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deregressed predicted breeding values as
response variables
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ABSTRACT

Highly accurate predicted genetic values must be obtained at an early age to promote rapid genetic progress. The objectives
of this study were to compare accuracies (R?) of genomic values (GVs) and to estimate genetic correlation between true genetic
values and genomic values obtained using predicted breeding values (EBV) and deregressed EBV (DEBV) as response variables. A
first population, effective population size 800 and 100 generations, was simulated using the QMSim program to generate linkage
disequilibrium. Thereafter, 20 males and 200 females were used to generate a second 14-generation population, with 6,400
individuals per generation and its corresponding phenotype and genotype in SNP terms. Generations 7 to 14 of the second population
were used in several combinations as training (PEn) and evaluation (PEv) subpopulations. GVs, their accuracies, and genetic
correlations were obtained using the GenSel and ASREML programs. When PEn was the largest, the mean R? of GV was the highest,
0.77 £ 0.01. The closer PEn was to PEv, the higher the R? and correspondingly, the lower the predicted error variance. The trends
for R and PEV held true for both EBV and DEBV used as response variables. Genetic correlation estimates between true genetic
values and GVs varied from 0.41 to 0.53 in the two scenarios studied. They decreased when PEn and PEv were farther apart. There
were only slight advantages of using DEBVs as response variables over using EBVs.

KEY WORDS: Genomic evaluation, Deregressed predicted genetic value, Genomic predicted value, Accuracy, Genetic
correlation.

RESUMEN

Los valores genéticos de individuos en una poblacion deben obtenerse de forma precisa y a edad temprana para promover un
progreso genético rapido. Los objetivos de este estudio fueron comparar las exactitudes (R?) de valores gendomicos predichos (GBV)
y estimar la correlacion genética entre los valores genéticos verdaderos (TGV) y los GBV, utilizando los valores genéticos estimados
(EBV) y EBV ajustados (DEBV) como variables respuesta. Una primera poblacion de 100 generaciones con tamaiio efectivo 800 se
simul6 con el programa QMSim para generar desequilibrio de ligamiento. Posteriormente, se utilizaron 20 machos y 200 hembras
por generacion en una segunda poblacion de 14 generaciones, con 6,400 individuos por generacion y sus correspondientes fenotipos
y genotipos en términos de SNP. Las generaciones 7 a 14 de la segunda poblacion se usaron como subpoblaciones de entrenamiento
(PT) y evaluacion (PE). Los GBV, sus exactitudes y correlaciones genéticas se obtuvieron utilizando los programas GenSel y ASREML.
Cuando la PT fue la mas grande, R?> media fue la mas alta, 0.77 + 0.01. Cuanto mas cercana es PT a PE, mayor R? y menor la varianza
del error de prediccion (PEV). Las tendencias para R? y PEV se mantuvieron tanto para EBV como para DEBV utilizadas como variables
de respuesta. Los estimadores de correlacién genética entre TGV y GBV variaron de 0.41 a 0.53 en los dos escenarios estudiados. La
R2 disminuy6 cuando PT y PE estuvieron mas separadas. Hubo ligeras ventajas de utilizar DEBV como variables de respuesta en lugar
de EBV.

PALABRAS CLAVE: Evaluacion genémica, Valor genético predicho ajustado, Valor genomico predicho, Correlacion genética.
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Genetic improvement depends on genetic
variation, selection intensity, generation interval,
and accuracy of estimated breeding values (EBV). In
the genetic evaluation of animals, it is important to
maximize EBV accuracy. An increase in EBV accuracy
for selection of candidate animals will spur genetic
progress. Among other advantages, the use of
genomic selection allows an increase in the accuracy
of genetic values®), especially at a young age®.
Three technological breakthroughs have boosted
wide-spread DNA information use in animal
breeding®: the development of genomic selection
technology, the discovery of massive numbers of
genetic markers (SNPs), and high throughput cost-
effective genotyping technology. Although the
advantages of genomic selection have been
observed most notoriously in dairy cattle®, in
general, the use of genomic selection can be
expected to yield improvements in genetic progress
of up to 10 % in any species™®,

In genomic evaluation, response variables can
be individual phenotypes, repeated observations,
records on close family members such as progeny,
EBVs or their deregressed counterparts from genetic
evaluations®®, According to these authors, using
deregressed EBV (DEBV), an accuracy of up to 2.76
times higher than with records of a single individual
can be obtained. With average daily gain and feed
conversion ratio of swine data, obtained accuracies
were 18 to 39 % higher, depending on the trait
evaluated, when DEBVs were used as response
variables instead of EBVs”). These authors
concluded that DEBV is the preferred response
variable, whereas the choice of statistical method
was less critical when they analyzed purebred swine
data. The increase of 18 to 39 % in reliability is
worthwhile, since the reliabilities of the genomic
breeding values directly affect the returns from
genomic selection®,

Deregressed EBVs, with the parent average
removed, produce more exact predicted genomic
values (GV) for two reasons®. First, DEBVs, when
used as the response variable, result in fewer double
counts than when EBVs are used because the DEBVs
exclude information from the individual’s ancestors.
If both the offspring and its parents are genotyped,
the degree of double count decreases when DEBVs
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are used as the response variable. Second, when
using EBVs as the response variable, the degree of
double count in the GVs decreases, particularly when
the reliabilities of the genetic values are low.

However, DEBVs are not always the best choice
for use as the response variable in genomic
evaluation. Simulated dairy cattle® and jumping
horse® data were used to compare EBVs and DEBVs
as response variables. Both groups of authors found
only slight advantages to using DEBVs, instead of
conventional EBVs, as response variables. The
objectives of this study were to compare the
accuracy of genomic values and to estimate the
genetic correlation between true genetic values and
genomic values obtained using predicted breeding
values (EBV) and deregressed EBV (DEBV) as
response variables for four training populations and
four evaluation generations.

The methodology for simulating the training
(PEn) and evaluation (PEv) populations used in this
study was described previously®. Briefly, two
populations using the QMSim program® were
simulated. The first, to obtain linkage disequilibrium,
had 800 individuals as the effective population size
and 100 generations. The second population, where
PEn and PEv originated, had 14 discrete generations,
each of which was generated randomly using 20
males and 200 females, a panel of 53,010 SNPs
(each evenly separated by 100 centiMorgans)
randomly placed in 30 chromosomes, and 540 QTLs
with effects coming from a gamma distribution®V).
Both SNPs and QTLs were regarded as biallelic with
random starting frequencies. Genotypes and
phenotypes of 6,400 individuals were simulated; the
heritability used was 0.4 and only additive effects
were considered. Genotypic and phenotypic
information was generated using the QMSim
program9, The four PEn comprised generations 10
(n= 1,000); 9 and 10 (n= 1,400); 8 to 10 (n=
1,800); and 7 to 10 (n= 2,200); as well as their
phenotypes and the corresponding EBVs and DEBVs.
The four PEv comprised generations 11 to 14.

In a first step, the EBVs were predicted with a
single-trait animal model including the random effect
of animal, the fixed effects of sex of the individual,
and generation. The ASREML program®? was used
at this stage. The DEBVs were then obtained
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following methodology of Garrick et af>. Weight (w;)
for the i animal was obtained using the following
equation®:

wi=(1-h?)/[(c+(1-r?)/r*)h?]

Where c is the lack of fit of the prediction
equation, or the genetic part not explained by the
markers®:; the value assumed was c¢=0.1;
heritability of the trait, h?, was assumed to be 0.4;
and r? was the reliability of the DEVGs for the it
animal.

Deregression of EBVs adjusts for ancestral
information, it removes shrinkage present in EBV,
and by taking parental contribution into account,
DEBVs can be regarded as equivalent to the
information provided by the records of each sire and
its progeny®3,

In a second step, the predicted genetic values
(EBVs) obtained using ASREML and their
corresponding DEBVs were used as response
variables to predict the GVs. A weighted genomic
analysis was carried out using the BayesCrn function
of the Gen-Sel program®®., A 41,000-round long
chain was used. The last 1,000 samples were used
to obtain the a posteriori mean estimates of marker
effects and variances. The first 40,000 iterations
were regarded as the burn-in period; © was fixed at
0.95. The genomic analysis used animals of
generations 7 to 10 to obtain the prediction

equations. The evaluation populations were
generations 11 to 14. The Bioinformatics to
Implement Genomic Selection (BIGS) platform
(http://bigs.ansci.iastate.edu/) platform was used
for the analysis.

The genomic values and their corresponding
accuracies were obtained by summing all the SNP
effects, usingithe following equation:

ZZijﬁj

GVni = J=

Where GVn; is the genomic value for the it
individual; z; is the genotype of the j* marker on the
it" individual, and Ui is the a posteriori mean of SNP
effect for the j™" marker.

Accuracies (R?) of GVs were obtained as the
square of the correlation between GVs and the true
genetic values®131>), Criteria for comparing the two
alternatives of analysis were R? and GV prediction
error variance (PEV). Additionally, as another
criterion for comparing the two response variables
studied, the genetic correlation estimates was used
between the true genetic values and the predicted
GVs from the two alternatives of genomic analysis®.
These estimates were obtained using ASREML(2),

An important aspect in genetic improvement is
the response to selection, and this depends on
selection accuracy®®. Table 1 shows the means and

Table 1. Mean * standard deviation for accuracy (R2) and prediction error variance (PEV) of genomic values
obtained using deregressed predicted genetic values as response variables, four training
populations, and four generations of evaluation

Training population

Evaluation generation 10 9and 10 81010 71010
R2

11 0.52+0.04 0.67£0.03 0.73£0.03 0.77£0.01
12 0.39£0.04 0.55+0.03 0.63£0.03 0.68+0.03
13 0.3240.05 0.49+0.04 0.58+0.03 0.64£0.03
14 0.28+0.06 0.4520.04 0.54+0.04 0.60+0.03
PEV

11 0.05+£0.003 0.05+0.003 0.04+0.003 0.04+0.003
12 0.06+0.004 0.06£0.004 0.06+0.004 0.05£0.004
13 0.07£0.005 0.07+0.005 0.06+0.005 0.06+0.005
14 0.07+£0.006 0.08+0.006 0.07+£0.006 0.07£0.005
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corresponding standard deviation for R? and PEV of
GVs obtained from the different combinations of PEn
and PEv when the response variable was DEBV. The
highest R?, 0.77 £ 0.01, was observed for the largest
training population (generations 7 to 10, n= 2,200
individuals) and 11 was the generation under
evaluation. In contrast, the lowest mean for R?, 0.28
+ 0.06, was observed for the combination of the
smallest training population and the farthest
evaluation population being evaluated, generation
14. These results are within the range of R? values
reported by Hassani et af*”), who found 0.49 (+1
SNP) to 0.75 (100 SNPs) using whole-genome
training for single QTL with a 50 K SNP panel and
BayesCO.

Two clear trends can be observed for R? in
Table 1. First, as PEn and PEv moved farther apart,
R? decreased. Second, as the size of PEn decreased,
R? became smaller. These results are similar to those
reported by other research groups®2Y, who
concluded that the closer the relationship between
individuals in PEn and those in PEv, the higher the
R? of GVs. Similarly, using both simulated and real
sheep data, Genomic Best Linear Unbiased
Prediction was compared with two pedigree based
methods??, It was found that both empirical and
estimated accuracy of GVs were different for several
degrees of relationship. These authors concluded
that R? of GVs is proportional to the genetic
relationship of animals under selection to the

reference population. The increase in R?> of GVs
when PEn and PEv are closely related, can be
explained by more precise genomic relationships,
improving in this way the connectedness between
these populations and more distant populations.
Accordingly, another research group®® concluded
that accuracy of GVs deteriorated as the relationship
between animals in the PEn and those under
selection decreased. One implication of this is that
PEn has to be regularly updated to keep the marker
effect estimates in sync with new generations of the
breeding population®.

On the other hand, as expected, the trend for
R? held true for PEV, but in the opposite direction.
The greater the population size and the closer
relationship between PEn and PEv, the lower PEV.
Pszczola et af*> mentioned that PEV can be
calculated as the connectedness between the
reference population and the animals under
evaluation. This may explain the increase in PEV as
PEn and PEv became farther apart. Greater
connectedness reduces bias, and thus genetic
evaluation improves®®. The observed trend for PEV
held true for both EBV and DEBV response variables.

Table 2 shows the means and their
corresponding standard deviations for R?> and PEV
for the combinations of PEn and PEv when the
response variable was EBV. In general, R? values
were only slightly lower than those observed when
DEBVs were used as response variables. The trends

Table 2. Mean + standard deviation for accuracy (R?) and prediction error variance (PEV) of genomic values
obtained using predicted genetic values as response variables, four training populations, and four

generations of evaluation

Training population

Evaluation generation 10 9and 10 81010 7t010
RZ

11 0.48+0.04 0.65+0.03 0.71£0.02 0.76+0.02
12 0.38+0.05 0.55+0.03 0.62+0.03 0.68+0.02
13 0.32+0.05 0.49+0.03 0.58+0.03 0.64+0.03
14 0.28+0.06 0.45+0.04 0.54+0.04 0.60+0.03
PEV

11 0.05£0.003 0.05£0.003 0.04£0.003 0.04+0.003
12 0.05+0.004 0.06+0.004 0.06+0.004 0.05+0.004
13 0.06+0.004 0.07+0.005 0.06+0.004 0.06+0.004
14 0.06+0.005 0.07+0.006 0.07+0.005 0.06+0.005
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observed for the decrease in R? and the increase in
PEV when DEBVs were response variables, as size of
PEn diminished and the distance between PEn and
PEn augmented, held true for EBVs used as response
variables. These results are similar to those obtained
by other authors>?627), who found that size of PEn
affected R? of GVs. The results of the present study
and those obtained by other groups of researchers
agree with what could be theoretically expected®-2%),
These authors developed predictive equations for
accuracy of predicted genomic values, which depend
on size of PEn, effective population size of the breed,
heritability of the trait, and length of genome.

The results of a study with two multi-breed beef
cattle populations and Angus and Hereford purebred
populations® used to obtain the GVs and
corresponding R? for six growth and carcass traits
showed that accuracies were lower for prediction
equations trained in a single breed. These results
were attributed to the smaller number of records
derived from a single breed in the training
populations. The R? range was 0.01 + 0.10 to 0.65
= 0.07, although the authors also reported a
negative estimate, -0.10 + 0.15.

The results of this work, regardless of whether
DEBV or EBV were used as response variables, are
similar to those obtained by Saatchi et af?®. These
authors evaluated different training populations of
Hereford cattle; accuracy estimates ranged from
0.15 to 0.52, with 0.30 on average when trained on
old animals and validated on young animal
populations. The results obtained in our study may
be explained by the fact that genomic prediction on
closely related individuals is based on relationship;
genomic relationships are more accurate when the
relationships between PEn and PEv populations are
close®. On the other hand, prediction on distant
individuals requires DL between QTL and
markers®),

The R? results are lower than those reported by
Pszczola et af*®. These authors found that the
inclusion of animals with predicted genotypes in the
reference population did not significantly increase
accuracies of GVs for juvenile animals. They
attributed the lack of significance to the low
accuracy of predicted genotypes and concluded that
inclusion of non-genotyped animals is expected to
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enhance genomic selection accuracy only when the
unknown genotypes can be predicted with high
accuracy. The results obtained by these authors
varied from 0.57 to 0.96, from 0.48 to 0.88, and
from 0.33 to 0.72 for heritabilities of 0.30, 0.05, and
0.01, respectively, under different sizes of the
reference population, and different numbers of
animals with known or predicted genotypes.

The small difference in GV accuracy that we
obtained in our study when EBVs or DEBVs were the
response variables agree with reports by other
researchers. However, these results are opposite to
those observed by Ostersen et at”), who found 18 to
39 % higher accuracies for feed conversion ratio and
daily gain when they used DEBVs instead of EBVs as
response variables. The estimation methodologies
they used were GBLUP, Bayesian Lasso, and
MIXTURE, where the marker effects are assumed to
follow a normal distribution, double exponential, and
a mixture of two normal distributions, respectively.
The three alternatives of analysis yielded similar
reliabilities of the GVs for the two traits analyzed.

Contrary to our results, Ricard et af® did not
find substantial advantages to genomic values
obtained using deregressed EBVs as response
variables or the GBLUP and BayesCr alternatives of
analysis compared with conventional BLUP
predictions. They followed a specific deregression
procedure that included not only the individual’s own
performance, but also the performance of several
relatives (not just offspring), in addition to the
genotyped sample. This regression procedure was
easy to implement from EBVSs, reliabilities, and
pedigrees. Unfortunately, accuracy of genomic
evaluation, measured by cross validation in several
validation samples, was not enough to suggest its
use in current breeding plans for the jumping horse
population studied. However, the authors mention
that this conclusion is related only to accuracy, and
the potential benefits of a higher selection intensity,
reduced generation intervals, and low inbreeding in
the long run should be considered when genomic
selection in horses is planned. In dairy cattle similar
results were reported®. The authors compared two
response variables, EBVs and daughter vyield
deviations (DYD) on simulated dairy data under
eight scenarios of heritability, number of daughters
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per sire, and number of genotyped sires. They found
that DYDs yielded slightly lower reliabilities than
EBVs. The average differences in GV accuracy of
between EBVs and DYDs were 0.009 for h’= 0.30,
and 0.035 when h?= 0.05.

Table 3 presents the genetic correlation
estimates between true genetic values and the GVs
rerev,cv) Obtained using DEBVs and EBVs as response
variables. A slight advantage of using DEBVSs, range
0.43 to 0.53, instead of EBVs, range 0.41 to 0.51,
held constant throughout all training population
sizes. Also, genetic correlation estimates decreased
as PEn and PEv separated. The r¢sv,cv) estimates of
the present study are higher than those observed by
Alarcon-Zuniga et af*, range 0.29 to 0.40, using the
same dataset but different models for the genomic
analysis. Genetic correlation estimates between
direct genomic values and phenotypes from k-fold
validation in Red Angus, Angus, Hereford,
Simmental and Limousin ranged from 0.32 to 0.85
for birth weight, weaning weight, milk yield, rib eye
muscle area, marbling, direct calving ease, and
maternal calving ease®3Y, Similarly, genetic
correlation estimates between true genetic values
and GVs for marbling, using data sets with different
proportions of available information, ranged from
0.256 to 0.859 (2. Guo et af® found genetic
correlation estimates between GVs and conventional
parent average ranging from 0.457 to 0.688 using
three statistical models and eight combinations of
heritability and number of daughters per sire.

Some limitations of our work are that a distance
between training and evaluation populations needs
to be more specific, and size and number of

Table 3. Genetic correlation estimates between true genetic
values and genomic values obtained using deregressed
predicted genetic values (DEBV) or predicted genetic values
(EBV) as response variables, with four training populations

Response variable

Training population DEBV EBV
10 0.53 0.51
9y 10 0.51 0.50
8a10 0.48 0.47
7a10 043 0.41
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generations in the training population also need to
be better determined. Moreover, since our study
used simulated information, it does not entirely
correspond to real production system conditions.

The advantage of using deregressed predicted
genetic values as the response variable, instead of
conventional predicted genetic values, was very
slight with any combination of training population
size and evaluation generation. Regardless of the
response variable used, predicted genetic value or
deregressed predicted genetic value, larger training
population were associated with higher genomic
values accuracy.

Prediction error variance was low and similar
with any combination of training population size and
evaluation generation, regardless of the response
variable used. The genetic correlation estimates
between true genetic values and genomic values
obtained using DEBV as the response variable were
slightly higher than those between true genetic
values and genomic values obtained using EBV as
the response variable.
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