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RESUMEN

En el presente trabajo se hace una interpretacién delas condiciones
de meteorizacién y del marco tecténico del drea fuente de las rocas
siliciclasticas de la Formacién Morita (Cretacico Inferior) a partir
de datos de geoquimica de 6xidos mayores obtenidos en muestras
colectadas de sus columnas de la Sierra Anibacachi y el drea de
Rancho Bifalo, en noreste de Sonora. La Formacién Morita es una
sucesion siliciclastica de origen fluvial que alcanza un espesor de
560 m en la Sierra Anibacachi y 855 m en el drea de Rancho Bufalo.
Geoquimicamente estas rocas se clasifican como sub-litarenita,
litarenita, subarcosa y arenas-Fe. Los valores de CIA y PIA junto con
el diagrama A-CN-K de las areniscas de la seccion Sierra Anibacachi
indican una meteorizacién quimica de baja a intensa del area de origen,
mientras que los valores de CIA para limolitas y lutitas muestran
una intensidad moderada en el drea de origen. De igual manera, los
valores de CIA, PIA y el diagrama A-CN-K sugieren que las areniscas
de la seccién Rancho Bufalo derivaron de un drea de origen con
meteorizacion baja a intensa, mientras que las limolitas provienen de
una regioén con meteorizacién baja a moderada. Las rocas siliciclasticas
de las secciones Sierra Anibacachi y Rancho Bufalo muestran grandes
variaciones en valores de ICV, indicando que composicionalmente
varian de inmaduras a maduras. El diagrama discriminatorio tecténico
basado en funcién multidimensional muestra campos de colision, arco
y rift para las areniscas de la seccién Sierra Anibacachi, y colision y
rift para las limolitas, mientras que para las lutitas indicd colision. Sin
embargo, la mayoria de las areniscas y limolitas de la seccién Rancho
Bufalo se representan en los graficos en el campo de arco, pero algunas
areniscas se ubican en el campo de colision. Las rocas silicilasticas de las
secciones Sierra Anibacachiy Rancho Bifalo muestran gran variacién

en los ambientes tectonicos de las rocas de origen, sin embargo, los
resultados obtenidos de los diagramas de funcién discriminante son
consistentes con la evolucion tectdnica regional del area de estudio.

Palabras clave: geoquimica; paleointemperismo; ambiente tectonico;
Formacion Morita; Sonora, México.

ABSTRACT

Geochemistry of major oxides was carried out on the siliciclastic rocks
collected from the Sierra Anibacachi and Rancho Biifalo sections of the
Morita Formation (Early Cretaceous) exposed in the northeast of Sonora,
to interpret the paleoweathering conditions and tectonic settings of the
source rocks. Geochemically, the siliciclastic rocks were classified as sub-
litharenite, litharenite, subarkose and Fe-sand. The Morita Formation
consists mainly of siliciclastic rocks that were deposited under fluvial
conditions and the total thickness vary between 560 and 855 m in Sierra
Anibacahi and Rancho Biifalo, respectively. The CIA and PIA values and
A-CN-K diagram of sandstones from Sierra Anibacachi section indicate a
low to intense chemical weathering of the source area, whereas CIA values
for siltstone and shale show moderate intensity of chemical weathering
in the source region. Similarly, the CIA and PIA values and the A-CN-K
plot suggest that the sandstones from Rancho Biifalo section were derived
from low to intensely weathered source region, whereas siltstones were
received sediments from source rocks affected by low to moderate degree
of chemical weathering. The siliciclastic rocks from Sierra Anibacachi and
Rancho Biifalo sections show large variations in ICV values, indicating
that these samples are compositionally immature to mature. The tectonic
discriminant-function-based multidimensional diagram shows arc, rift

Ramirez-Montoya, E., Madhavaraju, J., Monreal, R., Gonzalez-Leén, C.M., Grijalva-Noriega, EJ., Saucedo-Samaniego, J.C., Espinoza-Maldonado, I.G., 2018,
Meteorizacién y marco tecténico de rocas siliciclasticas de la Formacion Morita, noreste de Sonora, México: Revista Mexicana de Ciencias Geoldgicas, v. 35, num.

2,p. 103-115.

DOI: http://dx.doi.org/10.22201/cge0.20072902e.2018.2.481

103



Ramirez-Montoya et al.

and collision fields for the sandstones from Sierra Anibacachi section,
rift and collision for siltstone, while collision setting for shales. However,
most of the sandstones and siltstones from Rancho Biifalo section fall
in the arc field, whereas some sandstones fall in the collision field. The
siliciclastic rocks from Sierra Anibacachi and Rancho Biifalo section show
large variations in the tectonic settings of the source rocks. However, the
results obtained from the discriminant function diagrams are consistent
with a regional tectonic evolution of the study area.

Key words: geochemistry; paleoweathering; tectonic settings; Morita
Formation; Sonora; Mexico.

INTRODUCCION

Las rocas sedimentarias siliciclasticas proporcionan abundante
informacién sobre la composicién, marco tecténico y el desarrollo evo-
lutivo de la corteza continental (Taylor y McLennan, 1985; McLennan
et al., 1993). Las unidades sedimentarias arenosas son parte impor-
tante de las cuencas sedimentarias en todo el mundo y constituyen
reservorios potenciales en la mayoria de las provincias petroleras. Las
caracteristicas texturales de tales unidades son principalmente pro-
ducto de la meteorizacion del area fuente y del transporte y procesos
sedimentarios asociados, mientras que su composiciéon depende de la
mineralogia primaria de las rocas del drea fuente y del marco tectonico
de la cuenca de deposito (Bhatia y Crook, 1986; Das y Haake, 2003;
Jin et al., 2006). Por lo tanto, la geoquimica de las rocas sedimentarias
siliciclasticas ha sido empleada como un indicador sensible para deter-
minar las condiciones de meteorizacion del drea fuente y procedencia
de los sedimentos (Roser y Korsch, 1986, 1988; Goetze, 1998; Cullers,
2000; Getaneh, 2002; Ohta, 2004; Huntsman-Mapilaa et al., 2005;
Madhavaraju y Lee, 2010; Madhavaraju, 2015; Armstrong-Altrin et
al., 2014, 2016; Tapia-Fernandez, et al., 2017).

La composicién geoquimica de las rocas cldsticas también se ha
usado ampliamente para descifrar la composicion del érea fuente
(Wronkiewicz y Condie, 1987, 1989, 1990; McLennan et al., 1995;
Cullers, 2000; Cullers y Podkovyrov, 2000; Bhat y Ghosh, 2001; Condie
et al., 2001; Chakrabarti ef al., 2007a, 2017b; Armstrong-Altrin et al.,
2013; Madhavaraju, 2015; Madhavaraju et al., 2016a; Ramachandran et
al., 2016), para evaluar procesos de meteorizacion y paleoclimas (e.g.
Nesbitt y Young, 1982; Sreenivas y Srinivasan, 1994; Fedo et al., 1995,
1996; Madhavaraju et al., 2016b) , para reconstruir los marcos tectd-
nicos de las cuencas (e.g. Bhatia, 1983; Bhatia y Crook, 1986; Roser y
Korsch, 1986, 1988; McLennan et al., 1990; Verma y Armstrong-Altrin,
2013, 2016), para cuantificar los procesos secundarios como metaso-
matismo postdepositacional (e.g. Fedo et al., 1995, 1997) y también
para evaluar la composicion y evolucion de la corteza continental (e.g.
Taylor y McLennan, 1985, 1995; Gibbs et al., 1986; McLennan y Taylor,
1991; Condie, 1993; Lahtinen, 2000; Rudnick y Gao, 2004).

La geoquimica de las lutitas ofrece mayor informacién con relacion
a la composicion promedio de la corteza continental superior, ya que
conserva la firma original de su procedencia e historia diagenética
(Baioumy e Ismael, 2010; DaPeng et al., 2012; Mondal et al., 2012;
Spalletti et al., 2012). La composicién geoquimica de las rocas clasticas
de grano fino ha sido usada para interpretar las caracteristicas de laroca
fuente, la intensidad de la meteorizacion y el marco tecténico (Bhatia,
1983; Taylor y McLennan, 1985; Bhatia y Crook, 1986; Feng y Kerrich,
1990; Cullers, 1994; Madhavaraju y Lee, 2010; Armstrong-Altrin et al.,
2013; Madhavaraju, 2015; Tobia y Shangola, 2016).

El presente articulo presenta el estudio geoquimico de 6xidos
mayores llevado a cabo en rocas siliciclasticas de las columnas de la
Formacién Morita en las dreas de Sierra Anibacachi y Rancho Bufalo

en el noreste de Sonora, México (Figura 1). La Formacién Morita es
parte del Grupo Bisbee (Ransome, 1904) y los objetivos principales
de este trabajo son interpretar las variaciones en las condiciones de
meteorizacion del drea fuente que dieron origen a los sedimentos que
componen a la Formacion Morita, asi mismo, inferir el marco tectonico
de las rocas de las regiones de procedencia.

ESTRATIGRAFIA

Las formaciones sedimentarias que componen al Grupo Bisbee
estan bien expuestas en el noreste de Sonora y el sureste de Arizona.
Desde la base ala cima, las rocas del Grupo Bisbee se conforman por el
Conglomerado Glance, Formacién Morita, Caliza Mural y Formacién
Cintura. Estas unidades fueron depositadas en la Cuenca Bisbee
(Dickinson et al., 1986) durante el Jurdsico Superior y el Creticico
Inferior y representan ambientes aluviales, fluviales y marinos someros.
En el noreste de Sonora, el Grupo Bisbee sobreyace discordantemente
arocas volcanicas y sedimentarias del arco continental Jurdsico Nazas
(Busby-Spera, 1988; Busby-Spera et al., 1990; Lawton y Molina-Garza,
2014) y a una secuencia Paleozoica que a su vez descansa sobre un
basamento paleoproterozoico formado por el Esquisto Pinal y por
granitos mesoproterozoicos que lo cortan (Anderson y Silver, 2005;
Page et al., 2010; Solari et al., 2017).

La Formacién Morita, objeto de este estudio, consiste en una
secuencia clastica con intercalaciones de tobas volcdnicas que fue
depositada durante el Cretécico Inferior y la forman principalmente
secuencias grano-decreciente, superpuestas, de origen fluvial com-
puestas por areniscas, limolitas, lutitas y escasos conglomerados. El
espesor total de esta formacion varfa de 280 a 1200 m en Sonora y
su estratigrafia ha sido estudiada por varios autores en diversas areas
(Taliaferro, 1933; Jaques-Ayala, 1992, 1995; Gonzélez-Ledn, 1994;
Monreal et al., 1994; Jacques-Ayala, 1995; Peryam et al., 2012). Escasos
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Figura 1. Mapa de localizacion del drea de estudio.
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estudios locales de direcciones de paleocorrientes y procedencia en las
dreas de Sierra El Chanate, Cerro de Oro y Tuape del norponiente y
centro de Sonora indican que la Formacion Morita fue depositada por
sistemas de rios meandriformes con direccién de transporte hacia el
este desde fuentes volcanicas localizadas al oeste de la cuenca Bisbee
(Gonzéilez-Ledn, 1994; Peryam et al., 2012).

Estratigrafia de la Formacion Morita en la Sierra Anibacachi

La Formacién Morita, que aflora en la parte norte de la Sierra
Anibacachi, tiene un espesor de 560 m y sobreyace abruptamente
un paquete de lodolitas-limolitas moradas con abundantes capas y
nddulos calcéreos que representan paleosuelos de la parte superior del
Conglomerado Glance (Figura 2). En su parte superior la Formacién

Sierra Anibacachi
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3460221.00m N

Metros

Morita pasa gradualmente a lutitas calcareas y calizas con bivalvos
marinos de la Caliza Mural. La Formacién Morita en esta localidad
estd formada por ciclos superpuestos de origen fluvial que tienen
espesores de 15 a 60 m (Figura 3). La parte inferior de cada ciclo se
compone de un paquete de arenisca de hasta 10 m de espesor, con base
erosiva, donde las capas mayores a 1 m de espesor tienen cominmente
estratificacion cruzada y planar. Una capa lenticular de conglomerado,
de menos de 80 cm de espesor, puede a veces estar presente en la parte
basal del ciclo. Encima de las areniscas aparecen paquetes de lutitas y
limolitas de hasta 50 m de espesor, comunmente de colores rojizos a
purpuras y con perforaciones y rastros de organismos que producen
bioturbacién local. Dentro de las lutitas y limolitas se intercalan are-
nisca de grano fino a medio, con laminacion paralela, a veces biotur-
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Figura 2. Mapas geoldgicos de las areas de Sierra Anibacachi (arriba) y Rancho Bufalo (abajo).
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Figura 3. Columna litoestratigrafica de la Formacién Morita en las secciones Sierra Anibacachi y Rancho Bufalo.
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badas que ocurren en capas de hasta 50 cm de espesor. Intercalados
dentro de las limolitas-lutitas también se tienen abundantes nédulos
calcéreos de origen pedogénico en niveles de hasta 50 cm de espesor.
Los 145 m mds superiores de esta formacion en la Sierra Anibacachi,
estan dominados por lutitas y limolitas parpuras, rojizas y verdosas,
masivas a localmente laminadas, que tienen intercalaciones de capas
lenticulares de areniscas de granos finos menores a 40 cm de espesor,
ocasionales nddulos calcéreos pedogénicos y restos de madera fosil.

Estratigrafia de la Formacion Morita en Rancho Bufalo

La Formaci6én Morita en la seccién Rancho Bufalo tiene 855 m de
espesor y se superpone a un paquete de 120 m de espesor de lutitas,
limolitas y calizas bioclasticas que a su vez sobreyace discordantemente
al Conglomerado Glance. Este paquete intermedio puede ser correla-
cionable con las formaciones equivalentes, Cerro de Oro y La Colgada
(Figura 2) que afloran en la parte suroccidental de la cuenca Bisbee
en Sonora (Peryam et al., 2012). La parte superior de la Formacién
Morita se encuentra en contacto gradacional con calizas bioclasticas
del Miembro Rancho Bifalo de la Caliza Mural.

En su parte basal la Formacion Morita consiste en un intervalo
de 5 m de espesor de areniscas de grano grueso a conglomeréticas
que graduan hacia arriba a paquetes de 10 m de espesor de lutitas-
limolitas masivas purpuras con intercalaciones menores de capas de
areniscas de grano medio a grueso (Figura 3). El resto de la formacién
lo forman ciclos fluviales superpuestos de 5 a 130 m de espesor que
consisten de capas lenticulares de conglomerados con base erosiva
que estan sobreyacidas por niveles de hasta 10 m de arenisca con
estratificacion cruzada. Estas tltimas graduan hacia arriba a paquetes
de lutitas-limolitas masivas a localmente laminadas, rojizas a purpura
y que se vuelven de colores gris a verdosos hacia la parte superior de
la formacién. Intercaladas con las lutitas-limolitas se tienen capas
lenticulares, delgadas a medianas de areniscas rojizas de grano medio
afino que presentan estratificacién cruzada planar, laminacion paralela
y escasa bioturbacién. En la parte inferior de la formacién se tienen
varias capas de tobas de ceniza que tienen espesores de hasta 20 cm.

MATERIALES Y METODOS

Durante el presente estudio se analizaron 62 muestras de areniscas,
limolitas y lutitas para determinar su composiciéon quimica en éxidos
mayores. De éstas, 35 muestras corresponden ala columna de la Sierra
Anibacachi y 27 fueron colectadas de la columna de Rancho Bufalo.
Ademas, también fueron analizadas dos muestras del Esquisto Pinal y
cuatro del granito Mestefias con el fin de caracterizar geoquimicamente
las rocas que en la region noroeste de Sonora constituyen el basamento
Proterozoico. Las muestras fueron pulverizadas en un mortero de agata
y fundidas en perlas de vidrio para el andlisis de elementos mayores.
Esta medicion se realizé por medio de la técnica de fluorescencia de
rayos-X en discos fusionados de LiBO,/Li,B,0, utilizando un espec-
trometro de fluorescencia de rayos-X Siemens SRS-3000 con un tubo
con anodo de Rh como fuente de radiacién. Los efectos de absorcion/
realce fueron corregidos usando el método de Lachance y Traill (1966),
incluido en el software SRS-3000. Se utilizé el estaindar geoquimico
JGB1 (GSJ) para determinar la calidad de los analisis quimicos. La
precision de los andlisis presenta errores inferiores al +2% para SiO,,
Fe,0;y CaO (1.24%, 0.73%, 1.52%, respectivamente) y menores al +5%
para AL,O;, MgO y Na,O (3.61%, 3.44%, 3.33%, respectivamente). Las
precisiones para MnO y P,Os presenta errores inferiores al £5% (5.27%,
7.14%, respectivamente). Un gramo de muestra fue calentada a 1000 °C
en crisol de porcelana durante 1 hora para medir la pérdida por ignicién
(LOI: Loss on ignition, por sus siglas en inglés).

RESULTADOS

Seccion Sierra Anibacachi

Las areniscas de esta seccion tienen una mayor concentracién
de SiO, (62.5 a 94.6%) que las limolitas y lutitas (56.1 a 67.7%, 49.9 a
65.8%, respectivamente). En cambio, las limolitas y lutitas tienen mayor
contenido en AL,O; (6.41 a 8.86%, 9.88 a 17.05%, respectivamente)
que los valores obtenidos en las areniscas (1.81 a 7.03%). Las arenis-
cas y lutitas muestran variaciones mas grandes en los contenidos en
CaO (0.05-15.50%; 0.63-15.35%; respectivamente) que las limolitas
(9.09-15.27%). Las areniscas y limolitas tienen contenidos mas bajos
de TiO,, MgO, Na,0 y K,O que las lutitas. Por dltimo, las areniscas,
limolitas y lutitas tienen bajo contenido de MnO y P,O; (Tabla 1). En
el diagrama de Herron (1988) Log (Fe,0,/K,0) vs Log (Si0,/AL0;),
Figura 4a, la mayoria de las muestras de areniscas caen dentro de los
campos sub-litarenita, litarenita y sub-arcosa, mientras que las muestras
de lutita se encuentran en los campos de wacka y lutita. La relacién
K,0/ALO;de las rocas sedimentarias terrigenas puede ser usada como
un indicador de la composicion original de sedimentos antiguos, por-
que dicha relacién es diferente para minerales de arcilla y feldespatos.
Continuando conla relacién anterior, el rango de valores para minerales
dearcilla es de 0.0 a 0.03 y para feldespatos el rango se encuentra entre
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Figura 4. a) Clasificacion geoquimica de areniscas, limolitas y lutitas de la
seccion Sierra Anibacachi y b) Clasificacion geoquimica de areniscas, limolitas
y lutitas de la seccion Rancho Bufalo utilizando diagramas Log(SiO,/ALO;) -
Log(Fe,0,/K,0) (Herron, 1988).
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Tabla 1. Datos de dxidos mayores (wt%) para areniscas, limolitas y lutitas de la Formacién Morita en la seccién Sierra Anibacachi.

Muestra SiO, TiO, ALO; Fe,0, MnO MgO CaO Na, O K,O0O P,0, PPC Suma CIA PIA ICV SiO)/ K,0/ K,O/ ALO)/
Nuam. AlLO; AlLLO; Na,O TiO,
Arenisca
SAMF2  90.07 0.17 566 041 003 039 011 157 031 0.06 1.2 9999 64 66 0.53 159 0.06 0.2 33
SAMF5 81.68 0.21 5.14 0.8 0.03 0.24 5.16 0.8 0.98 0.03 4.88 99.95 58 61 1.6 15.9 0.19 1.22 24
SAMF6 69.63 035 572 129 007 033 11 048 131 0.06 9.62 99.88 66 73 2.6 12.2 023 272 16
SAMF8 74.02 0.15 475 054 008 022 985 101 0.75 0.03 8.38 99.78 54 54 2.65 15.6 0.16 0.74 33
SAMF10 81.84 0.14 482 0.62 0.05 0.21 529 2.17 0.13 0.03 4.69 99.98 40 40 1.78 17 0.03 0.06 34
SAMF11 6249 0.2 526 0.72 0.18 0.33 155 2.23 0.45 0.04 12.58 99.98 40 39 3.73 119 0.08 0.2 27
SAMF13 6853 029 535 124 009 039 11.82 091 1.06 0.04 1025 99.95 56 58 295 12.8 0.2 1.16 19
SAMF14 83.13 0.16 4.3 033 0.03 0.12 495 154 043 0.04 429 9931 44 43 1.76  19.3 0.1 0.28 27
SAMF17 77.63 0.35 7.03  2.05 0.07 0.31 4.8 1.04 1.54 0.09 5.03 99.95 58 61 144 11 0.22 1.48 20
SAMF18 88.08 0.29 521 0.32 002 0.17 1.65 1.18 0.83 0.04 213 99.92 52 53 086 16.9 0.16 0.7 18
SAMF20 86.14 0.23 44 0.8 0.04 019 321 124 0.58 0.03 311 99.97 48 48 143  19.6 0.13 047 19
SAMF22 74.65 042 6.89 2.07 0.06 0.95 5.85 0.87 1.63 0.05 6.5 99.95 60 64 1.72  10.8 0.24 1.88 16
SAMEF-23 91.95 041 4.05 0.56 001 027 032 0.02 084 0.06 1.32 99.81 80 98 0.6 22.7 0.21 34.79 10
SAMF24 68.76 034 513 1.14 009 039 1199 051 1.14 0.04 1044 9995 64 70 3.04 134 022 222 15
SAMF25 91.44 042 433 0.32 0.03 0.17 0.63 0.1 0.87 0.04 147 99.83 77 91 0.59 21.1 0.2 8.56 10
SAMF27 9436 0.13 3.69 0.15 0.01 0.13 0.05 0.01 0.42 0.02 1.04 99.99 88 99 0.24 25.6 0.11 60.29 28
SAMF28 90.3 0.31 369 047 0.05 028 149 059 05 0.04 222 9993 60 62 1 24.5 0.14 0.85 12
SAMF29 94.6 0.24 294 0.24 0.01 0.18 0.08 0.02 0.37 0.03 1.26 99.96 86 98 039 322 0.13 21.88 12
SAMF30 88.76 0.06 1.81 0.3 0.06 015 435 0.51 0.17 0.03 3.78 9998 50 49 3.09 49 0.09 0.33 31
SAMF35 88.19 037 538 123 001 087 04 1.72 028 0.04 1.23 99.73 58 59 091 164 0.05 0.17 14
Promedio 82.3 0.3 4.7 0.7 0.05 0.3 4.9 0.9 0.7 0.04 4.7 999 60 64 1.6 19.2 0.15 1.37 21
+97 +0.1 +12 +05 +0.04 +02 +475 +068 £04 +002 +36 *+02 +14 +19 +1.0 +89 +006 +2.01 <38
Limolita
SAMF1 56.13 031 842 184 0.14 1.14 1527 1.14 1.7 0.03 13.83 9993 60 64 2.56 6.7 0.2 1.5 28
SAMF4  60.28 0.42 8.86 2.68 0.07 0.39 1297 0.06 258 0.06 11.61 99.98 75 97 2.16 6.8 0.29 46.11 21
SAMF7 60.15 032 641 1.68 0.08 0.97 1485 1.11 1.24 0.05 13.03 9991 56 58 3.16 9.4 019 112 20
SAMF9 57.09 041 7.85 248 0.06 0.59 1519 0.79 1.96 0.07 13.39 99.88 62 69 2.74 7.3 025 25 19
SAMF16 63.77 0.39 8.45 2.04 0.09 0.89 10.72 1.1 2.01 0.05 1044 99.95 59 63 2.04 7.5 0.24 1.84 22
SAMF19 65.92 0.42 8.27 2.29 0.05 049 10.09 0.63 2.23  0.07 9.48 99.94 65 74 1.96 8 0.27 3.54 20
SAMF26 67.68 036 7.69 228 0.09 149 9.09 0.76 144 0.06 9.03 99.95 66 71 2.01 8.8 0.19 191 22
SAMF36 6345 048 807 282 008 177 1049 1.27 1.16 0.06 10.25 99.89 60 62 2.24 7.9 0.14 091 17
Promedio 62 0.4 8 2.3 0.08 09 12.33  0.85 1.79 0.06 11.38 99.9 63 70 2.36 7.8 022 1.90 21
+41 +006 074 £+04 +0.03 £04 +25 £039 +050 £0.01 +1.8 +£0.03 +6 =12 +042 =09 =+£0.05 £0.89 <3
Lutita
SAMF12 5845 0.68 1653 6.06 004 179 415 0.15 471 0.12 726 9995 75 96 1.06 35 028 31.21 24
SAMF15 49.87 0.39 9.89 2.84 0.14 229 1535 0.23 2.85 0.07 16.07 99.98 72 920 2.44 5 0.29 12.62 25
SAMF21 65.33 0.57 12.53 391 005 099 548 034 364 009 7.02 9996 71 88 1.2 5.2 029 10.63 22
SAMF31 63.58 0.64 15.64 4.68 0.04 25 2.6 197 266 0.14 541 99.85 63 66 0.96 4.1 0.17 1.35 24
SAMF32 65.84 082 1682 4.44 0.03 2.36 0.63 1.08 2.72 0.13 5.07  99.94 74 83 0.72 3.9 0.16 2.51 21
SAMF33 6145 0.61 1298 547 0.07 257 557 249 136 013 728 9996 57 58 1.4 4.7 0.1 0.55 21
SAMF34 6533 076 17.05 476 003 179 049 041 392 0.07 535 9994 75 90 0.71 38 0.23 951 22
Promedio 61 064 14 459 006 2.04 489 095 312 0.11 7.64 999 70 82 1.21 43 0.22 9.77 23
+53 +£0.13 +253 £09 +0.04 £052 *+4.68 +0.86 +1 +£003 £356 +0.04 +6 +13 +055 +0.6 =0.07 +983 +2

0.3y 0.9 (Cox y Lowe, 1995). En el presente estudio, los valores de la
relacion varian de la siguiente manera: areniscas 0.15+0.06 (n=20),
limolitas 0.22 £ 0.05 (n=_8) y lutitas 0.22 + 0.07 (n=7). Estos valores
sugieren que esas muestras contienen cantidades considerablemente
mayores de minerales de arcilla que de minerales portadores de K tales
como feldespatos potdsicos y micas.

Secciéon Rancho Bufalo

Tanto las areniscas como las limolitas de esta seccién tienen una alta
concentracion de SiO, (74.6 a 93.4%, 74.0 a 83.0%, respectivamente). El
contenido de AL,O;es mas alto en las limolitas (9.4 a 9.9%) que en las
areniscas (3.1 a 8.9%). También, las limolitas muestran un rango mas
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amplio en su contenido de Fe,0;(0.69 a 6.53%) que las areniscas (0.46
a2.14%). Por otra parte, las areniscas muestran mayores variaciones
en contenido de CaO (0.21-6.91%) que las limolitas (0.37-1.43%). Las
areniscas y limolitas tienen mas bajas concentraciones de K,O que de
Na,O (Tabla 2). Otros elementos mayores tales como el TiO, MnO,
MgO y P,O; muestran bajas concentraciones tanto en las areniscas
como en las limolitas (Tabla 2). En el diagrama de Herron (1988), Figura
4b, que muestra el Log (Fe,0,/K,0) vs Log (SiO,/Al,O;) la mayoria
de las areniscas y limolitas caen dentro del campo de sub-litarenita,
litarenita y arena-Fe. Los promedios de la relacién K,0/ALO; de las
areniscas y limolitas estin dentro del rango de minerales de arcilla
(0.07 £0.04, n=24y 0.04 £0.03, n=3, respectivamente).
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DISCUSION

Meteorizacion

La intensidad y duracién de la meteorizacién en las rocas sedi-
mentarias se puede evaluar mediante la relacién entre los elementos
alcalinos y alcalinotérreos (Nesbitt y Young, 1982). La meteorizacién
quimica de sedimentos ocurre durante la exposicion de la roca fuente,
el transporte en sistemas fluviales y el reciclado sedimentario, donde
cada ciclo involucra meteorizaciéon quimica adicional (Pollack, 1961;
Franzinelli y Potter, 1983; Johnsson et al., 1991; Nesbitt et al., 1996). Los
efectos de la meteorizacion quimica durante el transporte en sistemas
fluviales han sido estudiados por diversos autores (Pollack, 1961; Breyer
y Bart, 1978; Franzinelli y Potter, 1983; Johnsson et al., 1991; Nesbitt
et al., 1996) y dichos efectos pueden variar desde insignificantes hasta
considerables (Pollack, 1961; Breyer y Bart, 1978; Johnsson et al, 1991;
Nesbitt et al., 1996, 1997) dependiendo de la labilidad de los minerales,
el clima, la distancia de transporte y el marco tectdnico. Durante la
meteorizacion, los elementos solubles como el Na y Ca son mayormente
removidos, mientras que los elementos insolubles tales como Al son
generalmente fijados en el perfil de meteorizacion (Nesbitt et al., 1980).
Tales cambios quimicos son transferidos al registro sedimentario (e.g.,
Nesbitt y Young, 1982; Wronkiewicz y Condie, 1987), proporcionando
por lo tanto una herramienta util para el monitoreo de las condiciones
de meteorizacion del area fuente.

Nesbitt et al. (1997) propusieron un perfil de meteorizacién
idealizada dividido en cuatro zonas mineralégicas. La zona IV, inme-
diatamente por encima de la roca madre, es la menos alterada, con
abundancia de fragmentos de roca, cuarzo y feldespatos y ausencia de
minerales de arcilla. La zona III se caracteriza por la abundancia de
granos de cuarzo y feldespatos, sin embargo se tienen, cantidades apre-
ciables de fragmentos de roca y pequefias cantidades de minerales de
arcilla complejos (esmectita, vermiculita e ilita). La zona II, consiste en
una abundancia de cuarzo y feldespatos, abundante mineral de arcilla
y cantidades menores o ausencia de fragmentos de roca. Por tdltimo,
la Zona I, la cual es la zona mas intensamente meteorizada contiene
abundante cuarzo, en segundo lugar minerales de arcilla y en tercero
los productos de alteracién (oxihidroxidos de Al Fe y Ti).

Diversos autores han propuesto varios tipos de indices de meteori-
zacion (Nesbitt y Young, 1982; Harnois, 1988), que son generalmente
usados por varios investigadores (Madhavaraju y Ramasamy, 2002;
Armstrong-Altrin et al., 2004; Nagarajan et al., 2007; Bhuiyan et al.,
2011; Sun et al., 2012; Zaid, 2012; Madhavaraju, 2015; Ramachandran
et al., 2016). El indice quimico de alteracién (CIA: Nesbitt y Young,
1982) es ampliamente usado en los estudios geoquimicos sedimentarios
para evaluar el grado de meteorizacion en el drea fuente. Este valor se
calcula utilizando las proporciones moleculares de la siguiente formula:
CIA = [ALO;/ (Al,05+Ca0O*+Na,0+K,0)] x 100 (Nesbitt y Young,
1982), donde CaO* representa la cantidad de éxido de calcio en los
minerales silicatados solamente. En el presente estudio, hemos seguido
el método propuesto por McLennan (1993) para calcular el CaO*, en
el cual los valores de CaO son aceptados solamente si CaO < Na,O'y,
cuando CaO > Na,0, se asume que el contenido de CaO equivale al
de Na,O y por lo tanto se sustituye con el mismo.

Las areniscas de la columna de la Sierra Anibacachi muestran las
variaciones mas grandes en los valores CIA (40-88), mientras que las
limolitas y lutitas varian de 56 a 75 y 57 a 75, respectivamente (Tabla
1). Las rocas no meteorizadas exhiben valores CIA de 50 (Nesbitt y
Young, 1982) y el valor CIA para el rango promedio de las lutitas es
de 70-75 (Taylor y McLennan, 1985). Por otra parte, las rocas fuente
intensamente meteorizadas muestran valores de 100 para CIA y la
composicion mineral tiende hacia caolinita o gibbsita (Nesbitt y
Young, 1982). El valor PIA (Indice de alteracién de plagioclasas) es

otro indice para inferir la intensidad de meteorizacién quimica de
las rocas sedimentarias y puede ser calculado de la siguiente manera:
PIA = [(ALO;- K,0)/(AL,O;+Ca0*+Na,0-K,0)] x 100, utilizando la
proporcién molecular de cada éxido mencionado (Fedo et al., 1995).
Los valores PIA de las muestras de areniscas, limolitas y lutitas estu-
diadas varian entre 39y 98 (arenisca: 39-98, promedio: 64+19, nimero
de muestras, n=20; limolita: 58-97, 70+12, n=8; lutita: 58-96, 82+13,
n=7; Tabla 1). Las amplias variaciones observadas en los valores CIA
y PIA de las areniscas indican una baja a intensa meteorizacién en el
area fuente, mientras que los valores CIA para las limolitas y lutitas
muestran una intensidad moderada de meteorizacién quimica en el
area fuente. Los valores PIA de las areniscas, limolitas y lutitas son
consistentes con los valores CIA.

Por otro lado, para las rocas de la columna de Rancho Bufalo los
valores CIA varian de 44 a 91 (arenisca: 44-78; excepto una muestra
(RBMF22) la cual presenta un alto valor CIA de 91; limolitas: 50-69;
Tabla 2). De igual manera, las areniscas muestran mayores variaciones
en sus valores de PIA (44-96, 60+14, n=24) que las limolitas (50-71,
59+11, n=3; Tabla 2), lo que sugiere que el area fuente de la cual se
derivaron las areniscas fue meteorizada con una intensidad baja a
intensa, mientras que las limolitas recibieron sedimentos de una roca
fuente afectada con un bajo a moderado grado de meteorizacién
quimica.

Ademas, un diagrama ternario Al,0;-CaO* + Na,0-K,O (A-
CN-K) es una herramienta importante con la cual examinar la ten-
dencia de meteorizacién de las rocas fuente cuando la corteza superior
esta dominada por rocas ricas en plagioclasas y feldespatos-K y sus
productos de la meteorizacién (Nesbitt y Young, 1984, 1989; Fedo et
al., 1995). Durante la etapa inicial de meteorizacidn, los sedimentos
derivados de las rocas igneas se representan principalmente a lo largo
delalinea A-CN porque el Na,O y CaO son lixiviados de la plagioclasa
disuelta anteriormente. La destruccién de la plagioclasa ocurre cuando
se tiene un incremento en la intensidad de meteorizaciéon de las rocas
del drea fuente, que conduce a la pérdida significativa de Cay Na dela
plagioclasa y los sedimentos resultantes se representan principalmente
paralelos al eje A-K. En el diagrama A-CN-K (Figura 5a), la mayoria
de las areniscas y limolitas asi como algunas lutitas de la seccion Sierra
Anibacachi siguen una tendencia lineal (linea discontinua en la Figura
5a) paralela al plano A-CN, mientras que la mayoria de las lutitas
y escasas arenisca se grafican paralelas al plano A-K y solo algunas
muestras de arenisca se aproximan hacia “A” (Figura 5a). La mayoria
delas areniscas y de las limolitas forman un grupo definido, mientrasla
mayoria de las lutitas constituyen un grupo reducido y escasas muestras
de arenisca forman otro grupo. Una gran parte de nuestras muestras
de arenisca aparecen cercanas a la linea de unién de feldespatos, su-
giriendo que las Zonas III y IV contribuyeron significantemente a los
sedimentos (vea la zona de clasificacion en Nesbitt et al., 1997). Pocas
areniscas caen cercanas al limite A-K, lo que indica una remocién de
plagioclasa producto de la meteorizacién quimica y un enriquecimiento
residual de cuarzo. Lo anterior sugiere que esas areniscas fueron princi-
palmente derivadas dela Zona II. Dos muestras de lutita se representan
ligeramente alejadas de la linea de unién de feldespatos indicando
que préacticamente ha ocurrido una minima meteorizacién quimica
y que las muestras de lutita se componen principalmente de rocas de
basamento trituradas en lugar de minerales de arcilla aluminosos. El
resto de las muestras se representan como un grupo y se localizan a lo
largo delalinea A-K, sugiriendo que las lutitas recibieron sedimentos
principalmente de las Zonas III y IV. Esto ademas, apoya la idea de
que las areniscas fueron sometidas a una intensidad de meteorizacién
quimica de baja a intensa en el drea fuente, mientras que las limolitas
y lutitas recibieron los sedimentos de rocas fuente meteorizadas con
una intensidad moderada.
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Tabla 2. Datos de 6xidos mayores (wt%) para areniscas y limolitas de la Formaciéon Morita en la seccién Rancho Bufalo.

Muestra SiO, TiO, ALO; Fe,0; MnO MgO CaO Na,0 K,O0 P,0; PPC Suma CIA PIA ICV SiO,/ K,0/ K,O/ ALO,/
Num. AlL,O; AI20; Na,O TiO,
Arenisca
RBMF1 7455 028 857 214 0.09 062 473 29 1.12  0.05 5.1 100.14 44 44 1.38 8.7 0.13  0.39 31
RBMF3 84.01 0.13 719 099 006 031 173 328 049 004 195 100.16 44 44 097 117 0.07 0.15 54
RBMF4 8324 036 877 1.7 002 035 031 4 033 005 09 100.02 54 54 0.81 9.5 0.04 0.08 25
RBMF5 8555 0.19 729 155 002 033 041 314 048 002 1.05 100.02 53 53 0.84 117 0.07 0.15 39
RBMF6 8439 022 804 091 003 055 088 315 036 003 166 10021 53 53 0.76 10.5 0.04 0.11 37
RBMF8 82.71 0.13 892 156 0.04 052 0.76 285 051 0.03 214 100.16 57 58 0.71 9.3 0.06 0.18 70
RBMF10 79.56 0.12 7.3 085 0.15 0.19 4.09 422 0.04 0.02 3.57 100.1 - 34 1.32 109 0 0.01 59
RBMF12 85.69 0.04 765 1.17 001 055 035 203 055 003 19 99.96 63 64 061 11.2 0.07 027 212
RBMF13 8392 022 818 181 002 054 028 294 081 002 141 100.15 57 58 0.81 103 0.1 0.28 37
RBMF14 90.15 0.09 519 062 001 037 031 1.8 031 002 12 100.15 56 57 069 174 0.06 0.16 60
RBMF15 87.53 0.18 6.5 0.81 0.01 0.72 042 145 0.37 0.04 2.14 100.17 65 66 0.61 135 0.06 0.26 37
RBMF16 85.69 0.21 565 1.01 003 064 182 118 073 004 285 99.84 55 56 099 15.2 0.13  0.62 27
RBMF17 90.85 0.17 473 068 0.01 04 024 1.18 021 0.18 142 100.07 65 65 0.61 19.2 0.04 0.18 29
RBMF18 88.52 0.02 3.15 046 006 035 3.1 097 021 0.02 3.14 100 48 48 1.64 28.1 0.07 022 175
RBMF19 80.53 0.18 396 075 0.08 054 643 1.2 041 0.04 592 100.03 47 47 242 203 0.1 0.35 23
RBMF20 86.72 0.19 4.11 0.84 0.05 057 294 093 04 0.04 3.34 100.12 54 55 1.44 21.1 0.1 0.43 22
RBMF21 84.16 0.3 377 047 006 037 487 0.09 0.71 0.04 526 100.1 78 91 1.82 223 0.19 8.24 12
RBMF22 9338 0.17 347 073 004 035 021 005 0.16 0.03 149 100.09 91 96 049 269 0.05 349 21
RBMF23 76 027 55 128 0.09 124 691 082 068 0.05 73 10014 62 64 2.05 138 0.12 0.83 20
RBMF24 79.12 043 424 096 006 072 679 047 038 005 6.82 100.04 68 71 231 187 0.09 0.8 10
RBMF25 81.32 0.28 509 191 006 175 38 0.9 0.3 0.04 4.69 100.11 61 62 1.77 16 0.06 0.33 18
RBMF26 80.65 044 484 1.6 0.07 176 519 0.76 0.18 0.04 5.6 101.12 64 65 2.07 16.7 0.04 024 11
RBMF28 89.14 0.24 374 118 008 067 171 001 0.15 0.06 317 100.14 53 53 1.08 239 0.04 154 16
RBMF29 82.06 0.25 3.14 072 0.04 059 634 036 015 003 647 100.15 70 71 2.7 26.2 0.05 042 12
Promedio 84.1 021 5.7 1.11  0.05 062 269 170 042 0.04 335 100.1 59 60 129 164 0.07 0.31 30
+0.11 £0.11 £19 +0.48 +0.03 +04 +243 +129 +025 +0.03 +2.03 +02 +11 +14 +066 =6 +0.04 +022 +17
Limolita
RBMF7 7854 033 978 253 005 1.02 145 265 069 0.03 3.03 100.1 56 56 0.89 8 0.07 0.26 30
RBMF9 83.03 0.17 935 069 001 024 037 532 005 003 0.83 100.09 50 50 0.73 8.9 0.01 0.01 55
RBMF11 74 044 986 653 0.1 209 129 117 0.54 0.03 4.04 100.09 69 71 1.23 7.5 0.05 0.46 22
Promedio 78.5 031 9.6 325 005 1.12 1.03 305 043 0.03 263 100 58 59 0.95 8.1 0.04 0.24 36
+45 +0.14 £02 +29 +0.04 £093 +058 +2.1 +033 +00 +1.64 +0.01 £10 +11 +026 0.7 +£0.03 £023 + 17

De igual manera, en el diagrama A-CN-K, la mayoria de las are-
niscas y limolitas de la seccion Rancho Bufalo forman una tendencia
lineal (linea discontinua) paralela al plano A-CN, en el cual una muestra
se aproxima al vértice “A” (Figura 5b). Muchas areniscas y sélo dos
limolitas se ubican cerca de la linea de unién de feldespatos, mientras
que algunas areniscas y solamente una limolita se representan alejadas
delalinea de unién de los feldespatos, lo que indica que esas areniscas
y limolitas son derivadas principalmente de las Zonas III y IV del perfil
de meteorizacion en la region de origen (e.g., Nesbitt et al., 1997). Una
arenisca se representa cerca al vértice “A”, indicando que tiene aporte
de la Zona II. Esto sugiere que esas areniscas y limolitas recibieron
sedimentos de rocas fuente afectadas por un grado de meteorizacién
quimica de bajo a moderado (excepto la muestra RBMF22, la cual
presenta un intenso grado de meteorizacién quimica).

El diagrama ternario A-CN-K puede ser usado para ilustrar los
valores CIA graficamente, para inferir la composicion de las rocas del
area fuente, la intensidad del metasomatismo-K postdepositacional y
para evaluar el rol de meteorizacién estdtica y no estatica (Nesbitt y
Young, 1984; Fedo et al., 1995; Nesbitt et al., 1996, 1997). En el presente
estudio, las rocas siliciclasticas de ambas secciones muestran valores
CIA bastante variables y también exhiben una importante dispersién a
lo largo de la tendencia de meteorizacion proyectada. Tal meteorizacion
no uniforme es tipica de un estado de condiciones no estaticas, lo que
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indica un tectonismo activo que permite la erosién de todas las zonas
dentro del perfil de meteorizacion desarrolladas sobre la roca fuente
(e.g., Nesbitt et al., 1997).

La intensidad de la meteorizacién quimica puede ser inferida
utilizando el Indice Quimico de Variabilidad (ICV por sus siglas
en inglés; Cox et al., 1995). Durante la meteorizacion quimica, el
contenido de alimina se incrementa y simultaineamente el contenido
de materiales ferromagnesianos disminuye. Por lo tanto, estos dos
pardmetros proporcionan la informacidn respecto a la madurez de las
rocas sedimentarias. La madurez de las rocas sedimentarias se calcula
utilizando los valores ICV (ICV = (CaO + Na,O + Fe,0; + MgO + MnO
+Ti0,)/AL,O;) (Cox et al., 1995). El intervalo y promedio de lo valores
ICV paralas areniscas, limolitas y lutitas de la Sierra Anibacachi varian
significantemente (0.24-3.73, 1.64+1.04, n=20; 1.96-3.16, 2.36+0.42,
n=8; 0.71-2.41, 1.21+0.55, n=7; respectivamente). En cambio, los
valores ICV para las areniscas y limolitas de la seccién Rancho Bufalo
tienen un rango entre 0.49-2.70 (1.29+0.66, n=24) y entre 0.73-1.23
(0.95+0.26, n=3), respectivamente. Las rocas siliciclasticas de estas dos
secciones muestran grandes variaciones en los valores ICV, indicando
que sus rocas siliciclasticas son composicionalmente de caracter
inmaduro a maduro. Las rocas sedimentarias con tales variaciones
amplias en valores ICV se encuentran principalmente en los campos
tecténicamente activos (Cox et al., 1995), donde los sedimentos
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Figura 5. a) Diagrama A-CN-K mostrando la tendencia de meteorizacién de
areniscas, limolitas y lutitas de la seccién Sierra Anibacachi, y b) Diagrama
A-CN-K mostrando la linea de meteorizacién de areniscas y limolitas de la
seccion Rancho Bufalo de la Formacién Morita (Nesbitt y Young, 1982) A:
AL O3 CN: CaO’ + Na,0; K: K,O (proporciones moleculares). Esquisto Pinal
y Granito Mestafias (este estudio), Basalto y datos de UCC de Condie, 1993.

pueden ser derivados de varias zonas que contienen sedimentos
inmaduros a maduros. Eso no permiti6 que los sedimentos perdieran
elementos solubles y que los minerales primarios, como feldespato, se
transformaran en arcillas ricas en aluminio. Por lo tanto, los sedimentos
resultantes tienen valores ICV muy altos (e.g., Mondal et al., 2012).
Los datos presentados aqui sugieren que las rocas sedimentarias con
mayores valores ICV derivaron principalmente de la Zona IV del perfil
de intemperismo de la region fuente.

Marco tecténico

La petrografia y geoquimica de las rocas clasticas se ha utilizado
comuinmente para discriminar los ambientes tecténicos de cuencas
antiguas (Dickinson y Suczek, 1979; Maynard et al., 1982; Bhatia,
1983; Dickinson et al., 1983; Roser y Korsch, 1985, 1986, 1988; Taylor
y McLennan, 1985; Bhatia y Crook, 1986; McLennan y Taylor, 1991;

Girty et al., 1993; Spalletti et al., 1991, 1992; McLennan et al., 1993;
Murray, 1994). Sin embargo, numerosos investigadores han expresado
serias dudas sobre la posibilidad de discriminar los marcos tecténicos
a partir del uso de datos geoquimicos (e.g., Ryan y Williams, 2007;
Pe-Piper et al., 2008) debido a los diversos factores considerados, tales
como la litologia, ambiente tectdnico, clima, relieve y la pendiente del
area fuente.

Bhatia (1983) y Roser y Korsh (1986) han propuesto diversos
diagramas como TiO, vs Fe,0;+MgO Al O,/SiO, vs Fe,0,+MgO y
K,0/Na,O vs SiO, para identificar los ambientes tecténicos de cuencas
desconocidas. Esos diagramas son extensamente usados, pero no inte-
gran analisis estadisticos logicos de datos composicionales (Thomas y
Aitchison, 2005; Agrawal y Verma, 2007; Verma, 2010, 2012; Verma
y Armstrong-Altrin, 2013) y diversos autores han expresado preocu-
pacion sobre la posibilidad de discriminar marcos tectonicos a partir
de los datos geoquimicos (e.g., Ryan y Williams, 2007; Pe-Piper et al.,
2008; von Eynatten y Dunkl, 2012). Los diagramas de discriminacién de
marco tecténico propuestos por Bhatia (1983) y Roser y Korsch (1986)
fueron evaluados por Armstrong-Altrin y Verma (2005) y se obtuvo
que la relacion de éxito para los diagramas es muy bajo. Varios autores
han expresado la desventaja de esos diagramas discriminatorios tradi-
cionales para rocas silisiclasticas (e.g., Weltje, 2006, 2012; Caja et al.,
2007; Borges et al., 2008; Armstrong-Altrin, 2009; Blanco et al., 2011;
Guo et al., 2011; Caracciolo et al., 2012; Ghosh et al., 2012; Zaid, 2012).

Verma y Armstrong-Altrin (2013) propusieron dos nuevos dia-
gramas de funcién discriminante basados en contenidos de éxidos
mayores de sedimentos siliciclasticos para discriminar ambientes
tectonicos de arcos de islas o continentales, rift continental, y en am-
bientes de colision. Estos diagramas incluyen la discriminacion tectd-
nica basada en rocas con alto silice [(SiO,).q = 63%-95%] y bajo silice
[(SiO;).4 = 35%-63%] y fueron elaborados con base en datos publi-
cados de rocas siliciclasticas del Nedgeno-Cuaternario de ambientes
tectonicos conocidos, aplicando la conversion alog.de los 10 elementos
mayores utilizando SiO, como el comtin denominador, y el anélisis
discriminante lineal de estas conversiones. Los valores para (SiO,)
adj se obtienen al recalcular el contenido de SiO, cuando al total de la
muestra se le resta el valor de LOI.

En el presente estudio, las rocas siliciclasticas de la Sierra Anibacahi
y Rancho Bufalo muestran valores mayores a 63% de SiO,,q. Por lo
tanto, se usaron los diagramas de funcion discriminante basados
en alto silice con el fin de identificar los ambientes tecténicos de la
Formacion Morita. En este diagrama (Verma y Armstrong-Altrin,
2013) (Figura 6a), la mayoria de las areniscas, limolitas y lutitas de
la Sierra Anibacachi se encuentran en el campo de colision aunque
algunas areniscas caen en los campos de arco y rift y otras de limolitas
caen en la campo de rift (Figura 6a). Igualmente, para las areniscas y
limolitas de la seccion Rancho Bufalo se utiliza el diagrama de funcién
discriminante basado en alto silice y la mayoria de ellas se grafican en
el campo de arco (Figura 6b). Sin embargo, algunas areniscas caen
dentro del campo de colision.

Los resultados obtenidos de los diagramas de funcién discriminan-
te propuestos por Verma y Armstrong-Altrin (2013) son consistentes
con la evolucidn tectdnica regional del rea de estudio. La mayoria de
las muestras de la Sierra Anibacachi se representan en el campo de co-
lision, sin embargo, algunas muestras se grafican en los campos de arco
y rift. Por otra parte, la mayoria de las muestras de la secciéon Rancho
Bufalo se representan en el campo de arco y unas pocas muestras en el
campo de colision. Esto sugiere que las rocas siliciclasticas colectadas
de la Sierra Anibacachi y Rancho Bufalo recibieron sedimentos en
varias proporciones de diferentes marcos tectonicos.

Como se menciond anteriormente, la mayoria de las muestras dela
Sierra Anibacachi grafican en el campo de colision, cuyos sedimentos
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Figura 6. a) Diagrama discriminante de funcién multidimensional para ro-
cas clasticas de alto silice (areniscas, limolitas y lutitas) de la Seccién Sierra
Anibacachi, y b) Diagrama discriminante de funciéon multidimensional para
rocas clasticas de alto silice (areniscas y limolitas) de la Secciéon Rancho Bufalo
(Verma and Armstrong-Altrin, 2013). El subindice ,, en DF1 y DF2 representa
el diagrama de alto silice basado en relaciones loge de elementos mayores. Las
ecuaciones de funcion discriminatoria son DF1 . rist-conpmi = (-0.263 x In(TiO,/
Si0,),g) + (0.604 x In (ALO/Si0,),g) + (-1.725 x In(Fe,05/810,),) + (0.660 x
In(MnO/SiO,),g) + (2.191 x In(MgO/ Si0,),4) + (0.144 x In(CaO/ $i0,),) +
(-1.304 x In(Na,O/ Si0,),q;) + (0.054 x In(K,0/ Si0,),y;) + (-0.330 x In(P,0s/
$i0,)ag) + 1.588. DF2(sepiconm = (-1.196 X In(TiOy/ Si0,),g) + (1.604 x
In(ALOs/ SiO;),g) + (0.303 x In(Fe,05/Si0,),q;) + (0.436 x In(MnO/ Si0,),4)
+(0.838 x In(MgO/ Si0,),4) + (-0.407 x In(CaO/ Si0,),q) + (1.021 x In(Na,O/
$i0,)ug) + (-1.706 X In(K,0/S10,),4) + (-0.126 X In(P,05/ Si0,),) - 1.068.

fueron probablemente derivados de afloramientos del Esquisto Pinal
Precambrico (Condie y DeMalas, 1985) e intrusivos asociados. Los
granitoides Permo-Tridsicos de origen de arco magmatico continen-
tal estan expuestos en las areas de Sierra Pinta, Sierra Los Tanques
y Sierra San Francisco (Arvizu et al., 2009; Arvizu, 2012). Las rocas
Proterozoicas formadas en un marco de arco continental estan bien
expuestas en el Bloque Caborca (Iriondo et al., 2004) y pueden ser
consideradas como una de las rocas fuentes de las Formacion Morita.
Ademds, algunas muestras de la Sierra Anibacachi grafican en el campo
de rift (Figura 6a) y sus sedimentos probablemente fueron derivados de
las rocas igneas que en el norte de Sonora son parte del arco magmatico
continental de edad Jurasica (Anderson y Silver, 2005; Rodriguez-
Castafieda y Anderson, 2011; Lawton y Molina-Garza, 2014).

CONCLUSIONES

Se analizaron 6xidos mayores de muestras de areniscas, limoli-
tas y lutitas de la Formacién Morita para inferir las condiciones de
meteorizacién y ambientes tecténicos de las rocas de origen. En el
diagrama de Herron (1988) Log (Fe,0,/K,0) vs Log (Si0,/AL0;), las
rocas siliciclasticas se ubican en los campos de sub-litarenita, litarenita,
sub-arcosa y arenas-Fe. Las areniscas de la Sierra Anibacachi indican
valores de CIA y PIA de una meteorizacién quimica de baja a intensa
del drea de aporte, mientras que para limolitas y lutitas los valores de
CIA muestran una meteorizacion quimica moderada del drea de aporte.
En el diagrama A-CN-K, muchas areniscas de la Sierra Anibacachi se
ubican cerca de lalinea de union de feldespatos, mientras que algunas
areniscas y todas las limolitas se ubican lejos de la linea de uni6n de
feldespatos, sugiriendo que la Zona III y Zona IV contribuyeron sig-
nificativamente con los sedimentos. El que pocas areniscas se ubiquen
en el limite A-K sugiere que estas areniscas fueron principalmente
derivadas de la Zona II. También apoya que las areniscas hayan sufrido
meteorizacion quimica baja a intensa en el drea de aporte, mientras
que las limolitas y lutitas han recibido materiales de rocas moderada-
mente meteorizadas del drea de aporte. Igualmente, los valores de CIA
y PIA en areniscas de la seccién Rancho Bufalo sugieren que fueron
derivadas de un 4rea de aporte con meteorizacién baja a intensa, sin
embargo, las limolitas recibieron sedimentos de la roca de origen con
una meteorizacion quimica de baja a moderada. Del mismo modo, en
el diagrama A-CN-K muchas areniscas y dos muestras de limolitas se
ubican cerca de la linea de union de feldespatos, mientras que algunas
areniscas y una limolita se ubica lejos de dicha linea indicando que estas
areniscas y limolitas fueron derivadas principalmente de la Zona IIl y
Zona IV del perfil de meteorizacion en el drea de origen. Lo anterior
sugiere que estas areniscas y limolitas recibieron materiales de rocas
afectadas por una meteorizacion quimica de un grado bajo a moderado.

Se utilizaron diagramas discriminatorios tecténico multidimensio-
nales para interpretar los ambientes tectonicos de las rocas de origen.
Las areniscas de la Sierra Anibacachi se ubicaron en los campos de arco,
rift y colision del diagrama discriminatorio tecténico multidimensio-
nal, mientras que limolitas se ubican en los campos de rift y colision,
y lutitas en el campo de colisién. Igualmente, la mayoria de areniscas
y limolitas de la seccién Rancho Bifalo se ubican en el campo de arco,
mientras que algunas areniscas se ubican en el campo de colisién. Los
resultados obtenidos de los diagramas discriminatorios tecténicos
multidimensionales son consistentes con la evolucién tectdnica re-
gional del drea de estudio.
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