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It is shown in this paper that, using only common concepts of well known modern physics and quantum mechanics textbooks (as one- and
two-electron atoms, perturbation theory), we can develop a simple and powerful method to calculate the binding energies of complex electron
configurations, as well as ionization energies, X-ray levels, etc.
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En este aftulo se muestra que usando solamente conceptos comunes bien conocidos que aparecen en loddibeomdédeina y de
meanica ci@antica @tomos con uno y dos electrones, taalde perturbaciones), podemos desarrollar @booo simple y poderoso para
calcular las enefigs de ligadura de configuraciones eléoicas complejas, endégg de ionizadin, niveles de rayos X, etc.
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1. Introduction charge (e ~ 4.8 x 1071 esu), the electron rest mass
_ _ o ~ 9.1 x 10728 g) and the reduced Planck constant
Itis well known that exact solutions of the Sdkiinger equa- = h/27 ~ 1 x 10" erg s). In this system the a.u.

tion can be found in a few cases [1-5]. With relation to ato- of Iength is the radius of the first Bohr orbit
mic physics, are treated in general hydrogenic atoms and the
ground configuration of He but, in this case, not all necessary h? 9,
) : : ag = — ~ 5.29 x 10~

calculations are presented in detail [6-8]. me>2

In this work it is showgd that, provided only with the the time unit is
knowledge about atoms with one and two electrons, we can .
treat a general theory that permit us to obtain the energy for - h ~ 242 x 10717 s,
electron configurations of arbitrary complexity. The method " met

is based on theZ ™" expansion due to Layzer [9] and origi- and the energy unit can be, indistinctly, the Rydberg or the

nated in works of Hylleraas on the ground state of He. Hartree:
On one hand, this is an interesting exercise for non- 4 )
graduate students. We show as to attain data even for complex 1Ry =2 — < —13.6058 eV
atoms that are well compared with the experiment in diverse 21 2a,
cases: binding energies, energy of internal (sub) shells and 1 Ht =2Ry.
ionization energies of atoms when three or more of the va-
lence electrons are missing. For neutral or few times ionized In the following paragraphs; = |r;| the distance of
atoms the results are encouraging (better trighy for neu-  thei-th electron from the nucleus;; = =r,—r, ;| is the dis-
trals, in the more stringent case). tance between theth and thej-th electrons,l ands, are

In this work we will use only common concepts ap- the orbital and spin angular-momentum operators in units
pearing in quantum mechanics books: one- and two-electropf j; ande, () is the spin-orbit operator, measured in energy
atoms and the Rayleigh-Sdhtinger perturbation theo- ynits. In this units system, the hamiltonian fr electrons
ry [1-5]. But, in order to give an idea of the usefulness ofmovying in the field of a nucleus of char@elooks as
this approach, we gives modern references to research pa-

ers. In the first part of this paper, we use a non-relativisti 2 2Z il
p p pap 4 = Zv Z ZZ

approach whereas in the second part we use an approximate . sy i

relativistic treatment. In order to simplify the notation, we in-

dicates withm (notm;) the component of the orbital angular + Z &(r . (1)
momentum whereas we uggnotm,) the component of the

Spin momentum. if energies [and;, (r;)] are measured iRy or

2. Atomic units 1 i <V2 2Z> +>° —+Z£ , (@

1= 7 1.7
In atomic physics it is useful to use the so callath- ! =
mic units (a.u.), based in the elementary -electronifenergies [and;(r;)] are measured iflt.
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3. A brief refreshment about electron The subtle questions of the fundamental importance of
configurations and coupling schemes these schemes are out of the scope of this paper (see the book

by Messiah [4]). An specialized although elementary account

To each electron of a complex atom we can assign a pair afan be found in the books by Eisberg [11] and Woodgate [12];

quantum numbergr,/;) in the non-relativistic approach or a a text about the importance ¢f coupling in nuclear struc-

triplet of quantum numberg:,/,j;) in the relativistic one. A ture is the one by Talmi and de-Shalit [13].

complex electron configuration is denoted, respectively, as As well as the numbers, [ (or n,l, 7) indicates an elec-

w w w tron configuration, the numbefs S give the so calleterms
(1) (nal) 2 - (nglg) " Denonting byE, , theconfiguration-average energy

or
E = Zstates Ek
(nyl131)"  (Ralada)™ . . (gl dg)™s, number of states’

av

wherew, denote the occupation number of the electron sub!t 1S iImportant to know that the energy of therms relative

shell. For example, for neutral Ne, the electron configuratiorjf0 E,, can be found using the vector model of the atO”F [6,11]
can be written as: and can be calculated in terms of the so called Slater integrals

(see below). Although the deduction is not trivial and it is apt
(15)2(2s)%(2p)° for advanced courses, they can be obtained using a computer
program presented in Ref. 14. For example, for the configu-
or rationp? (or p*) the followings terms appear:

(151/2)2(251/2)2(2p1/2)2(2p3/2)4,

respectively, when using the non-relativistic or the relativistic
solutions of the central field problem. o o E(‘D)=E,, + EF2(pp)7
When we consider thenon-relativistic Hamiltonian 25
[Egs. (1) or (2)], theLS (or Rusell-Saunders) coupling is 1 12 5
valid when the electrostatic interactions are stronger than E(S) =Eq + %F (pp). 6)
the spin-orbit whereag; coupling is applied in the re-
verse case [4]. When considering #ygproximate, relativis- 4, One- and two-electron atoms
tic Hamiltonian, the notion ofj coupling is the natural one
(remember that the spin-orbit interaction is relativistic in ori- 4.1. One-electron atoms
gin).
We denote thd.S coupling by the sequence

{[{(L1,L5)85} 83,12,

3
E(SP) = Eav - %Fa(pp)v

Few things are necessary to remind from the non-relativistic
hydrogenic atoms:

i) The discrete state energies, relative to the ionization

[{(51,5,)6,,55}64,...]6,}3,M,, (3) limit (taken as zero), are given by
where the script letters indicates the various intermediate and B - Z?
final quantum numbers. Analogously, thecoupling implies nT 2t

the sequence
ii) The non-relativistic wavefunction for one-electron

({45 51)515 (I, 82)72) o, - - }TM. 4) atoms is of the form callespin-orbital

There are a biunivocal correspondence between the cou- U(r. 0 — 1P (MY (0 7
pled LS andj; states. For example: (.6, a) = 7 B (0 (0, 0)x(1), - (7)

whereP(r) andY,,, (¢, ¢) are normalized according to

21
S, \
520 the relations

5%)0,

21’1/2)20»
2p3/2)20,
2p1 /22p3/2)1, // 1;,,(0,0)*sin 6 dfdp = 1. (8)

2p1/22p3/2)27

2p2 3PO [e%} )

P (r)|" dr =1,
s, | 1P
2p? 3P1

2p? 3P - . . .
2 Explicitly, whenr is measured in units af;,

2p3/2)22, n—l—1
Pnl(r) = CanH-le—Z?“/" Z a’krk’ (9)
k=0

— (
— (
—(
— (
—(
— (

2p? 1D2
®)
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with The difficulty in the treatment of many-electron atoms is
(—22/n)* in the term2/r,; of the Hamiltonian (1 or 2) that, without the
ay, = (10)  spin-orbit term, can be re-written using conventional sym-

K20+ 1+ E)!(n—1—1—Fk)! bols as

and v V2 oz Z 1
, H(nHt)=— 24+ L4+ =4+ 2 )+ —
9242 72143 (1 _ | — ) + 1)1 /2 (in Ht) < 5 T T T, + Tj) + »
Cnl = n21+4 . (11) )
Abundant theoretical material about the spherical har- = Hy(i) + Hyo(i, §). (12)
monics can be found in quantum mechanics as well as in elec- i=1

tromagnetism books (see the above mentioned references, for To proceed with such term, that impedes the variable se-

example the book by Jackson [15]. paration, we introduce the normalized spherical harmonics,

according to [15]
4.2. Two-electron atoms

o . . (k) _ (AT 1/25/ (13)
This topic is included in some texts about modern physics [6], 7 T\ 2k 41 ke

therefore we will be shyntetic in this section. A more explicit

treatment can be found in the book by de |&&§5] as well as

in the one by Borowitz [1]. More detailed treatments are pre- (Im|CP|'m’) = / Vit Yig Yo sin dode;  (14)

sented in some books about quantum chemistry (See Refs. 7

or 8). and can be calculated directly, although it is laborious. The
We must evaluaté¥|H| ) where| V) is a determinan- result can be expressed in terms of fiyesymbols due to

tal (antisymmetric) wavefunction anl is the Hamiltonian ~ Wigner, that can be calculated in closed form in terms of fac-

operator. torials (this material can be found in the books of Landau-

| Lifshitz or Messiah [3,4]:

such that the matrix element, deno(édz|0(§k) [I'm’), results

/ le;knyquvl/m’ Sine d0d¢ = (_1)—771 [(2l + 1)(2l, + 1)]1/253]'(17 ka l/; 07 07 O)ng(l, ka ll; -m,dq, m/)
=0(q,m —m')F(Im,I'm). (15)

The above equation also defines the coefficieftan, I'm’).
It is known from the courses about electrostatics that the following expansion is valid [15]:

1 Xk
P Z Zifrl Z (_1)110(_]‘;) (915¢1)C¢5k) (92,¢2). (16)

r
12 =0 "> g=—k

It can be shown [7] that, if each spin-orbital is written as in Eq. (7), the averagefialug ) = (¥ |1/r,,| V) is evaluated as

1

T'12

(iws@

anwm>=6whmwu%uu§jR%mmo
k

X Z 6((], my — mz)(s(q7 mj - mu)(_l)qck (Zimia ltmt)ck (ljmja lumu)7 (17)
q

where theR* (ij, tu) are the generalized Slater integrals (see

below in this same paragraph). The summation &iavolve ' ) o .

only a small number of non-zero terms [see below Egs. (185nd|cates that since the eI_ectrostatlc |nt_eract|on dc_)es not ope-

and (19)]. Using the fundamental property of de Difdanc- ~ ate on the electrons spins, not only is tlegal spin con-

tion, we note that the matrix elements are zero unless served, but so also is the spin of each electron separately.

q=m; —m; =m; —m,, thereforem,; +m; = m, +m,,. In particular, from Eqg. (17), it is introduced ti@oulomb
This is a reflection of the conservation of angular mo-or directintegral J (ij):

mentum: the electrostatic interaction betweeen two electrons

cannot change the total orbital angular momentum of the two  Jj(i5) <ij ij>

electrons, nor the-component. The situation for the spins is 12
even more restrictive, thifactors giving _ Z Ck-(limi’ limi)ck(ljmj, ljmj)Fk(Z-j)7 (18)
:ui = :ut’ /-L] = :uua k
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5. Average energies for complex configurations

TABLE |. Electron-pair interaction energies for a non-relativistic

system. In the non-relativistic approach, a complex configuration is
(ss) FO(ss) denoted as
(pp)  F°(pp) — 2F(pp) /25 (nly)" 1 (ngly)™2 .. (nyl,) ", (24)
(dd) ~ F°(dd) — 2F2 dd)/63 — 2F*(dd) /63 whereN = >"_, w, is the total number of electrons of the
(ss’y  F9(ss’) — G (ss")/2 atom or ion.
(sp)  F°(sp) — Gl(sp)/G For the Hamiltonian [Eq. (2)], without the spin-orbit
(sd)  F°(sd) — G*(sd)/10 term, the energy
(pp')  F°(pp') — G°(pp)/6 — G*(pp)/15 E = (V|H|V)
(pd)  F°(pd) — G*(pd)/15 — 3G*(pd) /70 can be written as the sum of kinetic, electron-nuclear and
(dd’y  F°(dd’) — G°(dd’)/10 — G?(dd') /35 — G*(dd') /35 electron-electron Coulomb energies:

ZEk +ZE7L +ZE(Z).])
and theexchange integrak((ij): i>]

1 ji> = Z I(i)+ Y _E(i.j). (25)

i>7

k(i) = (i -

For example, for the neutral Be

= 0(uis ) 3_leH (limi, LimPGH (). (19) E,, = 2I(1s) + 21(2s) + E(1s,1s) + E(2s, 2s)

k

We can see, using the properties of tiiesymbols [3] +4E(1s, 2s).
(and therefore of the® coefficients, both derived from the This very complex many-body problem can be solved us-
integral over spherical harmonics) that: ing the Hartree-Fock approach (a numerical one), as can be
i) I+ k + I’ must be even. briefly viewed in the books by Eisberg [11], Landau [3] or

Messiah [4]. Instead, in this paper we use the following ap-
i) The triangle relation of the classical vector model mustproach.

be satisfiedjl — I'| <k <1 +1.
In Eq. (19)F%(i, j) andG* (i, j) are [6,14] 6. The Z~! expansion

ki — Dk is
FHij) = R (ij,19) Layzer’s formulation of theZ-dependent theory of the many-

T 5 5 electron atom can be regarded as the starting point [9]. From
= //T];-_H|Pi(rl) |B;(r2)|" drydrs, (20)  the approximate Hamiltonian in atomic units-¢m, —h—1
and energies measured in Hartrees) given by Eq. (2):
Gy (if) = R*(ij, ji) Lo o7 .
vk H(N,Z)z—QZ(V?Jrr) +Zﬁ (26)
= //r’”‘l Py(r1)P;(rq) P;(r9) P;(ry) drydry. (21) i=1 i i>j i

and introducing the new variabfe= Zr Eq. (26) becomes
numbers. For non-equivalent orbitals:

H(N,Z) — Z*H(N,\) = Z*(H, + \V), (27)
E(if) = (ij11/r121if)ay — (511/712050)ay ’

where

2
= FO(i) - Z(o 0 0) Gi). @2 H(N,A)22<vf p>+AZp
i=1 K ’Lj
whereas for the equivalent ones: The first term of the right hand side,
2, + 1 A n
E(ii) = FO(ii) — —* : i) FrGi). (2 1 2
(i) = F7000) = 3 5 ];) (0 0 o) (i). 3 Hy=-33" (V? +— (28)
=1 2
Slater integrals can be calculated in closed form if hydro4s a sum over non-interacting hydrogenic Hamiltonians, and
genic orbitals are used, but the final result is long and compli- 1
cate. Electron-pair interaction energies for a non-relativistic V=H = o (29)
system are in Table I. i>5 "W
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If Z=1(= \) is a small parameter, the Rayleigh-Sahr
dinger perturbation theory (RSPT) can be applied [4,11].TaBLE Il. Some Average Coulomb energi&s calculated in terms
Layzer showed that, within the framework of tie'-de-  of Slater integrals withZ = 1. More results can be found in the
pendent theory, the wave function and the total energy can b@efs. 16 and 17.

written as the expansions He 0.62500
U(N,\) = U, + AU, + \20, + ... 30 Li 1.02281
( , ) o vt 2T (30) Be 1.57100
and B 2.33445
E(N,A) = Ey+ AE; + N’Ey + ... (31) c 3.27251
N 4.38518
Then O 5.67245
E(N,Z)=Z’Ey+ZE, — Ey + ... (32) F 7.13433
Ne 8.77083
where,exactly
Ie- 1 _ _
Eo = (ol Holvo) = —5 > o (33) If we restrict the expansion (32) up 16, the energy can
and =1 be written as
2
w (4 —o
Ey = (4ol Hyltho)- (34) E=-) %’ (35)

n,l
According to the Eqs- (ZZL and (23, is givenin terms  \yherey, , is the number of electrons in the ! shell and
of Slater’s integrals¥’ and G* evaluated with hydrogenic o,, is the corresponding screening parameter. Comparing

wavefunctions withZ = 1. In Table Il we display these ave- gqs. (32) and (35), we find that te, satisfy
rage Coulomb energies for the ground configurations of He

to Ne, in order to explain our following results. More va- E =) %%z’ (36)
lues are exposed in the works of Safroneval.[16] and the and )l

present author [17]. We remark the recent publication of these w

last cited works in order to indicate how a simple approach By=>_ 5 “Lon. (37)
can give valuable theoretical data apt to interpret complex il

experiments. Then, to second-order approximation in the non-relativistic

| context, the average energy of a configuration is given by

72 Wy, + W Way + Ws, + W 1 . ..
Eav_2(wls+ 2 - 2p , Ys 93p sd+...)+Z{2Zwi(wi—1)E1(zz)+2wiw]‘E1(U)} — FE5, (38)

0]

wherew; is a short notation fotw the number of elec-

trons in then;, [; shell.

1
n,l;

7. Firsts examples of applications

6.1. About the concept of screening o _ o o
7.1. Binding energies and relativistic contributions

The concept of screening (and screened orbitals) is of old 0

data and it is impossible to give a short account in this paf©r the He atom,E, = F%(1s,1s) = 0.625, therefore
per. In the past, screening parameters were obtained usitfP™ EQ- (36), 01, = 0.3125, a result known from varia-
spectroscopic data, numerical calculations and theoretical affonal calculations (see Appendix A). With,; = 1.6875,
proaches. A short review can be found in the paper from thd”(He) = —2.847T Ht; better results could be obtained
author [17]. if relativistic corrections are employed. In this case,

In more refined approachs the screening parameters gfis = 0-2961 andE = —2.9033 Ht, almost the experimental

haveZ expansions of the form value.
For Li I: 1s%2s, we haveE; = 1.0228 = 20, + 05, /4.
s=8g4+ 82 48,2724, Assuming that o, = 0.3125 (neglecting the external
screening)g,, = 1.5912 andE(LiI) = —7.4707 Ht. In-

whereas other authors used electrostatic considerations atre@ducing the concept of external screening, we write
deduced parameters dependent of BOtV : o(Z, N) [17]. o1, = 0.3125 + g¢(1s,2s), estimate g(1s,2s) accord-
Looking for simplicity, in this work, we will use only the ing to Appendix B and calculater,,. For the Li |
concept oexternalscreening, as shown below and in the Ap- case, g(1s,2s) = 0.0143, therefore o,, = 1.4771 and
pendix B. E(LiT) = —7.4361 Ht, instead of the previous value

Rev. Mex. 5. 48 (1) (2002) 76-87
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TABLE IlI. Center of gravity binding energies iRydbergsfor TABLE V. K-shell binding energies in eV for some representative
ground configurations [including relativistic corrections according neutral atoms.
to Eq. (39)]. The values with &) were calculated using Hartree-

' . Atom Ours Experiment
Fock methods because no experimental values are available. Be 123.8 119.30
Atom This method Sucheefl] Experiment C 297.6 283.8
He 5.695 6.0 5.807 Ne 876.0 870.10
Be 29.245 29.50 29.337 Mg 1316.3 1311.20
C 75.580 75.50 75.712 Si 1856.2 1846.00
Ne 257.460 269.60 258.102 Ar 3211.6 3202.90
Mg 400.960 414.20 400.621 Zn 10392.8 10367.1
Si 580.060 593.80 579.732 32 11131.9 11103.1
Ar 1058.040 1072.80 1058.23 33 11897.6 11866.7
Zn 3585.28 3626.00 3588.46" 34 12690.1 12657.8
Kr 5573.66 5570.00 5575.30* 35 13509.6 13473.7
Kr 14356.2 14325.6
of —7.4707 Ht. The experimental one is7.4344 Ht. The
IP is obtained after calculating (Li IT). The He-like Li Il this behaviour is easy to understand from Eq. (32). In parti-
hasco,, = 0.3125, thereforeE (Li IT) = —7.2227 Ht imply-  cular, it is a simple exercise to show that
ing that neglectingy(1s,2s), I = 0.248 Ht = 6.75 eV, 72
whereasl,,, = 5.39 eV. Considering now the external a= %v

screemngl - 9'2134 Ht = 5.807 eV. . wheren, is the principal quantum number of the removed
Using Z-independent screening parameters we, ’

electron [19].
have for the Be atomo,;, = 0.3125 + 2 x 0.0143.
Then, o;, = 0.3125+ 2 x 0.0143 = 0.3410 and accord- 7.3. K-shell binding energies
ing to Eq. (36) and Table Il,o,, =1.8349 and thus
E(BeI) = —14.56 Ht. The experimental value is found to
be —14.6685 Ht. The difference between these values lies
within 0.7%.

Proceeding in this form, in Table Il we show binding
energies for a number of elements in order to compare wit
the values reported by the experiment [18]. The most impor- .
tant relativistic contribution is due to the more internal elec-8- NOW, the relativity, why?

trons and can be estimated as a simple sum over terms of thge gee that the most important relativistic contribution to the

form total energy is due to the more internal electrons and can be
274 well estimated as a simple sum over terms of the form given
o Zg 4n
rel — 4 . -3 Wy Ht. (39) by the Eq (39)
8n* \j+1/2 .

However, we know from the modern physics courses
that in the X-ray spectra appear a fine structure such that,
for example, the2p, ,, electrons have a notorious different
In Ref. 17 we exhibit, as examples, the ionization poten-€nergy than thep, , ones [6,11,21]. We will show that, al-
tials for the Ne | and Ar | isoelectronic sequences cal-though the energy of the valence electrons do not differ ap-
culated by means of our approach. A comparison withpreciably between relativistic or non-relativistic treatments,
the experiment indicates that agreement is withlitfo ~ we can easily calculate the different subshell energies.
for Ne | and better tharB% for the third member of ) o ]
the serie. Our IP’s can be fitted by the adjusted em8-1. Approximate relativistic wave functions and some of
pirical curve IP(eV) = 128.29 — 45.427 + 3.4231Z2. For their properties

the Ar | isoelectronic sequence, the fit function is The relativistic theory of théZ atom is briefly presented in

IP = 285.16 — 43.06Z + 1.586122. Now, the IP’s are bet-  the books by Merzbacher [2] and also in the one by Mes-
ter than7% for the 4-th member of the serie. Also the exper- gjan [4]. Also brief are the expressions for the hydrogen rela-
imental ionization potentials follow an empirical law of the jyistic radial wave functions that can be found in these clas-

In Table IV we present the K-shell binding energies for some
neutral atoms from Be to Kr. We establish a comparison with
experimental results tabulated in tHandbook of Chemistry
and Physicg20]. In general, we can see that our simple ap-
ﬁ)roach gives an agreement of the orded.af%.

E

7.2. The isoelectronic sequences of neon and argon

type sic texts.
) They have a large and a small component, denoted re-
I'=aZ" +bZ + ¢ spectively byF,,;(r) and G,,;;(r) (other authors use the

Rev. Mex. 5. 48 (1) (2002) 76-87
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reverse notation!), with the general property that, whenwith these quantities, and calling for brevity, ,; = P,
(Za)? -0, F,,.(r) — R,,(r), andG,, ;; — 0. The norma-  our hydrogen radial wave-function has the form [2]

nlj
Pous(r) = cnj(z fvr““)e—z’“/N. (41)

lization condition is

/ ( i+ Gnl]) 2dr = 1. (40) v=0
0 In Eq. (41)
In our case, we introduce one heuristic approach aptto the L (2N)(2Z /Ny =11 /
purpose of this paper and also to diverse applications, theref, = (— A2+ ) (7 = v)] (v—n"+N—k), (42)

fore we takeG,;; = 0 and normalizel;,;; (r) according to
Eq. (40). Heuristic approachs are very common when modeffor v =0uptov =n’ —1and
ling complex physical situations, for example when atomic o (N = K)(2\)!(2Z/N)v+A—1
and fluid equations are coupled or when plasmas in non- fo=(=1) 2\ +0)! ) (43)
thermal equilibrium exists [22]. In this form we have a wave o .
for v = n’. The normalization constant is found by perform-

function for each sub-shell defined by the individual quan-,
tum numbergnlj) and we can calculate the correspondmgIng the integral given by the Eq. (40) with the appropriate
values off,,. In such manner, we find in place of Eq. (11),

energies for each subshell.

Taking into account that diverse notations exists for the 22+1 1/2
R : : (2Z/N)
relativistic functions, we shall summarize the symbols to be C,; = | =5 . (44)
: St Aal (a4 22+ 1)(N/22)>
used. Given the quantum numberd, we construct the fol- =0 o
lowing quantities, withe = 1/137.037: with
1 «
=1+ g Ay = fsfup (45)
B=0
j_ = ’g 1 , A general property of these wave functions is that, denot-
2 ing by P, the non-relativistic functionsF,’;[l the relativistic
r 1\2 11/2 functions withj = j, and byP, , oy whenj = j_
Ay = (jJr + ) —a?
2 ] Py~ Py
= [+1)2=a?" = (14 1), and
A = _(j +1)2 —az_ v P ~crle 77N 4 P,
- -2

_ 0 a2)1/2 . 8.2. jj coupling and the calculation of the Slater integrals
We give here an heuristic point of view, indicating that a

I = — 1 —_ = ] — — . . . . .
np=n—jy—1/2=n—1-1, correct relativistic Hamiltonian for many-electron atoms was

n_ =n—j_ —1/2=n-—1, derived by Breit. Theslectrostaticpart of the relativistic en-
12 ergy of an atom is the straightforward generalization of the
. 1 ivisti
N, = [nz — o, <j+ i S - )\+)] o, nonrelativistic energy
E=) I(i 46
1/2 Z Z (4, 4], (46)
— - / —_ v
N_ = [” 2n_ (j + A ﬂ - where the energies must be calculated usilagivistic wave-
] functions.
Ky <j+ + 2) —(+1), In a analogous way to the non-relativistic theory, the en-
ergy of an atomic configuration may be expressed in terms
1 of Slater integrals, noin the jj coupling schemeFor a
Ko =+J-+ 5]~ +l. two-electron system and from Eq. (46), the electron-electron

Coulomb energy can be written (neglecting here magnetic
| and retardation effects) as

12 n la]avnblbjb> = > [fula,)F*(a,b) = (=1)%= 9+ g, (a,5)G"(a, b)]. (47)

k

<TL laJav 7/Lblb]b

Now the diverse summations, corresponding nj symbols and coefficient, andg, depend on quantum numbefs
andj’s and not onl’s, L's andS’s. In the Appendix, we give explicit expressions for these coefficients and the calculated ones
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TABLE V. Electron-pair interaction energies for a relativistic system.

(s45+4) (s45+)

(p-p-) Fo(p-p-)

(p+p+) Fo(pypy) — F? (p+p+)/ 15

(d—d_) F°(d_d-) — F?*(d_d-)/15

(dydy) FO(dydy) — 24F?%(d1dy) /525 — 10F*(d4d)/525
(s4s%) FO(s484) — G%(s45%)/2

(s:p+) FO(s1p7) — G (54p5)/6

(s4d=) FO(syds) — G2($+d )/10

(p-p_) Fo(p-p) = G°(p-p")/2

(p-p+) FO(p-p+) = G*(p-p+)/10

(p—d-) Fo(p-d-) - G'(p-d-)/6

(p—dy) FO(p-dyi) — G*(p-dy)/14

(p+p+ ") FOp+pl) — GO(p+p) /4 — G*(p+py) /20
(p+d-) FO(p4d-) — G (p+d-)/60 — 9G®(p+d-)/140
(p+d+) FOpydy) — G (p+d1)/10 — G*(p+d4) /35
(d—d_) F(d_d_) — G°(d-d_)/4 — G*(d-d_)/20
(d_dy) FO>d_dy) — G*(d—d4) /70 — G*(d—dy)/21
(d.dy) FO(dydy) — GO(dydy ) /6 — 4G (dydy ) /105 — G (d. d' ) /63

ones are presented in Table V. For some examples,

TABLE VI. Relativistic Slater’s integrals (in Ht).

(8484) = FO(5+5+)§

Integral This work Asaad 23]
F(pyp.) FO(1s, 1 0.624926 0.625003

<p+p+> = FO(p+p+) _ # 0( s, 1s) . .
F°(1s,2s) 0.209844 0.209891
The Slater parametefs®, G* for hydrogeniowavefunc- F°(1s,2p-) 0.242852 0.242822
tions can be calculated analytically, but the expressions are  F°(1s,2p+) 0.242800 0.242817
tedious and not very illuminating as to be presented here. The  F°(25, 2s) 0.150367 0.150389
results shown small differences with the non-relativistic ones  po(o5 9 ) 0.162117 0.162113
but thejj approach permit us to calculate the subshell bind- FO(2s,2p.) 0.162107 0.162112
ing energies (and X-ray ones, if we like). Some examples can (2 ' ) 0.181667 0.181629
be viewed in Table VI and compared with the numbers of 70 2p_,2p_ 0'181652 0'181627

Asaad [23]. So, the term energigs and £, of a given con- O( P-2p+) ' '
figuration can be calculated. For the neutral Ne, for example, F"(2p+, 2p+) 0.181637 0.181625
F2(2py,2py) 0.087712 0.087909
Ey(Nel) = 2I(1s) 4 21(2s) +21(2p_) + 41(2p, ), GO(1s,2s) 0.021921 0.021942

1
where G (1s,2p-) 0.051225 0.051195
G'(1s,2py) 0.051180 0.051194
I(nly) =1, G*(2s,2p-) 0.087955 0.087910
1
B 1 - (Za)2 4n 5 48) G2(25,2p+) 0.087968 0.087910
= 9.2 m? \G 112 ) G*(2p_,2py) 0.087714 0.087909
and

Average Coulomb energieg; calculated in term of

Ey(Nel) = (1sls) + (2s2s) + 4(1s2s) + 4(1s2p_) Slater integrals witlZ = 1 are presented in Table VII.

+8(1s2p ) +4(2s2p_) + 8(2s2p, ) + (2p_2p_) With respect to the terms, we must consider the relations
between the Slater integra* (ii), G*(ij) and their rela-
+6(2p,2p,) +8(2p_2p,). tivistic counterparts. We develop here one case; other ones
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TABLE VII. Electron pair energies (in Ht).

(1s41s4) 0.624926
(15,254) 0.198833
(1s42p_) 0.234314
(1542p4) 0.234270
(254+2s4) 0.150367
(2542p_) 0.147458
(254+2p4) 0.147445
(2p_2p_) 0.181667
(2p—2p4) 0.172881
(2p+2p+) 0.175790

TaBLE VIII. Some relationships between the non-relativistic and

the relativistic expressions for the Slater integrals.

F*(pp) [2G*(—+) + F*(++)]/3

F2(dd) [TF?(——) 4+ 6G?(—+) + 12F?(++)]/25
F*(dd) [AG*(—+) + F*(++)]/5

Go(ss) GO(—H—)

G*(sp) [GM(+—-) +2G* (+4)]/3

G?(sd) [2G?(4+—) + 3G2(++)]/5

are in Table VIII. From Tables | and V

(pp) = F°(pp) — %FQ(pp),

(p_p_)=F°(p_p_),

1
(pipy)=F(p,p,) — BF2(p+p+),

1
(p_py) = Fp_py) = 757 (p-p)-
In the respective complete shells there Bsgairspp, 1
pairp_p_, 6 pairsp, py and8 pairsp_p. . Multiplying ade-
guately and equalizying, results in

FO(pp) = FO(—=) 4+ 6F%(++) 4+ 8F%(—+)

and

9. Further applications and results

We base our heuristic approach in the expansion given by
Eq. (32) which contains itself a contribution proportional
to Z4, because, is now given by Eq. (49). To second or-

der approximation

TABLE IX. L;; — L;;; shell binding energies (in eV) for some
representative atoms.

z Element  Our values (eV) Experiment (e\20]
18 Ar 247.0 247.3
245.2 245.2
31 Ga 1135.07 1142.3
1112.22 1115.4
32 Ge 1239.22 1247.3
1212.82 1216.7
33 As 1350.06 1358.6
1319.70 1323.1
34 Se 1464.62 1476.2
1429.88 1435.8
35 Br 1583.97 1596.0
1544.40 1549.9
36 Kr 1708.15 1727.2
1663.27 1674.9
7P w; (Za)? 4n, 5
S ()

+Z [; > w(w,—1)E, (i) + > ww; B, (ij)} —E,, (49)
3 1,7
with E, and E, satisfying the relations (36) and (37). loni-
zation energies for the valence electrons do not differ ap-
preciably from the non-relativistic case. As examplés,
andL;;; shell bindings energies are in Table IX. Agreement
with experimental values are better thgi [20].

10. Comparison with other simple approachs

Some simple approachs for the calculation of atomic struc-
tures were published in the last two decades.1878,
Sucher [24] presented a simplified version of the atomic
shell model and calculated the ground-state energy of any
atom. The agreement with Hartree-Fock calculations was
within 5% for He and Ne and better than5% for Z > 45.
No calculations for ions or for shell binding energies were
presented, nor for excited states. On the other hand, based
in the use of the viriah_ r,F, as the model potential energy
operator, Kregar [25] calculated screening parameters for any
configuration. These works of Kregar were generalized by the
present author [26].

When comparing the above mentioned papers with the
present approach, we can conclude that

i) Our results for ground configurations binding energies
are clearly better than the values presented by Sucher
(see Table III).

ii) Our values for binding energies and ionization poten-
tials are very similiar to those calculated by Kregar.
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iii) We can calculate sub-shell binding energies (and X-rayAppendix B
spectra) whereas the works of Sucher and Kregar are,
essentially, non-relativistic. A simple approach to the screening

As was said above, there are many works about screening
parameters and screened functions. Here, we gives a simple

The heuristic point of view presented in Ref. 17 using thePoint of view apt to calculatexternalscreenings [27]Total
Z-expansion theory supplemented with the inclusion of thescreenings are deduced according to Eq. (36) (see the exam-
external screening concept is generalized to the relativistieles given above).

case in thejj coupling. We use the normalized large com- ~ Schiodinger equation is non-separable, due to the term
ponent relativistic wave-function such that we can calculate 1

the binding energies for each orbital indexed by thé, j — =(r}+ 7“32- — 217 cos wij)—l/%

guantum numbers. From the analysis of the tables we can Tij

obtain the following conclusions. The center-of-gravity bind- i )

ing energies calculated in th&! approach are in very good Makingu = 1/r;, v = 1/r;, f = 1/r;; and developing
agreement with experimental values. As can be viewed i two-variable function in a Taylor series to a first order

Ref. 17 the ionization potentials for the (Ne I) and (Ar I) af af

isoelectronic sequence are withitk for three times ionized flu+hv+k)~ f(u,v) + {h + k} ,

atoms and better for higher ionization degreEs: for five Ou Qv

times ionized atoms arl5% for the 15-th spectra of the se-
guence. Results are worse for neutrals (withift) yet better
than other screening approaches; for example, the values (if
Safronoveet al.[16] are negative for low ionization degrees. — = (ug 24 Vo 2)

K- and L- shell binding energies are in very good agreemenrtij "
with experiment [20]. An important aspect to be taken into
account is that, in our approach there are no adjustable pa- —qu(ugz + %_2)

rameters. Better results can be attained with small efforts in T
the calculation of external screening parameters but exten-
sive use of research papers must be made. We think that the
numbers obtained with this simple approach will give to the

: Y Because the sum of thist, 3rd and5th terms are zero,
student a clear idea of the power of the approximation meth- ; :
i the second one (and mutatis mutandis) the fourth can be put
ods applied to complex many-body problems.

11. Conclussions

it results

g (g 40 )

w0t (ug” e ?)

_%—2 (uaz + v(;z) 73/2.

in the form

. —274 —3/2 —27-3/2
prpend® G 1 @) ]

.. . 0 _ 0 .
The variational calculation of the He ground - = - ,
configuration energy

therefore
This topic can be found in the books by Messiah [4], Karplus-
Porter [7] and Levine [8]. If we assign to each electron of 1 _ @ i @
the 1s? configuration an hydrogenic radial wave-function Ty T r; ’
with effective chargeZ, )
‘ with
P, = QZf/zre*ZcT
: v —2- -3/2

and using the Hamiltonian (2) without the spin-orbit term, A= [1 + <UO> } .
then 0

(H) = —22% + 42,(Z, — 2) + 1.25Z,. Using for the mean values

The values of H) andZ, corresponding to the minimum uy = (nly|rngds) ™t = 2Z

are determined by differentiation; that is, from Y 3nf —1L,(l; +1)

dcgﬂ 47 187 —84125=0; we have, calling;; to

e 9

thereforeZ, = 2 — 5/16 = 1.6875 and (H) = 5.6953 x; = Yo _ ?’nélﬂ—w
Ry = 77.49 eV. Toug o 3n = LG+ 1)
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that

2N —3/2
a {1y 3n2 —L(1; + 1) /
K 3n? —1,(l, + 1) '

tions [25]:

n. 2n,;—1
K 1+y, Pt k;!(2nj)! Yy +1

Whenj > i we are calculating the external screening parapppendix C

meters.

In principle, a best recipe is given below, but the deduc-Calculation of the coefficientsf, and g, for the
tion is longer. In the spirit of this paper, the present pointrelativistic case

of view is sufficient. Since the application of this formula is

straightforward, is not necessary to give a table of these pdn place of the non relativistic expressions presented in Ta-

rameters.

Observe that for an orbital pairi,; we call
T = <l/ri>/<1/rj),andyij = (ni/nj)xij. We propose

ble I, now we have [28]

2(2‘]1‘ + l)fk (lajcw lbjb§ J)

fk’ (lajcwlb.jb) =

the following expression, based in electrostatic considera- 2_(2J;+1)

Fi (oo yip; ) = (1) Hath (25 + 1)(24, + 1)

where

XSGj(J’ ja’jb; kvjbvja)sfij(l/ija’ la; k’ lavja)sﬁj(l/ijba lb? ka lbvjb)<l(lHC(k) ||la><leC(k)Hlb>

and

>(2J; + 1)gk(laja7 5% J)
>(2J,+1)

Ik ada lody) =

where

9k (adar Loy J) = (=1)7 73010 (25, +1)(25, + 1)
XSGj(ija’jlﬁ kvja’jb)sgj(1/27ja7 la§ kv lbajb)
k 2
x(lal|C® 1)
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