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Modelacion general de los efectos de la geometria de
iluminacion-vision en la reflectancia de pastizales

General modeling of the effects of the illumination - vision
geometry in the reflectance of grasslands

Martin Alejandro Bolafios Gonzélez2, Fernando Paz Pellatb

RESUMEN

En este articulo se presenta el desarrollo y evaluacion de un modelo general para minimizar el efecto que la geometria
iluminacion-vision tiene sobre la reflectancia de la vegetacion en las bandas Roja (R) e Infrarroja Cercana (IRC). Para validar
el modelo propuesto se utilizaron tres bases de datos obtenidas en experimentos realizados en zonas de pastizal natural en tres
diferentes partes del mundo, con caracteristicas muy diferentes entre si (composicion de especies, porcentaje de cobertura
vegetal, tipos de suelo, etc.). Los resultados obtenidos fueron adecuados (R220.98).

PALABRAS CLAVE: BRDF, Reflectancia, Geometria iluminacién-visiéon, Pastizal.

ABSTRACT

In this study a general model for minimizing the effect that the illumination-vision geometry has on the vegetation reflectance
in the Red (R) and Near Infrared (NIR) bands was developed and evaluated. In order to validate the proposed model three
data bases, obtained in experiments carry out in natural grasslands zones in three different parts of the world, with characteristics
so different among them (species composition, vegetal cover percentage, kinds of soils, etc.) were utilized. The results obtained
were adequate (R220.98).

KEY WORDS: BRDF, Reflectance, Illumination-vision geometry, Grassland.

INTRODUCCION INTRODUCTION

Los datos obtenidos a partir de los sensores remotos, Data obtained from remote sensing specifically of
especificamente de imigenes de satélite, son satellite images are extensive and exhaustive as
extensivos y exhaustivos, ya que permiten obtener they allow obtaining very detailed information of
informacion muy detallada de grandes éareas. Por large areas. For this reason, these techniques are
lo mismo, estas técnicas son muy importantes en very important in disciplines related to developing
aquellas disciplinas relacionadas con la generacion inventory, management of natural resources, and
de inventarios, manejo de los recursos naturales y livestock/agriculture production systems, such as
sistemas de produccion agropecuarios, como es el the estimation of biomass and vegetation cover in
caso de la estimacion de biomasa y cobertura vegetal areas of natural grassland, however, prior to the
en 4reas de pastizal natural; sin embargo, previo al use of information acquired by sensors on satellites,
uso de la informacién adquirida por los sensores a it is necessary to apply approaches that standardize
bordo de satélites, es necesario aplicar metodologias the information, because it contains effects of
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que estandaricen la informacion, ya que €sta contiene
efectos de diversa indole (georeferenciacion,
geometria sol-sensor, atmosférica, etc.), los cuales
pueden provocar distorsiones importantes en la
reflectancia medida.

Debido a lo anterior, en este articulo se presenta
una metodologia que corrige los efectos de la
geometria sol-sensor, los cuales son significativos
en los sensores satelitales AVHRR, MODIS y SPOT,
entre otros. En los dos primeros debido
principalmente a que su ancho de barrido es muy
grande (2,700 y 2,330 km); y en el caso del sensor
SPOT, debido a que su &ngulo de vision puede
variar en + 28.5°. Por tanto, es necesario reducir
o eliminar estos efectos como paso inicial en el
célculo de indices de vegetacion o cualquier otro
cilculo realizado con base a estas imigenes de
satélite y que se pretenda ligar a caracteristicas
biofisicas de la vegetacion.

MATERIALES Y METODOS

La superficie terrestre refleja la luz en cantidades
diferentes dependiendo del dngulo de vision con el
que se observa o capta esta luz, asi como del
angulo de iluminacion; es decir, la reflectancia de
la superficie terrestre es anisotropica. La Funcion
de Distribucion de Reflectancia Bidireccional
(Bidirectional Reflectance Distribution Function,
BRDF) describe matematicamente esta anisotropia,
prediciendo la magnitud de la radiacion reflejada
en una direccion dada.

La BRDF de una pequefia superficie de 4rea dA
estd definida como la razon de la radianza
incremental saliendo de la superficie a través de un
angulo solido infinitesimal en la direccion definida
por el vector de vision, Q(Ov,@v), sobre la
irradianza incremental de la direccion definida por
el vector de iluminacion, Q’(8s,qs)(1):

dLe(v, )
dEi (&, ¢F)’

Donde dLe es la irradianza incremental reflejada
desde la superficie en la direccion del angulo de
vision Q (Wm-=2sr-1); dEi es la irradianza incremental
(Wm2sr-1) que llega desde la direccion de iluminacion

BROF (&, i, &, ) = en st

50

various kinds (geo-reference, sun-sensor geometry,
atmospheric effects, etc.); which can cause important
distortions in the measured reflectance.

This article presents a methodology that corrects the
effects of the sun-sensor geometry, which are significant
in the AVHRR, MODIS, SPOT satellite sensors, among
others, mainly because in the first two the wide-
scanning is very large (2700 and 2330 km); and in
the case of the SPOT satellite, because its angle of
vision can vary + 28.5°. It is therefore necessary
to reduce or eliminate these effects as an initial
step in calculating vegetation indexes or any other
estimation based on these satellite images that intend
to link to bio-physical characteristics of vegetation.

MATERIALS AND METHODS

The earth’s surface reflects different quantities of
light depending on the angle of vision with which
it is observed or acquired, as well as on the angle
of illumination, that is, reflectance of the earth’s
surface is anisotropic. The Bidirectional Reflectance
Distribution Function (BRDF) describes
mathematically this anisotropy, predicting the
magnitude of the radiation reflected in a given
direction.

BRDF of a small area dA is defined as the ratio
of the incremental radiance incoming from the
surface through a solid infinitesimal angle in the
direction defined by the vision vector, Q (Bv, @V),
over the incremental irradiance of the direction
defined by the illumination vector Q’(8s, @s)(1, as
defined in Equation 1.

dlel.p) . 1

BRLUF (&, =, &0, ¢v) = B &

where dLe is the incremental irradiance reflected
from the surface in the direction of the angle of vision
Q (Wm-2srl); dEi is the incremental irradiance
(Wm-2sr-1) that arrives from the direction of
illumination Q; Os is the sun zenith angle; ¢s is the
sun azimuth angle of vision; Ov is the vision zenith
angle; @v is the vision azimuth angle (Figure 1).

Although there are many approaches to BRDF
modeling in remote sensing, they need to have at
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Q; Bs es el angulo cenital solar; s es el angulo
acimutal solar; 8v es el dngulo cenital de vision;
@v es el dngulo acimutal de vision (Figura 1).

Aunque existen muchas formas de abordar la
modelacion de la BRDF en sensores remotos, estas
requieren de contar al menos con tres datos de
reflectancia (sO6lo si estos estdn en geometrias
suficientemente diferentes(.3.4); por lo que en
realidad los algoritmos operacionales usan de 10 a
16 datos), medidos con diferente geometria
iluminacion-vision, en un periodo de tiempo corto
(10 a 16 dias). Este enfoque supone que las
condiciones atmosféricas, el fondo de la vegetacion
(suelo, mantillo, etc.) y el crecimiento de la
vegetacion permanecen constantes en este periodo;
sin embargo, en una situacion real esta hipotesis
no se cumple, particularmente en el periodo de
interés de crecimiento de cultivos agricolas o
vegetacion natural.

Un método que solo considere las reflectancias del
mismo dia en que fue tomada una imagen (un solo
dato de reflectancia), en una base pixel por pixel,
seria la mejor alternativa para evitar suposiciones
de invarianza u homogeneidad, debido a lo cual, la
presente investigacion se centr( en el desarrollo de
un método de minima hipdtesis para minimizar el
efecto que la geometria iluminacion-vision (efecto
BRDF) tiene sobre la reflectancia de la vegetacion
en las bandas Roja (R) e Infrarroja Cercana (IRC);
esto es, modelar la funcién geométrica de la
reflectancia en forma adecuada para reducir su
complejidad y obtener como resultado una
metodologia que usa un solo dato de reflectancia
para la correccion de los efectos anteriormente
mencionados. En este sentido, es importante aclarar
que la metodologia desarrollada parte tinicamente
de la geometria de iluminacidn-vision (Figura 1),
por lo que el desarrollo completo de la propuesta
implica un aporte sustancial al conocimiento de la
modelacion de los efectos que la geometria sol-
sensor tiene sobre la reflectancia de la vegetacion.

La modelacion adecuada de la BRDF parte de
seleccionar un plano de simetria adecuado, que
elimina la complejidad de la misma, y permite,
por lo tanto, modelarla con un solo dato de
reflectancia, asumiendo la hipotesis que, de acuerdo

least 3 reflectance data (only if these are in
sufficiently different geometries (2-3-4), so in reality
the operational algorithms use from 10 to 16 data),
measured with different illumination-vision
geometry, in a short time (10 to 16 days). This
approach assumes that the atmospheric conditions,
the vegetation background (soil, mulch, etc) and
the vegetation growth are constant over this period;
but in a real situation this assumption is not satisfied,
particularly in the interest period of growth of
agricultural crops or natural vegetation.

A method that only considers the reflectances of
the same day in which an image was taken (a
single datum of reflectance), on a pixel by pixel
basis, would be the best alternative to avoid
assumptions of invariance and homogeneity, due to
which this research focused on the development of
a method of minimal hypothesis to minimize the
effect that the illumination-vision geometry (BRDF
effect) has on the reflectance of vegetation on the
Red (R) and Near Infrared (IRC) bands; that is,
modeling the geometric reflectance function properly
to reduce its complexity and obtain as result a
methodology that uses a single reflectance datum
for the correction of the afore-mentioned effects. In
this sense, it is important to note that the
methodology developed starts only from the
illumination-vision geometry (Figure 1), so the full
development of the proposal implies a substantial
contribution to the knowledge of modeling of the
effects that the sun-sensor geometry has on the
reflectance of vegetation

The proper modeling of the BRDF comes from
selecting a suitable symmetry plane, which removes

Figura 1. Geometria sol-sensor de iluminacion y vision

Figure 1. Sun-sensor geometry of illumination and vision
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al plano de simetria y espacio de andlisis
seleccionado, es posible obtener un punto adicional
del modelo que permite calcular el Gnico pardmetro
del cual depende: la pendiente (b).

La generalizacion del modelo de la BRDF, para
las bandas R e IRC, parte del modelo desarrollado
por Bolafios et al®), quienes propusieron modelos
independientes para cada una de estas bandas (planos
de simetria diferentes); sin embargo, a partir de
analisis posteriores, fue posible detectar un plano
de simetria Gnico para ambas bandas, dando como
resultado un modelo general para las mismas.
Ambos modelos se exponen a continuacion.

Simetrizacion y modelo inicial de la BRDF

La geometria de la iluminacion estd definida por el
angulo cenital solar (8s) y el dngulo acimutal solar
(@gs), mientras que la geometria de vision estd
definida por el dngulo cenital de vision (Bv) y el
angulo acimutal de vision (@v). Los componentes
principales de la geometria sol-sensor se muestran
en la Figura 1.

El signo del angulo cenital de vision estd definido
de acuerdo a la siguiente convencion:

$P=_5psi{ﬂiahs(gis—;w}£90 }
270 < abs( g5 — @) < 360

A = +8 st (00 <ahslgh — @) <270 )

donde un valor negativo de Bv implica una direccion
de iluminacion de retroflexion (backscattering), es
decir que se observa a un objeto con un angulo de
vision y de iluminacién que caen en el mismo
semi-hemisferio. En el caso de valores positivos,
implica que se observa al objeto en la direccion
contraria al semi-hemisferio de iluminacién (forward
scattering). Dado que el efecto del acimut relativo
entre el sol-sensor, para un dia, y en una base
pixel por pixel, es despreciable, se puede realizar
una modelacion que no considere este factor. Para
un angulo de vision a nadir, la reflectancia es
débilmente dependiente del acimut relativo, por lo
que la consideracion mencionada es correcta.

En la Figura 2 se presenta un patron tipico de la
variacion de las reflectancias (R, usado en términos
genéricos para cualquier banda espectral) con el

the complexity of it, and permits, therefore, to model
it by a single reflectance datum, assuming the
hypothesis that, according to the symmetry plane and
space of selected analysis, it is possible to obtain an
additional point of the model that allows calculating
the only parameter from which depends: slope (b).

Generalization of the model of BRDF, for R and
IRC bands comes from the model developed by
Bolafios et al®), who proposed independent models
for each of these bands (different planes of
symmetry); however, after further analysis, it was
possible to detect a single plane of symmetry for
both bands, resulting in a general model for them.
Both models are described below.

Symmetrization and Initial model of BRDF

[llumination geometry is defined by the sun zenith
angle (6s) and the sun azimuth angle (@s), while
the geometry of vision is defined by the vision
zenith angle of (Bv) and the vision azimuth angle
(@v). The principal components of sun-sensor
geometry are shown in Figure 1.

The sign of the vision zenith angle is defined by
the following convention:

gu=_ﬂusi{|]£ahs(g,fs—gb}£9|] }
270 < abs g5 — @) < 360

S = +8 51 {00 <abs(gs — @) <270 )

Figura 2. Patrdn tipico de variacion de la reflectancia (R)
con el angulo cenital de vision (Bv)

Figure 2. Typical pattern of variation of the reflectance (R)
with viewing zenith angle (8v)
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angulo de vision cenital (con signo). En esta figura
se observa la ocurrencia de un pico en R cuando
el angulo cenital de vision e iluminacién coinciden,
este pico de retroflexion (hot spot 0 HS) representa
la condicién donde el sensor observa la vegetacion
con un minimo de sombras de ésta sobre el suelo
y de auto-sombreado del follaje. A 90° se presenta
un pico especular (dark spot o DS). Resulta claro
de la complejidad de la Figura 2 que la modelacion
de 1a BRDF no puede, aparentemente, caracterizarse
con un solo pardmetro (a estimarse de una medicion
unica), por lo que la mayoria de los modelos
actuales tienen al menos tres pardmetros, de alli
los requerimientos de al menos tres observaciones
y la necesidad de usar hipétesis complementarias
(cuando el sensor es uni-angular).

Para simetrizar y reducir la complejidad de 1a BRDF
es necesario introducir una nueva geometria basada
en una variable de posicion relativa (X):

&l y=(90+ &) -&

G0, y=090+&)+&

La Figura 3 muestra el patron de la reflectancia en
el infrarrojo cercano normalizado, IRCn
(IRC)cos(x), en funcion de X. El uso de la funcion
cos(X) como factor multiplicativo de IRC permite
definir un punto del patron IRCn-Y, ya que cos(90°)
= 0, por lo que IRCn = 0 en X = 90°. Para el
caso de la reflectancia normalizada a nadir (6v=

Figura 3. Patron tipico de IRCn en funcion de X.

Figure 3. Typical pattern of IRCn in function of X.

8,>10

3 =908 BIRCN]
e 8. <0

W-ag | L.

3= 80+ BIRCH

ECua

where a negative value of Ov implies a direction of
illumination of retro-flexion (backscattering), that
is, an object is observed with an angle of vision
and illumination that falls down in the same semi-
hemisphere. In the case of positive values, it implies
that the object is observed in the direction opposite
to the hemisphere of illumination (forward
scattering). Given that the relative azimuthal effect
between the sun-sensor, for one day, on a pixel by
pixel basis, is negligible, a model that does not
consider this factor can be developed. For an angle
of vision at nadir, reflectance is weakly dependent
on the relative azimuth, and thus, the above
consideration is correct.

Figure 2 shows a typical pattern of variation of
reflectance (R, used in generic terms for any spectral
band) with the vision zenith angle (with sign).
This figure shows the occurrence of a peak in R
when the vision zenith angle and illumination
coincides, this peak of retro-flexion (hot spot or
HS) represents the condition where the sensor
observes vegetation with minimal shadows of this
on the ground and the self-shade of foliage. At 90°
a spectacular peak is present (dark spot or DS). It is
clear from the complexity of Figure 2 that modeling
of BRDF cannot apparently be characterized by a
single parameter (to be estimated from a single
measurement), so that most current models have at
least three parameters, so then the requirements of
at least three observations and the need to use
additional hypotheses (when the sensor is uni-angle).

To symmetrize and reduce the complexity of BRDF,
it is necessary to introduce a new geometry based
on a relative position variable (X):

G cl, p=(90+&)-&

=0, y=(90+8)+8&

Figure 3 shows the reflectance pattern in normalized
near infrared, IRcn = (IRC)cos(X), in function of
X. Use of the function cos(X) as a multiplicative
factor of IRC enables the definition of a point of the
pattern IRCn-¥, since cos(90°) = 0; thus, IRCn =
0 in X = 90°. For the case of normalized reflectance
at nadir (6v = 0), IRCn,n, there is an established
symmetry given by cos(90 - 8s) = -cos(90 + 6s)
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0), IRCn,n, existe una simetria definida por cos(90
- Bs) = -cos(90-6s) (Figura 3) que permite utilizar
los casos Bv < 0y Bv > 0 en forma independiente.

El uso de la funcion coseno para normalizar IRC
esta basado en la condicion de utilizar el plano de
simetria del HS (x = 90):

hv<0.v=5&

En el caso de la condicion de iluminacion de
sombreado (Bv > 0), la condicion de x= 90, cos(X)=
0, no se presenta dado que Ov tiene signo positivo.
Asi, con esta condicion restringida, es necesaria la
utilizacion de dos patrones diferentes para la
variacion de las reflectancias en relacion a X.

En la Figura 3 se observa que para el caso de Ov
< 0, el patron es lineal con interseccion del eje
X en 90°. Para Bv > 0, el patron es exponencial
con interseccion también en 90°. Asi, los dos
patrones dependientes del signo de Bv coinciden en
X = 90° y ambos patrones intersectan el valor de
la reflectancia normalizada a nadir. Para la
reflectancia de la banda del rojo (R), y del visible,
este patron de simetria no es valido y requiere otro
tipo de aproximacion.

Las funciones de 1a BRDF, para los casos mostrados
en la Figura 3, estin definidas por:

6v <0, 7 = 90 + BIRCn
&v >0, y =90 exp( BIRCH)

Puesto que las funciones mostradas dependen solo
del pardmetro b (pendiente), es posible estimarlo
con un solo dato. Para la estimacion de las bandas
espectrales del visible (A = Azul, V = Verde y
R = Rojo), Bolafios et al® utilizaron las bandas
normalizadas R’n e IRC’n (simetria en X = 6s -
Bv), que usa la hipdtesis de una relacion lineal que
pasa por el origen y, por lo tanto, dependiente de
sOlo la pendiente b’. Esta estrategia de modelacion
presenta el problema de propagacion del error de
estimacion de IRC’n a nadir, requerido para poder
estimar R’n, ademds de utilizar dos simetrias
generales para la banda del IRC.

54

(Figure 3) that permits the independent use of cases
Bv<0 and 6v>0.

The use of the cosine function to normalize IRC is
based on the condition of using the plane of
symmetry of the HS (X = 90):

v<0v=6&

In the case of the shading illumination condition
(Bv> 0), the condition of X = 90, cos(X) = 0, is
not present since Ov has a positive sign. Thus,
under this restricted condition, it iS necessary the
use of two different patterns for variation of
reflectances with respect to X.

In Figure 3 it can be observed that for the case
Bv <0, the pattern is linear intersecting at the X
axis at 90°. For Bv > 0, the pattern is exponential
also intersecting in 90°. Thus, the two patterns
depending on the sign of eév coincide in X = 90°
and both patterns intersect the normalized reflectance
value at nadir. For the reflectance of the red (R),
and visible bands, this symmetry pattern is not
valid and requires another type of approach.

The BRDF functions for the cases shown in Figure
3 are defined by:

v <0, 7 = 90 + bIRCn
& >0, y = 90 exp( BIRCH)

Since the functions shown depend only on parameter
b (slope), it is possible to estimate it with a single
datum. For the estimation of the spectral bands of
the visible (B=Blue, G=Green, and R=Red),
Bolafios et al®>) used the normalized R’n and IRC’n
bands (symmetry in X° = Os - Ov), which uses the
hypothesis of a linear relationship passing through
the origin and, therefore, depends only of the slope
b’. This modeling strategy has the problem of
propagation of error estimation of IRC’n at nadir,
required to estimate R’n, in addition to use two
general symmetries for the IRC band.

General model of the BRDF

To develop a general model of BRDF applicable to
all the spectral bands, a plane of generic symmetry



GEOMETRIA DE ILUMINACION-VISION EN LA REFLECTANCIA DE PASTIZALES

Modelo general de la BRDF

Para desarrollar un modelo general de la BRDF
aplicable a todas las bandas espectrales, se buscod
un plano de simetria genérico. El plano de simetria
seleccionado fue X = 90 - Bv + B6s, donde Bv no
tiene signo. Esta simetria general cumple con la
condicion de X = 90, cos(X=90) y Rn = 0, cuando
Ov = Os (ambas condiciones de iluminacién, con
simetria en el plano HS). Las reflectancias
normalizadas estdn definidas como Rn = Rxcos(X),
donde R es cualquier banda espectral.

El modelo propuesto para las reflectancias es un
modelo lineal simple:

donde se utiliza un valor de a = 90 para obtener
un punto adicional y poder estimar b usando un
esquema similar al de el IRC del modelo inicial.

Las bases de datos utilizadas son producto de una
serie de mediciones con equipos BRDF y tuvieron
la finalidad de modelar el efecto que la geometria
iluminacidn-vision tiene sobre la respuesta espectral
de la vegetacion (BRDF). Todas estas mediciones
se realizaron en zonas extensas de vegetacion
natural, dominadas principalmente por pastizales
de diferentes especies. Las bases de datos analizadas
fueron: Arizona, Estados Unidos; Mongolia Interior,
Republica Popular de China; e Hidalgo, Durango
y Namiquipa, Chihuahua, México.

Arizona, Estados Unidos

Los datos de este experimento fueron colectados
durante el verano de 1990 como parte del
experimento Monzon 90 en la cuenca experimental
Walnur Gulch en el sureste de Arizona, Estados
Unidos. Las coordenadas geogrificas de este sitio
son 31.7° N, 110° W. El sitio de muestreo consistio
de pastizales (Bouteloua spp) sobre pendientes
variantes menores del 5 %. El follaje del pastizal
fue homogéneo con una cobertura maxima del
40 % y consistid de cantidades variantes de material
verde, senescente y muerto dependiendo del estado
de crecimiento®.7.8), Las fechas de muestreo del
pastizal, con los angulos cenitales solares
correspondientes, asi como condiciones particulares
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was sought. The plane of symmetry selected was
X = 90 - Bv + Os, where Bv has no sign. This
general symmetry complies with the condition of X
= 90, cos(x=90) and Rn = 0, when Bv = 6s (both
conditions of illumination, with symmetry in the
HS plane). The normalized reflectances are defined
as Rn = Rxcos(X), where R is any spectral band.

The proposed model for reflectances is a single
linear model:

where a value of a 90 is used to obtain an
additional point and to estimate b by using a scheme
similar to that of the IRC of the initial model.

The used databases are the product of a series of
measurements with BRDF equipments and had the
purpose of modeling the effect that the illumination-
vision geometry has on the spectral response of
vegetation (BRDF). All these measurements were
made in large areas of natural vegetation, dominated
mainly by grasslands of different species. The
analyzed databases were: Arizona, USA; Inner
Mongolia, People’s Republic of China; and Hidalgo,
Durango, and Namiquipa, Chihuahua, Mexico.

Arizona, United States of America

Data from this experiment were collected during
the summer of 1990 as part of the 90’s Monsoon
experiment in the Walnut Gulch experimental
watershed in southeastern Arizona, USA. The
geographic coordinates are 31.7° N, 110° W. the
sampling place consisted of grasslands (Bouteloua
spp) on variant slopes of less than 5 %. The foliage
of the grassland was homogenous with a maximum
coverage of 40 % and consisted of variant amounts
of green, senescent and dead material depending
on the stage of growth®.7.8). Sampling dates of
grassland, with the corresponding sun zenith angles,
as well as particular conditions of each measurement
can be consulted®.7.8),

BRDF measurements essentially consider all of the
phases and stages of grass growth and therefore
represent the seasonal pattern for this type of
vegetation. Just before julian day 220 of the year,
the grassland reached its maximum growth in
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de cada medicion se pueden consultar en trabajos
publicados(®.7.8),

Las mediciones de la BRDF consideran esencial-
mente todas las fases y etapas del crecimiento del
pasto, por lo que son representativas del patron
estacional de este tipo de vegetacion. Poco antes
del dia 220 del afio el pastizal alcanzd su miximo
crecimiento de biomasa y cobertura (40 %),
representando la situacion tipica de vegetacion sin
cobertura total del suelo.

Las reflectancias fueron medidas con un
espectroradiometro Spectron SE 590, con un dngulo
de vision de 15°, en un rango espectral de 400 a
900 nm y ancho de banda efectivo de 10 nm. Para
este estudio, los datos de reflectancia de alta
resolucion fueron remuestreados para aproximar
los datos a los anchos de banda correspondientes
a las bandas R e IRC del sensor LANDSAT T™M
(bandas 3 y 4). Los angulos cenitales de vision
variaron de -40° a + 40°, con incrementos de
10°.

Mongolia Interior, Republica Popular de China

El area de estudio de este experimento fue un
pastizal en Xilingol. Las coordenadas geograficas
del area de muestreo son 112.400° - 116.051° E
y 42.843° - 44.711° N.

En este estudio se midieron con equipo BRDF 10
sitios de muestreo, durante el periodo comprendido
del 6 de agosto al 9 de septiembre de 1996. La
ubicacion de cada uno de los sitios de muestreo,
asi como la fecha, hora y 4ngulo zenital solar en
el momento de realizar la medicion se pueden
consultar®.

Para tomar las mediciones radiométricas se utilizd
un radidmetro multiespectral Milton. El dngulo de
vision instantdneo (IFOV, por sus siglas en inglés)
fue de 15° y la distancia a la superficie de 4 m
(altura de medicion), por lo que el didmetro del
area de medicion fue de 1.49 m. Las mediciones
de BRDF fueron hechas en las tardes con angulos
zenitales de vision de -40° (back scattering) a +40°
(forward scattering) con incrementos de 10° en un
plano Este-Oeste.
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biomass and cover was 40 %, representing a typical
situation of crop that does not totally cover the
ground.

Reflectances were measured with a Spectron SE
590 spectroradiometer with a 15° angle of vision,
within a spectral range of 400 to 900 nm and an
effective band width of 10 nm. For this study, the
high resolution reflectance data were re-sampled to
approximate the data of the corresponding R and
IRC band widths of the LANDSAT TM sensor
(bands 3 and 4). The vision zenith angles varied
from -40° to + 40°, with increments of 10°.

Inner Mongolia, People’s Republic of China

The study area of this experiment was a grassland
area in Xilingol, Autonomous Region of Inner
Mongolia, People’s Republic of China. The
geographic coordinates of the sampling area are
112.400° - 116.051° E and 42.843° - 44.711° N.

In this study, 10 sampling sites were measured with
BRDF equipment during the period from August 6 to
September 9, 1996. The location of each of the
sampling sites as well as date, hour and zenith sun
angle at the time of measurement can be found in®).

To make radiometric measurements a Milton
multispectral radiometer was used. The
instantaneous field of view (IFOV) angle was 15°
and distance to the surface of 4 m (height
measurement), so that the diameter of the measuring
area was 1.49 m. BRDF measurements were made
in the afternoons with vision zenith angles of -40°
(back scattering) to +40° (forward scattering) with
increases of 10° in an East-West plane.

According to,® chopping, the study area was
adequate for the validation of BRDF models because
there is a wide variety of surface types from desert
steppes with low height and low coverage of Stipa
gobica on light soils to typical steppes of Stipa
grandis/ Aneurolipideum chinense with a foliage
height of 1 m, on dark soils.

Namiquipa, Chihuahua and Hidalgo, Durango. Mexico

As part of the evaluation of the proposed
methodology to correct the effects of sun-sensor
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De acuerdo a Chopping®), el drea de estudio
resultd adecuada para la validacion de los modelos
de BRDF debido a que existe una amplia variedad
de tipos de superficie desde estepa desértica con
vegetacion de poca altura y baja cobertura de Stipa
gobica sobre suelos claros, hasta estepas tipicas de
Stipa grandis/ Aneurolipideum chinense, con una
altura de follaje de 1 m, sobre suelos oscuros.

Namiquipa, Chihuahua e Hidalgo, Durango. México

Como parte de la evaluacion de la metodologia
propuesta, para corregir los efectos de la geometria
sol-sensor sobre la reflectancia de la vegetacion, se
llevaron a cabo una serie de muestreos en zonas de
pastizales en los Municipios de Namiquipa, Chihuahua
e Hidalgo, Durango en México. Estas visitas se
realizaron en los periodos comprendidos del 24 al 31
de Julio, del 22 de agosto al 4 de septiembre, del 7
al 16 de octubre y del 5 al 12 de diciembre de 2005.

Se establecieron un total de cinco sitios de muestreo
en cada uno de los municipios visitados, los cuales

Figura 4. Modelo general, a y b estimados, para los
pastizales de China a) IRCn, b)Rn.

Figure 4. General model, a and b estimated, for China’s
grassland. a) IRCn, b)Rn
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geometry on the reflectance of vegetation a series
of surveys were carried out in grassland areas in
the municipalities of Namiquipa, Chihuahua and
Hidalgo, Durango in Mexico. These visits were
carried out in the periods from 24 to 31 of July,
from August 22 to September 4, from 7 to October
16, and from 5 to December 12, 2005.

A total of five sampling sites were established in
each of the municipalities visited which were located
in such a way to be representative of the grassland
areas in both municipalities. The dominant type of
grass was blue grama (Bouteloua gracilis)®).

To carry out radiometric measurements of the BRDF,
a metal structure of measurement was built ex
professo, which allowed the measurement of the
reflectance under different angles of vision (-50 °
to 50 © with increments of 10 °). The measuring
equipment consisted of a digital camera with a
resolution of 5.0 megapixels (calculation of
vegetation cover) and a CROPSCAN radiometer of
five bands corresponding to the first five bands of
LANDSAT TM (reflectance). This measuring
equipment was mounted on a metallic structure and
was maintained at a distance of 3 m from the
sampling area independently of the angle of vision;
that is, the length of the rotating arm was adjusted
as the angle of vision varied in such a way that the
equipment will be always measuring the same area.

RESULTS AND DISCUSSION

In this section the results obtained with the general
model of the BRDF using all available experimental
data are analyzed, to review the feasibility of the
model in general. The analyzed cases correspond
to the situation of not assume values of the a
parameter of the linear model proposed and the
case where it is assumed a=90, so it is possible to
determine the validity of the hypothesis used.

Figure 4 shows the case of a and b estimated from
data for IRCn and Rn, respectively, for China’s
grasslands of and Figure 5 shows the same data,
but assuming a=90.

Figure 6 shows the case of a and b estimated from
data for IRCn and Rn, respectively, for Mexico’s
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Figura 5. Modelo general, a=90 y b estimado, para los
pastizales de China. a) IRCn, b)Rn

Figure 5. General model, a=90 and b estimated, for China’s
grassland. a) IRCn, b)Rn
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se ubicaron de tal forma que fueran representativos
de las zonas de pastizales de ambos municipios. El
tipo de pasto dominante fue el navajita (Bouteloua
gracilis)®).

Para llevar a cabo las mediciones radiométricas de
la BRDF, se utiliz0 una estructura metilica de
medicion construida ex profeso, la cual posibilitd
la medicion de la reflectancia con diferentes dngulos
de vision (de -50° a 50° con incrementos de 10°).
El equipo de medicion consisti0 de una cdmara
digital con resolucion de 5.0 megapixeles (cdlculo
de cobertura vegetal) y un radiémetro Cropscan de
cinco bandas, correspondiente a las cinco primeras
bandas de LANDSAT TM (reflectancia). Este
equipo de medicion se montd en la estructura
metilica y se mantuvo a una distancia de 3 m del
area de muestreo independientemente del dngulo
de vison; es decir la longitud del brazo giratorio
se ajustd conforme se vario el angulo de vision, de
tal forma que el equipo de medicion siempre midiera
la misma Aarea.
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Figura 6. Modelo general, a y b estimados, para los
pastizales de México. a) IRCn, b)Rn

Figure 6. General model, a and b estimated, for Mexico's
grassland. a) IRCn, b)Rn
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grasslands and Figure 7 shows the same data but
assuming a=90. Similar results were obtained for
Arizona’s grasslands, USA.

Table 1 shows, as a comparative summary, the
determination coefficients calculated in the
evaluation of the general model, with and without
using the hypothesis of a=90. According to these
results it is observed that differences in both bands
(R and IRC) are minimal.

CONCLUSIONS AND IMPLICATIONS

The general model of the proposed BRDF results
in appropriate adjustments to the experimental data.
The higher dispersion observed in Figures 4 and 5 is
due in part to measurements carried out in China’s
grasslands that followed a measuring sequence where
the values with an angle of vision at nadir were
performed with differences of 2 to 4 degrees in the
sun-illumination angles. For Arizona and Mexico’s
grasslands, the maximum differences were about
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RESULTADOS Y DISCUSION

En este apartado se analizan los resultados obtenidos
con el modelo general de la BRDF usando todos
los datos experimentales disponibles, para revisar
la factibilidad del modelo en lo general. Los casos
analizados corresponden a la situacion de no suponer
valores de los pardmetros a y b del modelo lineal
propuesto y el caso donde se supone a=90, de tal
forma que sea posible determinar la validez de la
hipotesis utilizada.

La Figura 4 muestra el caso de a y b estimados
de los datos para IRCn y Rn, respectivamente, para
los pastizales de China y la Figura 5 muestran los
mismos datos, pero suponiendo a=90.

La Figura 6 muestra el caso de a y b estimados
de los datos para IRCn y Rn, respectivamente, para
los pastizales de México y la Figura 7 muestra los
mismos datos, pero suponiendo a=90. Resultados
similares a estos se obtuvieron para el pastizal de
Arizona, Estados Unidos.

En el Cuadro 1 se muestran, a manera de resumen
comparativo, los coeficientes de determinacion
calculados en la evaluacion del modelo general,
con y sin la utilizacion de la hipotesis de a=90.
De acuerdo a estos resultados se observa que las
diferencias en ambas bandas (R € IRC) son minimas.

CONCLUSIONES E IMPLICACIONES

El modelo general de la BRDF propuesto resulta
en ajustes adecuados a los datos experimentales.
La mayor dispersion observada en las Figuras 4 y
5 es debida, en parte, a que las mediciones
realizadas en los pastizales de China siguieron una
secuencia de medicion donde los valores con un
angulo de vision a nadir fueron realizados con
diferencias de 2 a 4 grados en los angulos de
iluminacion solar. Para los pastizales de Arizona y
México, las diferencias maximas fueron del orden
de 1.5 grados y la gran mayoria menores a 1
grado. El hecho de suponer que la ordenada al
origen del modelo general analizado adquiere un
valor de 90 (a=90) en el espacio normalizado resulta
adecuada, ya que como se observ( en el andlisis de
resultados la disminucion en el ajuste del modelo

1.5 degrees and the vast majority less than 1 degree.
The fact of assuming that the ordinate to the origin
of the general model analyzed acquires a value of
90 (a=90) in the normalized space results
appropriate because as noted in the analysis of
results the decrease in the fitting of the model is
minimal (less to 1% according to the determination
coefficients, R2). The use of this hypothesis makes
possible the correction of the effects of the

Figura 7. Modelo general, a=90 y b estimados, para los
pastizales de México. a) IRCn, b)Rn

Figure 7. General model, a=90 and b estimated, for
Mexico's grassland. a) IRCn, b)Rn
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Cuadro 1. Coeficientes de determinacion, R2, del modelo
general propuesto

Table 1. Coefficients of determination, R2, of the proposed
general model

IRCn IRCn Rn Rn
Database (a,b) (@=90,h) (a,b) (@=90,b)
Arizona 0.9962 0.9919 0.9954 0.9930
China 0.9932 0.9824 0.9930 0.9872
México 0.9979 0.9951 0.9983 0.9953
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es minima (inferiores a 1 %, de acuerdo a los
coeficientes de determinacion, R2). El uso de esta
hipotesis hace posible la correccion de los efectos
de la geometria iluminacion-visién sobre la
reflectancia con un solo dato; es decir, con una
sola imagen de satélite (un solo dato de reflectancia
de cada pixel), es posible realizar la correccion de
todos los pixeles incluidos en dicha imagen,
transformando Ia reflectancia medida con cualquier
geometria especifica en cada pixel, a una geometria
de vision a nadir. Este hecho, por si mismo,
marca una diferencia notable con el resto de las
metodologias propuestas por otros autores, ya que
implica la posibilidad de realizar las correcciones
y aplicaciones en tiempo cuasi real, tales como
estimacion de necesidades hidricas y nutrimentales
de los cultivos, estimacion de producciéon de
biomasa y pardmetros biofisicos de cultivos y
vegetacion natural, balances de energia, etc.
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