los libros de fı́sica moderna y de
mećanica cúantica (́atomos con uno y dos electrones, teorı́a de perturbaciones), podemos desarrollar un método simple y poderoso para
calcular las energı́as de ligadura de configuraciones electrónicas complejas, energı́as de ionizacíon, niveles de rayos X, etc.
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1. Introduction

It is well known that exact solutions of the Schrödinger equa-
tion can be found in a few cases [1–5]. With relation to ato-
mic physics, are treated in general hydrogenic atoms and the
ground configuration of He but, in this case, not all necessary
calculations are presented in detail [6–8].

In this work it is showed that, provided only with the
knowledge about atoms with one and two electrons, we can
treat a general theory that permit us to obtain the energy for
electron configurations of arbitrary complexity. The method
is based on theZ−1 expansion due to Layzer [9] and origi-
nated in works of Hylleraas on the ground state of He.

On one hand, this is an interesting exercise for non-
graduate students. We show as to attain data even for complex
atoms that are well compared with the experiment in diverse
cases: binding energies, energy of internal (sub) shells and
ionization energies of atoms when three or more of the va-
lence electrons are missing. For neutral or few times ionized
atoms the results are encouraging (better than75% for neu-
trals, in the more stringent case).

In this work we will use only common concepts ap-
pearing in quantum mechanics books: one- and two-electron
atoms and the Rayleigh-Schrödinger perturbation theo-
ry [1–5]. But, in order to give an idea of the usefulness of
this approach, we gives modern references to research pa-
pers. In the first part of this paper, we use a non-relativistic
approach whereas in the second part we use an approximate
relativistic treatment. In order to simplify the notation, we in-
dicates withm (notml) the component of the orbital angular
momentum whereas we useµ (notms) the component of the
spin momentum.

2. Atomic units

In atomic physics it is useful to use the so calledato-
mic units (a.u.), based in the elementary electron

charge (e ≈ 4.8× 10−10 esu), the electron rest mass
(m ≈ 9.1× 10−28 g) and the reduced Planck constant
(~ ≡ h/2π ≈ 1× 10−27 erg s). In this system the a.u.
of length is the radius of the first Bohr orbit

a0 =
~2

me2
≈ 5.29× 10−9 cm,

the time unit is

τ0 =
~3

me4
≈ 2.42× 10−17 s,

and the energy unit can be, indistinctly, the Rydberg or the
Hartree:

1 Ry =
me4

2~2
=

e2

2a0

≡ 13.6058 eV

1 Ht =2Ry.

In the following paragraphsri = |ri| the distance of
the i-th electron from the nucleus,rij = |ri − rj | is the dis-

tance between thei-th and thej-th electrons,li andsi are
the orbital and spin angular-momentum operators, in units
of ~ andξi(ri) is the spin-orbit operator, measured in energy
units. In this units system, the hamiltonian forN electrons
moving in the field of a nucleus of chargeZ looks as

H = −
∑

i

∇2
i −

∑

i

2Z

ri

+
∑ ∑

i>j

2
rij

+
∑

i

ξi(ri)(li · si), (1)

if energies [andξi(ri)] are measured inRy or

H =−1
2

n∑

i=1

(
∇2

i +
2Z

ri

)
+

∑

i>j

1
rij

+
∑

i

ξi(ri)(li · si), (2)

if energies [andξi(ri)] are measured inHt.
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3. A brief refreshment about electron
configurations and coupling schemes

To each electron of a complex atom we can assign a pair of
quantum numbers(nili) in the non-relativistic approach or a
triplet of quantum numbers(niliji) in the relativistic one. A
complex electron configuration is denoted, respectively, as

(n1l1)
w1(n2l2)

w2 . . . (nqlq)
wq

or

(n1l1j1)
w1(n2l2j2)

w2 . . . (nqlqjq)
wq ,

wherewq denote the occupation number of the electron sub-
shell. For example, for neutral Ne, the electron configuration
can be written as:

(1s)2(2s)2(2p)6

or

(1s1/2)
2(2s1/2)

2(2p1/2)
2(2p3/2)

4,

respectively, when using the non-relativistic or the relativistic
solutions of the central field problem.

When we consider thenon-relativistic Hamiltonian
[Eqs. (1) or (2)], theLS (or Rusell-Saunders) coupling is
valid when the electrostatic interactions are stronger than
the spin-orbit whereasjj coupling is applied in the re-
verse case [4]. When considering theapproximate, relativis-
tic Hamiltonian, the notion ofjj coupling is the natural one
(remember that the spin-orbit interaction is relativistic in ori-
gin).

We denote theLS coupling by the sequence
{[{(L1, L2)L2}L3, . . .

]
Lq,

[{(S1, S2)S2, S3}S3, . . .
]
Sq

}
JqMq, (3)

where the script letters indicates the various intermediate and
final quantum numbers. Analogously, thejj coupling implies
the sequence

{
[(l1, s1)j1, (l2, s2)j2]J2, . . .

}
JM. (4)

There are a biunivocal correspondence between the cou-
pledLS andjj states. For example:

s2 1S0 ←→ (s2)0,

2p2 3P0 ←→ (2p1/2)
20,

2p2 1S0 ←→ (2p3/2)
20,

2p2 3P1 ←→ (2p1/22p3/2)1,

2p2 3P2 ←→ (2p1/22p3/2)2,

2p2 1D2 ←→ (2p3/2)
22,

... (5)

The subtle questions of the fundamental importance of
these schemes are out of the scope of this paper (see the book
by Messiah [4]). An specialized although elementary account
can be found in the books by Eisberg [11] and Woodgate [12];
a text about the importance ofjj coupling in nuclear struc-
ture is the one by Talmi and de-Shalit [13].

As well as the numbersn, l (or n, l, j) indicates an elec-
tron configuration, the numbersL, S give the so calledterms.
Denonting byEav theconfiguration-average energy

Eav =
∑

states Ek

number of states
,

it is important to know that the energy of theterms, relative
toEav can be found using the vector model of the atom [6,11]
and can be calculated in terms of the so called Slater integrals
(see below). Although the deduction is not trivial and it is apt
for advanced courses, they can be obtained using a computer
program presented in Ref. 14. For example, for the configu-
rationp2 (or p4) the followings terms appear:

E(3P ) = Eav −
3
25

F 2(pp),

E(1D) = Eav +
3
25

F 2(pp),

E(1S) = Eav +
12
25

F 2(pp). (6)

4. One- and two-electron atoms

4.1. One-electron atoms

Few things are necessary to remind from the non-relativistic
hydrogenic atoms:

i) The discrete state energies, relative to the ionization
limit (taken as zero), are given by

En = −Z2

n2
.

ii ) The non-relativistic wavefunction for one-electron
atoms is of the form calledspin-orbital

Ψ(r, θ, ϕ, µ) = r−1Pnl(r)Ylm(θ, ϕ)χ(µ), (7)

whereP (r) andYlm(θ, ϕ) are normalized according to
the relations

∫ ∞

0

|Pnl(r)|2 dr = 1;

∫∫
|Ylm(θ, ϕ)|2 sin θ dθdϕ = 1. (8)

Explicitly, whenr is measured in units ofa0

Pnl(r) = Cnlr
l+1e−Zr/n

n−l−1∑

k=0

akrk, (9)
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with

ak =
(−2Z/n)k

k!(2l + 1 + k)!(n− l − 1− k)!
, (10)

and

Cnl =
{

22l+2Z2l+3(n− l − 1)!(n + l)!
n2l+4

}1/2

. (11)

Abundant theoretical material about the spherical har-
monics can be found in quantum mechanics as well as in elec-
tromagnetism books (see the above mentioned references, for
example the book by Jackson [15].

4.2. Two-electron atoms

This topic is included in some texts about modern physics [6],
therefore we will be shyntetic in this section. A more explicit
treatment can be found in the book by de la Peña [5] as well as
in the one by Borowitz [1]. More detailed treatments are pre-
sented in some books about quantum chemistry (See Refs. 7
or 8).

We must evaluate〈Ψ|H|Ψ〉 where|Ψ〉 is a determinan-
tal (antisymmetric) wavefunction andH is the Hamiltonian
operator.

The difficulty in the treatment of many-electron atoms is
in the term2/rij of the Hamiltonian (1 or 2) that, without the
spin-orbit term, can be re-written using conventional sym-
bols as

H(in Ht) =−
(∇2

i

2
+
∇2

j

2
+

Z

ri

+
Z

rj

)
+

1
rij

≡
2∑

i=1

H0(i) + H12(i, j). (12)

To proceed with such term, that impedes the variable se-
paration, we introduce the normalized spherical harmonics,
according to [15]

C(k)
q =

(
4π

2k + 1

)1/2

Ykq, (13)

such that the matrix element, denoted〈lm|C(k)
q |l′m′〉, results

〈lm|C(k)
q |l′m′〉 ≡

∫∫
Y ∗

lmYkqYl′m′ sin θ dθdφ; (14)

and can be calculated directly, although it is laborious. The
result can be expressed in terms of the3j symbols due to
Wigner, that can be calculated in closed form in terms of fac-
torials (this material can be found in the books of Landau-
Lifshitz or Messiah [3,4]:

∫∫
Y ∗

lmYkqYl′m′ sin θ dθdφ = (−1)−m
[
(2l + 1)(2l′ + 1)]1/2S3j(l, k, l′; 0, 0, 0)S3j(l, k, l′;−m, q, m′)

= δ(q, m−m′)ck(lm, l′m′). (15)

The above equation also defines the coefficientsck(lm, l′m′).
It is known from the courses about electrostatics that the following expansion is valid [15]:

1
r12

=
∞∑

k=0

rk
<

rk+1
>

k∑

q=−k

(−1)qC
(k)
−q (θ1, φ1)C

(k)
q (θ2, φ2). (16)

It can be shown [7] that, if each spin-orbital is written as in Eq. (7), the average value〈1/r12〉 ≡ 〈Ψ|1/r12|Ψ〉 is evaluated as
〈

i(1)j(2)
∣∣∣∣

1
r12

∣∣∣∣t(1)u(2)
〉

= δ(µi, µt)δ(µj , µu)
∑

k

Rk(ij, tu)

×
∑

q

δ(q, mt −mi)δ(q, mj −mu)(−1)qck(limi, ltmt)c
k(ljmj , lumu), (17)

where theRk(ij, tu) are the generalized Slater integrals (see
below in this same paragraph). The summation overk involve
only a small number of non-zero terms [see below Eqs. (18)
and (19)]. Using the fundamental property of de Diracδ func-
tion, we note that the matrix elements17 are zero unless
q = mt −mi = mj −mu, thereforemi + mj = mt + mu.

This is a reflection of the conservation of angular mo-
mentum: the electrostatic interaction betweeen two electrons
cannot change the total orbital angular momentum of the two
electrons, nor thez-component. The situation for the spins is
even more restrictive, theδ-factors giving

µi = µt, µj = µu,

indicates that since the electrostatic interaction does not ope-
rate on the electrons spins, not only is thetotal spin con-
served, but so also is the spin of each electron separately.

In particular, from Eq. (17), it is introduced theCoulomb
or direct integralJ(ij):

J(ij) ≡
〈

ij

∣∣∣∣
1

r12

∣∣∣∣ij
〉

=
∑

k

ck(limi, limi)c
k(ljmj , ljmj)F

k(ij), (18)
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TABLE I. Electron-pair interaction energies for a non-relativistic
system.

〈ss〉 F 0(ss)

〈pp〉 F 0(pp)− 2F 2(pp)/25

〈dd〉 F 0(dd)− 2F 2(dd)/63− 2F 4(dd)/63

〈ss′〉 F 0(ss′)−G0(ss′)/2

〈sp〉 F 0(sp)−G1(sp)/6

〈sd〉 F 0(sd)−G2(sd)/10

〈pp′〉 F 0(pp′)−G0(pp′)/6−G2(pp′)/15

〈pd〉 F 0(pd)−G1(pd)/15− 3G3(pd)/70

〈dd′〉 F 0(dd′)−G0(dd′)/10−G2(dd′)/35−G4(dd′)/35

and theexchange integralK(ij):

K(ij) ≡
〈

ij

∣∣∣∣
1

r12

∣∣∣∣ji
〉

= δ(µi, µj)
∑

k

[ck(limi, ljmj)]
2Gk(ij). (19)

We can see, using the properties of the3j symbols [3]
(and therefore of theck coefficients, both derived from the
integral over spherical harmonics) that:

i) l + k + l′ must be even.

ii ) The triangle relation of the classical vector model must
be satisfied:|l − l′| ≤ k ≤ l + l′.

In Eq. (19)F k(i, j) andGk(i, j) are [6,14]

F k(ij) ≡ Rk(ij, ij)

=
∫∫

rk
<

rk+1
>

|Pi(r1)|2|Pj(r2)|2 dr1dr2, (20)

Gk(ij) ≡ Rk(ij, ji)

=
∫∫

rk
<

rk+1
>

Pi(r1)Pj(r1)Pi(r2)Pj(r2) dr1dr2. (21)

Now it is necessary to average over the magnetic quantum
numbers. For non-equivalent orbitals:

E(ij) = 〈ij|1/r12|ij〉av − 〈ij|1/r12|ji〉av

= F 0(ij)− 1
2

∑

k

(
li k lj
0 0 0

)2

Gk(ij), (22)

whereas for the equivalent ones:

E(ii) = F 0(ii)− 2li + 1
4li + 1

∑

k>0

(
li k lj
0 0 0

)2

F k(ii). (23)

Slater integrals can be calculated in closed form if hydro-
genic orbitals are used, but the final result is long and compli-
cate. Electron-pair interaction energies for a non-relativistic
system are in Table I.

5. Average energies for complex configurations

In the non-relativistic approach, a complex configuration is
denoted as

(n1l1)
w1(n2l2)

w2 . . . (nqlq)
wq , (24)

whereN =
∑q

j=1 wq is the total number of electrons of the
atom or ion.

For the Hamiltonian [Eq. (2)], without the spin-orbit
term, the energy

E = 〈Ψ|H|Ψ〉
can be written as the sum of kinetic, electron-nuclear and
electron-electron Coulomb energies:

Eav =
∑

i

Ek(i) +
∑

i

En(i) +
∑

i>j

E(i, j)

=
∑

i

I(i) +
∑

i>j

E(i, j). (25)

For example, for the neutral Be

Eav = 2I(1s) + 2I(2s) + E(1s, 1s) + E(2s, 2s)

+4E(1s, 2s).

This very complex many-body problem can be solved us-
ing the Hartree-Fock approach (a numerical one), as can be
briefly viewed in the books by Eisberg [11], Landau [3] or
Messiah [4]. Instead, in this paper we use the following ap-
proach.

6. TheZ−1Z−1Z−1 expansion

Layzer’s formulation of theZ-dependent theory of the many-
electron atom can be regarded as the starting point [9]. From
the approximate Hamiltonian in atomic units (e=me =~=1
and energies measured in Hartrees) given by Eq. (2):

H(N, Z) = −1
2

n∑

i=1

(
∇2

i +
2Z

ri

)
+

∑

i>j

1
rij

, (26)

and introducing the new variableρ = Zr, Eq. (26) becomes
(the parameterλ is commonly used in place ofZ−1)

H(N,Z) → Z2H(N,λ) = Z2(H0 + λV ), (27)

where

H(N,λ) = −1
2

n∑

i=1

(
∇2

i +
2
ρi

)
+ λ

∑

i>j

1
ρij

.

The first term of the right hand side,

H0 = −1
2

n∑

i=1

(
∇2

i +
2
ρi

)
(28)

is a sum over non-interacting hydrogenic Hamiltonians, and

V ≡ H1 =
∑

i>j

1
ρij

. (29)
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If Z−1(= λ) is a small parameter, the Rayleigh-Schrö-
dinger perturbation theory (RSPT) can be applied [4,11].
Layzer showed that, within the framework of theZ−1-de-
pendent theory, the wave function and the total energy can be
written as the expansions

Ψ(N, λ) = Ψ0 + λΨ1 + λ2Ψ2 + . . . (30)

and

E(N, λ) = E0 + λE1 + λ2E2 + . . . (31)

Then

E(N, Z) = Z2E0 + ZE1 − E2 + . . . (32)

where,exactly

E0 = 〈ψ0|H0|ψ0〉 = −1
2

n∑

i=1

1
n2

i

(33)

and

E1 = 〈ψ0|H1|ψ0〉. (34)

According to the Eqs. (22) and (23),E1 is given in terms
of Slater’s integralsF k andGk evaluated with hydrogenic
wavefunctions withZ = 1. In Table II we display these ave-
rage Coulomb energies for the ground configurations of He
to Ne, in order to explain our following results. More va-
lues are exposed in the works of Safronovaet al. [16] and the
present author [17]. We remark the recent publication of these
last cited works in order to indicate how a simple approach
can give valuable theoretical data apt to interpret complex
experiments.

TABLE II. Some Average Coulomb energiesE1 calculated in terms
of Slater integrals withZ = 1. More results can be found in the
Refs. 16 and 17.

He 0.62500
Li 1.02281
Be 1.57100
B 2.33445
C 3.27251
N 4.38518
O 5.67245
F 7.13433

Ne 8.77083

If we restrict the expansion (32) up toE2, the energy can
be written as

E = −
∑

n,l

wnl(Z − σnl)
2

2n2
, (35)

wherewnl is the number of electrons in then, l shell and
σnl is the corresponding screening parameter. Comparing
Eqs. (32) and (35), we find that theσnl satisfy

E1 =
∑

n,l

wnl

n2
σnl, (36)

and

E2 =
∑

n,l

wnl

2n2
σ2

nl. (37)

Then, to second-order approximation in the non-relativistic
context, the average energy of a configuration is given by

Eav =−Z2

2

(
w1s +

w2s + w2p

4
+

w3s + w3p + w3d

9
+ · · ·

)
+Z

[
1
2

∑

i

wi(wi − 1)E1(ii) +
∑

i,j

wiwjE1(ij)
]
− E2, (38)

wherewi is a short notation forwnili
, the number of elec-

trons in theni, li shell.

6.1. About the concept of screening

The concept of screening (and screened orbitals) is of old
data and it is impossible to give a short account in this pa-
per. In the past, screening parameters were obtained using
spectroscopic data, numerical calculations and theoretical ap-
proaches. A short review can be found in the paper from the
author [17].

In more refined approachs the screening parameters all
haveZ expansions of the form

s = s0 + s1Z
−1 + s2Z

−2 + . . . ,

whereas other authors used electrostatic considerations and
deduced parameters dependent of bothZ, N : σ(Z, N) [17].
Looking for simplicity, in this work, we will use only the
concept ofexternalscreening, as shown below and in the Ap-
pendix B.

7. Firsts examples of applications

7.1. Binding energies and relativistic contributions

For the He atom,E1 = F 0(1s, 1s) = 0.625, therefore
from Eq. (36), σ1s = 0.3125, a result known from varia-
tional calculations (see Appendix A). WithZ1s = 1.6875,
E(He) = −2.8477 Ht; better results could be obtained
if relativistic corrections are employed. In this case,
σ1s = 0.2961 andE = −2.9033 Ht; almost the experimental
value.

For Li I: 1s22s, we haveE1 = 1.0228 = 2σ1s + σ2s/4.
Assuming that σ1s = 0.3125 (neglecting the external
screening),σ2s = 1.5912 andE(Li I) = −7.4707 Ht. In-
troducing the concept of external screening, we write
σ1s = 0.3125 + g(1s, 2s), estimate g(1s, 2s) accord-
ing to Appendix B and calculateσ2s. For the Li I
case, g(1s, 2s) = 0.0143, therefore σ2s = 1.4771 and
E(Li I) = −7.4361 Ht, instead of the previous value

Rev. Mex. F́ıs. 48 (1) (2002) 76–87
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TABLE III. Center of gravity binding energies inRydbergsfor
ground configurations [including relativistic corrections according
to Eq. (39)]. The values with a (∗) were calculated using Hartree-
Fock methods because no experimental values are available.

Atom This method Sucher [24] Experiment
He 5.695 6.0 5.807

Be 29.245 29.50 29.337

C 75.580 75.50 75.712

Ne 257.460 269.60 258.102

Mg 400.960 414.20 400.621

Si 580.060 593.80 579.732

Ar 1058.040 1072.80 1058.23

Zn 3585.28 3626.00 3588.46∗

Kr 5573.66 5570.00 5575.30∗

of −7.4707 Ht. The experimental one is−7.4344 Ht. The
IP is obtained after calculatingE(Li II). The He-like Li II
hasσ1s = 0.3125, thereforeE(Li II) = −7.2227 Ht imply-
ing that neglectingg(1s, 2s), I = 0.248 Ht ≡ 6.75 eV,
whereasIexp = 5.39 eV. Considering now the external
screening,I = 0.2134 Ht ≡ 5.807 eV.

Using Z-independent screening parameters we
have for the Be atomσ1s = 0.3125 + 2 × 0.0143.
Then, σ1s = 0.3125 + 2× 0.0143 = 0.3410 and accord-
ing to Eq. (36) and Table II,σ2s = 1.8349 and thus
E(Be I) = −14.56 Ht. The experimental value is found to
be−14.6685 Ht. The difference between these values lies
within 0.7%.

Proceeding in this form, in Table III we show binding
energies for a number of elements in order to compare with
the values reported by the experiment [18]. The most impor-
tant relativistic contribution is due to the more internal elec-
trons and can be estimated as a simple sum over terms of the
form

Erel = −α2Z4
ef

8n4

(
4n

j + 1/2
− 3

)
wnl Ht. (39)

7.2. The isoelectronic sequences of neon and argon

In Ref. 17 we exhibit, as examples, the ionization poten-
tials for the Ne I and Ar I isoelectronic sequences cal-
culated by means of our approach. A comparison with
the experiment indicates that agreement is within76%
for Ne I and better than3% for the third member of
the serie. Our IP’s can be fitted by the adjusted em-
pirical curve IP(eV) = 128.29− 45.42Z + 3.4231Z2. For
the Ar I isoelectronic sequence, the fit function is
IP = 285.16− 43.06Z + 1.5861Z2. Now, the IP’s are bet-
ter than7% for the4-th member of the serie. Also the exper-
imental ionization potentials follow an empirical law of the
type

I = aZ2 + bZ + c;

TABLE IV. K-shell binding energies in eV for some representative
neutral atoms.

Atom Ours Experiment
Be 123.8 119.30

C 297.6 283.8

Ne 876.0 870.10

Mg 1316.3 1311.20

Si 1856.2 1846.00

Ar 3211.6 3202.90

Zn 10392.8 10367.1

32 11131.9 11103.1

33 11897.6 11866.7

34 12690.1 12657.8

35 13509.6 13473.7

Kr 14356.2 14325.6

this behaviour is easy to understand from Eq. (32). In parti-
cular, it is a simple exercise to show that

a =
Z2

2n2
k

,

wherenk is the principal quantum number of the removed
electron [19].

7.3. K-shell binding energies

In Table IV we present the K-shell binding energies for some
neutral atoms from Be to Kr. We establish a comparison with
experimental results tabulated in theHandbook of Chemistry
and Physics[20]. In general, we can see that our simple ap-
proach gives an agreement of the order of0.2%.

8. Now, the relativity, why?

We see that the most important relativistic contribution to the
total energy is due to the more internal electrons and can be
well estimated as a simple sum over terms of the form given
by the Eq. (39).

However, we know from the modern physics courses
that in the X-ray spectra appear a fine structure such that,
for example, the2p1/2 electrons have a notorious different
energy than the2p3/2 ones [6,11,21]. We will show that, al-

though the energy of the valence electrons do not differ ap-
preciably between relativistic or non-relativistic treatments,
we can easily calculate the different subshell energies.

8.1. Approximate relativistic wave functions and some of
their properties

The relativistic theory of theH atom is briefly presented in
the books by Merzbacher [2] and also in the one by Mes-
siah [4]. Also brief are the expressions for the hydrogen rela-
tivistic radial wave functions that can be found in these clas-
sic texts.

They have a large and a small component, denoted re-
spectively byFnlj(r) and Gnlj(r) (other authors use the

Rev. Mex. F́ıs. 48 (1) (2002) 76–87
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reverse notation!), with the general property that, when
(Zα)2 → 0, Fnlj(r) → Rnl(r), andGnlj → 0. The norma-
lization condition is

∫ ∞

0

(
F 2

nlj + G2
nlj

)
r2dr = 1. (40)

In our case, we introduce one heuristic approach apt to the
purpose of this paper and also to diverse applications, there-
fore we takeGnlj = 0 and normalizeFnlj(r) according to
Eq. (40). Heuristic approachs are very common when model-
ling complex physical situations, for example when atomic
and fluid equations are coupled or when plasmas in non-
thermal equilibrium exists [22]. In this form we have a wave
function for each sub-shell defined by the individual quan-
tum numbers(nlj) and we can calculate the corresponding
energies for each subshell.

Taking into account that diverse notations exists for the
relativistic functions, we shall summarize the symbols to be
used. Given the quantum numbersn, l, we construct the fol-
lowing quantities, withα = 1/137.037:

j+ = l +
1
2
,

j− =
∣∣∣∣l −

1
2

∣∣∣∣,

λ+ =
[(

j+ +
1
2

)2

− α2

]1/2

=
[
(l + 1)2 − α2

]1/2 → (l + 1),

λ− =
[(

j− +
1
2

)2

− α2

]1/2

= (l2 − α2)1/2 → l,

n′+ = n− j+ − 1/2 = n− l − 1,

n′− = n− j− − 1/2 = n− l,

N+ =
[
n2 − 2n′+

(
j+ +

1
2
− λ+

)]1/2

→ n,

N− =
[
n2 − 2n′−

(
j− +

1
2
− λ−

)]1/2

→ n,

κ+ = −
(

j+ +
1
2

)
= −(l + 1),

κ− = +
(

j− +
1
2

)
= +l.

With these quantities, and calling for brevityrFnlj ≡ Pnlj ,
our hydrogen radial wave-function has the form [2]

Pnlj(r) = Cnj

( n′∑
v=0

fvrv+λ

)
e−Zr/N . (41)

In Eq. (41)

fv = (−1)v (2λ)!(2Z/N)v+λ−1n′!
v!(2λ + v)!(n′ − v)!

(v − n′ + N − κ), (42)

for v = 0 up tov = n′ − 1 and

fv = (−1)v (N − κ)(2λ)!(2Z/N)v+λ−1

(2λ + v)!
, (43)

for v = n′. The normalization constant is found by perform-
ing the integral given by the Eq. (40) with the appropriate
values offv. In such manner, we find in place of Eq. (11),

Cnj =

[
(2Z/N)2λ+1

∑2n′
α=0 AαΓ(α + 2λ + 1)(N/2Z)α

]1/2

, (44)

with

Aα =
α∑

β=0

fβfα−β . (45)

A general property of these wave functions is that, denot-
ing byPnl the non-relativistic functions,P+

nlj the relativistic
functions withj = j+ and byP−nlj whenj = j−

P+
nlj ' Pnl,

and

P−nlj ' crle−Zr/N + Pnl.

8.2. jjjjjj coupling and the calculation of the Slater integrals

We give here an heuristic point of view, indicating that a
correct relativistic Hamiltonian for many-electron atoms was
derived by Breit. Theelectrostaticpart of the relativistic en-
ergy of an atom is the straightforward generalization of the
nonrelativistic energy

E =
∑

i

I(i) +
∑

i,j

[J(i, j)−K(i, j)], (46)

where the energies must be calculated usingrelativisticwave-
functions.

In a analogous way to the non-relativistic theory, the en-
ergy of an atomic configuration may be expressed in terms
of Slater integrals, nowin the jj coupling scheme. For a
two-electron system and from Eq. (46), the electron-electron
Coulomb energy can be written (neglecting here magnetic
and retardation effects) as

〈
nalaja, nblbjb

∣∣∣∣
1

r12

∣∣∣∣nalaja, nblbjb

〉
=

∑

k

[
fk(a, b)F k(a, b)− (−1)ja+jb+Jgk(a, b)Gk(a, b)

]
. (47)

Now the diverse summations, corresponding3 − nj symbols and coefficientsfk andgk depend on quantum numbersl′s
andj′s and not onl′s, L′s andS′s. In the Appendix, we give explicit expressions for these coefficients and the calculated ones
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TABLE V. Electron-pair interaction energies for a relativistic system.

〈s+s+〉 F 0(s+s+)

〈p−p−〉 F 0(p−p−)

〈p+p+〉 F 0(p+p+)− F 2(p+p+)/15

〈d−d−〉 F 0(d−d−)− F 2(d−d−)/15

〈d+d+〉 F 0(d+d+)− 24F 2(d+d+)/525− 10F 4(d+d+)/525

〈s+s′+〉 F 0(s+s′+)−G0(s+s′+)/2

〈s+p∓〉 F 0(s+p∓)−G1(s+p∓)/6

〈s+d∓〉 F 0(s+d∓)−G2(s+d∓)/10

〈p−p′−〉 F 0(p−p′−)−G0(p−p′−)/2

〈p−p+〉 F 0(p−p+)−G2(p−p+)/10

〈p−d−〉 F 0(p−d−)−G1(p−d−)/6

〈p−d+〉 F 0(p−d+)−G3(p−d+)/14

〈p+p+
′〉 F 0(p+p′+)−G0(p+p′+)/4−G2(p+p′+)/20

〈p+d−〉 F 0(p+d−)−G1(p+d−)/60− 9G3(p+d−)/140

〈p+d+〉 F 0(p+d+)−G1(p+d+)/10−G3(p+d+)/35

〈d−d′−〉 F 0(d−d′−)−G0(d−d′−)/4−G2(d−d′−)/20

〈d−d+〉 F 0(d−d+)−G2(d−d+)/70−G4(d−d+)/21

〈d+d′+〉 F 0(d+d′+)−G0(d+d′+)/6− 4G2(d+d′+)/105−G4(d+d′+)/63

ones are presented in Table V. For some examples,

〈s+s+〉 = F 0(s+s+);

〈p+p+〉 = F 0(p+p+)− F 2(p+p+)
15

.

The Slater parametersF k, Gk for hydrogenicwavefunc-
tions can be calculated analytically, but the expressions are
tedious and not very illuminating as to be presented here. The
results shown small differences with the non-relativistic ones
but thejj approach permit us to calculate the subshell bind-
ing energies (and X-ray ones, if we like). Some examples can
be viewed in Table VI and compared with the numbers of
Asaad [23]. So, the term energiesE0 andE1 of a given con-
figuration can be calculated. For the neutral Ne, for example,

E0(Ne I) = 2I(1s) + 2I(2s) + 2I(2p−) + 4I(2p+),

where

I(nl±) ≡ Inj

= − 1
2n2

[
1 +

(Zα)2

4n2

(
4n

ji + 1/2
− 3

)]
, (48)

and

E1(Ne I) = 〈1s1s〉+ 〈2s2s〉+ 4〈1s2s〉+ 4〈1s2p−〉
+8〈1s2p+〉+ 4〈2s2p−〉+ 8〈2s2p+〉+ 〈2p−2p−〉

+6〈2p+2p+〉+ 8〈2p−2p+〉.

TABLE VI. Relativistic Slater’s integrals (in Ht).

Integral This work Asaad [23]

F 0(1s, 1s) 0.624926 0.625003

F 0(1s, 2s) 0.209844 0.209891

F 0(1s, 2p−) 0.242852 0.242822

F 0(1s, 2p+) 0.242800 0.242817

F 0(2s, 2s) 0.150367 0.150389

F 0(2s, 2p−) 0.162117 0.162113

F 0(2s, 2p+) 0.162107 0.162112

F 0(2p−, 2p−) 0.181667 0.181629

F 0(2p−, 2p+) 0.181652 0.181627

F 0(2p+, 2p+) 0.181637 0.181625

F 2(2p+, 2p+) 0.087712 0.087909

G0(1s, 2s) 0.021921 0.021942

G1(1s, 2p−) 0.051225 0.051195

G1(1s, 2p+) 0.051180 0.051194

G1(2s, 2p−) 0.087955 0.087910

G1(2s, 2p+) 0.087968 0.087910

G2(2p−, 2p+) 0.087714 0.087909

Average Coulomb energiesE1 calculated in term of
Slater integrals withZ = 1 are presented in Table VII.

With respect to the terms, we must consider the relations
between the Slater integralsF k(ii), Gk(ij) and their rela-
tivistic counterparts. We develop here one case; other ones
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TABLE VII. Electron pair energies (in Ht).

〈1s+1s+〉 0.624926

〈1s+2s+〉 0.198833

〈1s+2p−〉 0.234314

〈1s+2p+〉 0.234270

〈2s+2s+〉 0.150367

〈2s+2p−〉 0.147458

〈2s+2p+〉 0.147445

〈2p−2p−〉 0.181667

〈2p−2p+〉 0.172881

〈2p+2p+〉 0.175790

TABLE VIII. Some relationships between the non-relativistic and
the relativistic expressions for the Slater integrals.

F 2(pp) [2G2(−+) + F 2(++)]/3

F 2(dd) [7F 2(−−) + 6G2(−+) + 12F 2(++)]/25

F 4(dd) [4G4(−+) + F 4(++)]/5

G0(ss) G0(++)

G1(sp) [G1(+−) + 2G1(++)]/3

G2(sd) [2G2(+−) + 3G2(++)]/5

are in Table VIII. From Tables I and V

〈pp〉 = F 0(pp)− 2
25

F 2(pp),

〈p−p−〉 = F 0(p−p−),

〈p+p+〉 = F 0(p+p+)− 1
15

F 2(p+p+),

〈p−p+〉 = F 0(p−p+)− 1
10

F 2(p−p+).

In the respective complete shells there are15 pairspp, 1
pairp−p−, 6 pairsp+p+ and8 pairsp−p+. Multiplying ade-
quately and equalizying, results in

F 0(pp) =
F 0(−−) + 6F 0(++) + 8F 0(−+)

15

and

F 2(pp) =
F 2(++) + 2G2(−+)

3
.

9. Further applications and results

We base our heuristic approach in the expansion given by
Eq. (32) which contains itself a contribution proportional
to Z4, becauseE0 is now given by Eq. (49). To second or-
der approximation

TABLE IX. LII − LIII shell binding energies (in eV) for some
representative atoms.

Z Element Our values (eV) Experiment (eV) [20]

18 Ar 247.0 247.3

245.2 245.2

31 Ga 1135.07 1142.3

1112.22 1115.4

32 Ge 1239.22 1247.3

1212.82 1216.7

33 As 1350.06 1358.6

1319.70 1323.1

34 Se 1464.62 1476.2

1429.88 1435.8

35 Br 1583.97 1596.0

1544.40 1549.9

36 Kr 1708.15 1727.2

1663.27 1674.9

Eav =−Z2

2

∑

i

wi

n2
i

[
1+

(Zα)2

4n2
i

(
4ni

ji + 1/2
−3

)]

+Z

[
1
2

∑

i

wi(wi−1)E1(ii)+
∑

i,j

wiwjE1(ij)
]
−E2, (49)

with E1 andE2 satisfying the relations (36) and (37). Ioni-
zation energies for the valence electrons do not differ ap-
preciably from the non-relativistic case. As examples,LII

andLIII shell bindings energies are in Table IX. Agreement
with experimental values are better than1% [20].

10. Comparison with other simple approachs

Some simple approachs for the calculation of atomic struc-
tures were published in the last two decades. In1978,
Sucher [24] presented a simplified version of the atomic
shell model and calculated the ground-state energy of any
atom. The agreement with Hartree-Fock calculations was
within 5% for He and Ne and better than0.5% for Z > 45.
No calculations for ions or for shell binding energies were
presented, nor for excited states. On the other hand, based
in the use of the virial

∑
riFi as the model potential energy

operator, Kregar [25] calculated screening parameters for any
configuration. These works of Kregar were generalized by the
present author [26].

When comparing the above mentioned papers with the
present approach, we can conclude that

i) Our results for ground configurations binding energies
are clearly better than the values presented by Sucher
(see Table III).

ii ) Our values for binding energies and ionization poten-
tials are very similiar to those calculated by Kregar.
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iii ) We can calculate sub-shell binding energies (and X-ray
spectra) whereas the works of Sucher and Kregar are,
essentially, non-relativistic.

11. Conclussions

The heuristic point of view presented in Ref. 17 using the
Z-expansion theory supplemented with the inclusion of the
external screening concept is generalized to the relativistic
case in thejj coupling. We use the normalized large com-
ponent relativistic wave-function such that we can calculate
the binding energies for each orbital indexed by then, l, j
quantum numbers. From the analysis of the tables we can
obtain the following conclusions. The center-of-gravity bind-
ing energies calculated in theZ−1 approach are in very good
agreement with experimental values. As can be viewed in
Ref. 17 the ionization potentials for the (Ne I) and (Ar I)
isoelectronic sequence are within3% for three times ionized
atoms and better for higher ionization degrees:1% for five
times ionized atoms and0.5% for the15-th spectra of the se-
quence. Results are worse for neutrals (within25%) yet better
than other screening approaches; for example, the values of
Safronovaet al. [16] are negative for low ionization degrees.
K- and L- shell binding energies are in very good agreement
with experiment [20]. An important aspect to be taken into
account is that, in our approach there are no adjustable pa-
rameters. Better results can be attained with small efforts in
the calculation of external screening parameters but exten-
sive use of research papers must be made. We think that the
numbers obtained with this simple approach will give to the
student a clear idea of the power of the approximation meth-
ods applied to complex many-body problems.

Appendix A

The variational calculation of the He ground
configuration energy

This topic can be found in the books by Messiah [4], Karplus-
Porter [7] and Levine [8]. If we assign to each electron of
the 1s2 configuration an hydrogenic radial wave-function
with effective chargeZe

P1s = 2Z3/2
e re−Zer

and using the Hamiltonian (2) without the spin-orbit term,
then

〈H〉 = −2Z2
e + 4Ze(Ze − 2) + 1.25Ze.

The values of〈H〉 andZe corresponding to the minimum
are determined by differentiation; that is, from

d〈H〉
dZe

= −4Ze + 8Ze − 8 + 1.25 = 0;

thereforeZe = 2 − 5/16 = 1.6875 and 〈H〉 = 5.6953
Ry = 77.49 eV.

Appendix B

A simple approach to the screening

As was said above, there are many works about screening
parameters and screened functions. Here, we gives a simple
point of view apt to calculateexternalscreenings [27].Total
screenings are deduced according to Eq. (36) (see the exam-
ples given above).

Schr̈odinger equation is non-separable, due to the term

1
rij

= (r2
i + r2

j − 2rirj cosωij)
−1/2.

Making u = 1/ri, v = 1/rj , f = 1/rij and developing
a two-variable function in a Taylor series to a first order

f(u + h, v + k) ≈ f(u, v) +
[
∂f

∂u
h +

∂f

∂v
k

]
,

it results

1
rij

=
(
u−2

0 + v−2
0

)−1/2 +
u−3

0

(
u−2

0 + v−2
0

)−3/2

ri

−u−2
0

(
u−2

0 + v−2
0

)−3/2 +
v−3
0

(
u−2

0 + v−2
0

)−3/2

rj

−v−2
0

(
u−2

0 + v−2
0

)−3/2
.

Because the sum of the1st, 3rd and5th terms are zero,
the second one (and mutatis mutandis) the fourth can be put
in the form

u−3
0

{
u−2

0

[
1 +

(
v0

u0

)−2]}−3/2

ri

=

[
1 +

(
v0

u0

)−2]−3/2

ri

;

therefore

1
rij

=
Aij

ri

+
Aji

rj

,

with

Aij =
[
1 +

(
v0

u0

)−2]−3/2

.

Using for the mean values

u0 = 〈nili|r|nili〉−1 =
2Z

3n2
i − li(li + 1)

we have, callingxij to

xij =
v0

u0

=
3n2

j − lj(lj + 1)
3n2

i − li(li + 1)
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that

Aij =
{

1 +
[
3n2

j − lj(lj + 1)
3n2

i − li(li + 1)

]2}−3/2

.

Whenj > i we are calculating the external screening para-
meters.

In principle, a best recipe is given below, but the deduc-
tion is longer. In the spirit of this paper, the present point
of view is sufficient. Since the application of this formula is
straightforward, is not necessary to give a table of these pa-
rameters.

Observe that for an orbital pairi, j we call
xij = 〈1/ri〉/〈1/rj〉, andyij = (ni/nj)xij . We propose
the following expression, based in electrostatic considera-

tions [25]:

gij =
(

1
1 + yij

)(2nj+1)
[ 2ni−1∑

k=0

(2nj + 1)!
k!(2nj)!

(
yij

yij + 1

)k
]
.

Appendix C

Calculation of the coefficientsfkfkfk and gkgkgk for the
relativistic case

In place of the non relativistic expressions presented in Ta-
ble I, now we have [28]

fk

(
laja, lbjb

)
=

∑
(2Ji + 1)fk

(
laja, lbjb;J

)
∑

(2Ji + 1)
,

where

fk

(
laja, lbjb; J

)
= (−1)J+la+lb+1(2ja + 1)(2jb + 1)

×S6j(J, ja, jb; k, jb, ja)S6j(1/2, ja, la; k, la, ja)S6j(1/2, jb, lb; k, lb, jb)
〈
la

∥∥C(k)
∥∥la

〉〈
lb

∥∥C(k)
∥∥lb

〉

and

gk(laja, lbjb) =
∑

(2Ji + 1)gk(laja, lbjb;J)∑
(2Ji + 1)

where

gk(laja, lbjb; J) = (−1)J+jb−ja+1+k(2ja + 1)(2jb + 1)

×S6j(J, ja, jb; k, ja, jb)S
2
6j(1/2, ja, la; k, lb, jb)

×〈
la

∥∥C(k)
∥∥lb

〉2
.

The so called6j symbols as well as the expressions for
the matrix elements can be found in the book by Messiah [4].
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