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ABSTRACT
A morphometric analysis using Geographic Information System 

and Remote Sensing tools was performed to study the Agua Negra 
River basin, in the Central Andes of western Argentina. Well-delineated 
drainage basin boundaries are a critical factor in numerous natural re-
sources studies such as flood assessment, water-usage, basin protection, 
preservation, planning, and resources management. In spite of their 
advantages, morphometry and automatic delineation of basins have 
rarely been applied in western Argentina. Through such an approach, 
the current study has successfully used computer-assisted methods and 
digital elevation models to delineate 17 basins through which a section 
of International 150 road passes. The resulting automated delineations 
were later compared with digital-manual delineations made with digital 
satellite imagery and topographic maps. The computer-assisted deline-
ation compared very well to the digital-manual delineations, generally 
following drainage divides. The work load (including reprocessing and 
editing) was sharply decreased with the DEM computer-assisted de-
lineating method, because digitally derived polygonal sub-basins areas 
were delineated in shorter times than those of the conventional manual 
method. Statistically, the absolute difference between computer-assisted 
and manually-derived basin area delineations was 5.29 percent, in aver-
age, on a range of 0.50 – 13.83 percent. In addition, a peak discharge 
analysis has been done as well. The slight differences in some results 
were irrelevant, when realizing the amount of resources and time saved 
with the automated techniques. 
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RESUMEN

Se presenta un análisis morfométrico de cuencas en los Andes 
Centrales del oeste de Argentina, mediante el uso de Sistemas de 
Información Geográfica y sensores remotos. La correcta identificación 
de cuencas resulta prioritaria en numerosos estudios como el manejo 
de inundaciones, manejo de aguas, protección de cuencas, preservación 
y planificación de recursos hídricos. Si bien el análisis automático de 
cuencas es una herramienta de uso común, no se es muy aplicado en 

estudios de cuencas Argentinas. En el presente estudio se han delineado 
exitosamente 17 cuencas mediante el método automático y modelos di-
gitales de elevación (MDE), en una sección de la ruta International 150. 
Estas 17 cuentas delineadas se compararon posteriormente con aquellas 
cuencas delineadas manualmente. La delineación automática se compara 
muy bien con las delineaciones manuales, generalmente siguiendo las 
divisorias de agua, además mediante el método automático se reduce 
notablemente la carga de trabajo incluido el reprocesamiento y la edi-
ción. Estadísticamente, la diferencia absoluta entre las áreas delimitadas 
automáticamente y derivada manualmente fue del 5.29 por ciento, en 
promedio, en un rango de 0.50 a 13.83 por ciento. Finalmente, se reali-
zó un análisis de descarga máxima. Las ligeras diferencias en algunos 
resultados fueron irrelevantes, al considerar la cantidad de recursos y el 
tiempo ahorrado con las técnicas automatizadas. 

Palabras clave: delineado de cuenca; morfometría; MDE; SIG; Argentina.

INTRODUCTION

Discharge estimation of hydrological basins based on rainfall-
runoff analysis is a very frequent practice of Hydrology Engineering. 
But, also quite often, basin discharge measurements are not readily 
available for statistical analysis. This lack of information can be satis-
factorily overcomed in most instances by using basin delineation and 
drainage morphometric analyses which provide resources for describ-
ing the hydrological behavior of a basin and are a prerequisite for runoff 
modeling (Magesh et al., 2011; Thomas et al., 2012).

The conventional manually-made basin delineation method for 
large-area basins is a tedious and time-consuming job. As solution 
this situation, the advent of geographical information systems (GIS) 
tools have been developed to identify hydrologic basins using digital 
elevation models (DEM). This way, much of the traditional topographic 
map information can now be collected and processed digitally by using 
GIS-based data. The technique has been increasingly used to delineate 
river basins and to automatically extract morphometric parameters 
employed in hydrologic models. A well-known algorithm for automatic 
basin delineation is the Flow Direction Algorithm (O’Callaghan and 
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Figure 1. Location of the study area and lithological map. Image@2015CNES (SPOT 5) from Google EarthTM.

Mark, 1984), in which the flow direction follows the steepest gradient 
towards one out of eight neighbor pixels. These calculations are com-
bined with accumulated flow in order to extract the drainage network 
and to delineate the basins. Flow accumulation, in its simplest form, is 
the quantity of up-slope cells that flow into a given cell. This technique 
is built upon the premise that surface flow follows the topography. 
Morphometric analyses have been widely used for characterizing 
basins. Some recent examples are: Topaloglu, 2002; Moussa, 2003; 
Sreedevi et al., 2004, 2013; Srinivasa Vittala et al., 2004; Mesa, 2006; 
Esper Angillieri, 2008, 2012; Perucca and Esper Angillieri, 2011. Recent 
studies using digital GIS-derived basin are: Verstappen, 1983; Rinaldo 
et al., 1998; Farr and Kobrick, 2000; Macka, 2001; Grohmann, 2004; 
Gangalakunta, 2004; Godchild and Haining 2004; Grohmann et al., 
2007; Korkalainen et al., 2007; Yu and Wei, 2008; Hlaing et al., 2008; 
Ozdemir and Bird, 2009; Panhalkar, 2014. In addition, studies that 
compare delineation methods are: Stanton, 2001; Baker et al., 2006.

The current work aims at comparing the results from digital-
manual delineation methods with those of automated delineations 
methods using GIS, in section of the Central Andean Cordillera of 
Argentina, while focusing on morphometric and peak discharge calcu-
lations. The method presented here is easy to reproduce and applicable 
to other mountain ranges of comparable topography and environment.

STUDY AREA 

The study area comprises a sector of the Frontal Andean Cordillera, 
in the county of Iglesia, San Juan, at about 206 km NW from the 
city of San Juan, Argentina. The chosen area includes a section of 
National Road No. 150 up to the International Agua Negra pass be-
tween Argentina and Chile. It also includes the road access to the 
future international tunnel (Figure 1). The region presents a typical 
mountainous postglacial landscape, with open valleys and elevations 

ranging from 3,000 to 5,774 m a.s.l.. Despite the fact that current glacial 
activity has entered a retreating phase, the process has been considered 
an active relief modeling agent during past times. Erosive landforms 
such as cirques, glacial valleys arêtes and hanging valleys are common 
features. Some glacial accumulation landforms are longitudinal, basal 
and transversal moraines. Most representative periglacial landforms 
are rock glaciers, solifluction lobs, talus cones and asymmetrical val-
leys, with south-facing slopes being steeper than the north-facing ones.

Climate
Both climate and topography show notable variations along 

the length of the Andes Cordillera. In the study region, at latitudes 
30º–31ºS, the climate is Continental, cold and dry. The arid condi-
tions restrict the ice-and-snow accumulation to small patches on the 
highest peaks (Lliboutry et al., 1958). Thus called, the Dry Andes 
segment has its own local conditions, differing from those of larger 
climate zones of said latitudes. Minetti et al., (1986) using data from 
meteorological stations within the study area, and observed a re-
gional precipitation average of 150 mm per year. A negative thermal 
gradient of 0.5–1°C for each 100 m altitude climb typically results in 
higher relative atmospheric humidity and significant precipitations 
on the windward slope and lower precipitations on the leeward side. 
Slope orientation, prevailing wind direction, and sunshine angle are 
also critical factors. A specific wind pattern and higher insolation in 
certain directions produces a differentiated topographical climate. 
Temperature is above freezing point only during 4 months a year. From 
3,500 to 4,000m a.s.l. temperatures range from -18 °C to 10 °C. Above 
4,300 m a.s.l., the climate is characterized by perpetual ice, where the 
average temperature in the warmest month (January) is below 0 °C. 
Between 4,000 and 6,000 m a.s.l., precipitation occurs mainly as snow 
and hail. Below 4,000m, rain is scarce (<100 mm per year) and very infre-
quent; snow precipitation levels in the NW Andean zone of San Juan are 
low, with decreasing levels when going northward (Minetti et al., 1986). 
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Geological setting
The study area includes the Andean Frontal Cordillera, a geologi-

cal province that is characterized by several elongated mountainous 
ranges developed over a regional north-south trend. Their predominant 
formations are a series of Upper Paleozoic rocks which unconform-
ably overlie a Middle Proterozoic strata that comprises metamorphic 
rocks that include schist marbles and ultramafic rocks (Ramos, 1999) 
and highly deformed Lower Paleozoic sedimentary rocks. The oldest 
stratigraphic unit in the area is represented by carboniferous sedi-
mentary rocks, mostly composed of sandstones and lutites. This unit 
is unconformably overlain by a mesosilicic and silicic volcanic and 
igneous Permian–Lower Triassic complex which includes pyroclastic, 
subvolcanic and intrusive rocks, the latter consisting of a lower andesite 
to dacite section and an upper rhyolitic section. The sequence continues 
with dacitic, rhyolitic and tuffs of upper Oligocene–Lower Miocene 
age. Over these, lie middle Miocene andesitic to dacitic volcanic rocks. 
Modern deposits such as gravels, sands and clay, dominate the valleys 
and river beds (Figure 1).

MATERIAL AND METHODS

A topographic border for a given river basin determines the area 
in which all water volumes converge naturally towards a single given 
point. Based on the water divide line concept, the following proce-

dures and tools were used to manually delineate basins on-screen. 
Fieldwork; high resolution satellite imageries (SPOT 5 with a 2.5 m 
spatial resolution, and IKONOS with a 4 m spatial resolution) from 
Google EarthTM; digital topographic data (Aster GDEMV2) and GIS 
technology (ESRI's ArcGis 10.3).

In contrast, the same digital topographic data and GIS technology 
were used to extract basin contours automatically. The topographic 
basins limits can be calculated using the standard terrain analysis 
methods based on a DEM, which are implemented with most 
GIS software based on the algorithms of flow-direction and flow-
accumulation functions. Flow directions were then calculated with 
the eight-direction (D8) flow model which assigns the flow direction 
from each grid cell to one of its eight adjacent cells, on the direction 
with the steepest downward slope. The D8 method was introduced by 
O’Callaghan and Mark (1984). 

Each basin was delimited by the position of its pour point, which 
is placed at or near the point of minimum elevation in the basin. The 
chosen pour point for each basin is shown in Figure 2. The topographic 
drainage divide of the basin is the line of highest topographic elevations 
that brings potential surface runoff to the basin’s pour point. 

To evaluate the basin morphometry, various parameters were 
used: area (A), perimeter (P), length (L), mean width (W), maximum 
and minimum heights (H, h), main channel length (Mcl), form factor 
(Horton, 1932), elongation ratio (Schumm, 1956), sinuosity index 
(Schumm 1977), basin relief (Hadley and Schumm 1961), relief ratio 
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(Schumm, 1956) and Melton ratio (Melton, 1957) were calculated 
(Table 1 and 2). The main channel length, or longest flow path, was 
identified by Schumm (1956) as the distance measured along the stream 
channel from source to outlet points. The distance can be measured 
using the available topographic data. In GIS software, the accumulated 
cost of travelling from the source grid cell (the outlet in this case) to 
each other grid cell in the raster dataset can be easily calculated. The 
source of the longest flow path can then be selected as the cell with the 
highest cost accumulation value. The distance to the outflow profile 
was calculated using the previously calculated flow direction grid 
(Zlatanović and Gavrić, 2013).

The Generalized Rational method (Rühle, 1966) of estimating 
direct runoff from storm rainfall was chosen to estimate the peak dis-
charge. This method relates peak discharge to contributing drainage 
area, rainfall intensity for a duration equal to a watershed response 
time (time of concentration by California Culvert Practice; Department 
of Public Works, 1995), and a coefficient that represents hydrologic 
abstractions and hydrograph attenuation. The basis of the method is 
the runoff equation, Equation (1):

	  	 (1)

were Q is peak discharge (m³/s), α is a coefficient that takes into ac-
count the influence of the lower intensity of rainfall on the area, β is a 
coefficient which takes into account the reduction of runoff by the soil 
characteristics (humidity, infiltration, etc.) of the drainage channel, A is 

K
Ri   A · C ·βαQ ´=

the basin drainage area (ha), C is the runoff coefficient (dimensionless), 
R is the rainfall intensity i and K is a coefficient to standardize units.

RESULTS AND DISCUSSION

The manual digitization defined sixteen basins with varying areas 
(A), ranging from 1.78 to 57.77 km2. In contrast, seventeen basins were 
delineated using the automatic computer method. When visually com-
paring both delineation methods (Figure 2), it is apparent that certain 
differences in line placement occurred. In some cases, however, e.g. 
basins 2, 6, 8 and 11, the computer-assisted delineations were more 

Derived parameter Equation Reference

Elongation ratio Re = (4A/π)½/L (Schumm 1956)
Form factor Ff = A/L2 (Horton 1932)
Sinuosity index S = Mcl/L (Schumm 1977)
Basin relief r = H - h (Hadley y Schumm 1961)
Relief ratio Rr = Hr/L (Schumm 1956)
Melton ratio MR = Hr/A½ (Melton 1957)

Table 1. List of derived parameters, equations and references. Where: area (A), 
perimeter (P), length (L), mean width (W), maximum and minimum heights 
(H, h), main channel length (Mcl) and basin relief (Hr).

Figure 3. Comparison charts of principal morphometric parameters and peak discharge.
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hydrologically correct than the manual ones. The comparison of the 
resulting morphometric characteristics and the calculated peak dis-
charge is shown in Table 2 and Figure 3.

The comparisons between manual and automated delineations 
were quantified (Stanton, 2001) by: 1) comparing the total delineated 
area, 2) the percent “common area” of the manual delineated basins 
that was included in the computer delineated basins, 3) the percent 
area of the manual delineated basins that was underestimated by 
the computer method, and 4) the percent computer-delineated area 
extended beyond the manual drainage divide or the corresponding 
overestimate for the basins. Percent differences in area were calculated 
using absolute values of percent areas. The absolute value percent 
differences from computer-assisted and manually delineated basins 
areas averaged about 5.29 % and ranged from 0.50 to 13.83 %. The 
common area of the manual-delineated basins that was included in the 
computer-delineated basins averaged about 95.62 %. The area of the 
manual delineated sub-basins that was underestimated by the computer 
method averaged about 8.80 % and ranged from 4.28 to 12.88%. The 
computer-delineated area extended beyond the manual drainage divide 
or the corresponding overestimate of the basins averaged about 3.33 % 

and ranged from 0.35 to 7.10 %. These results indicate that the manual 
method is actually more prone to errors because it depends mainly on 
the experience and human judgment.

The shape factors, Re and Ff, show comparable values with both 
methods (Table 1). Elongation ratio (Re) and form factors (Ff) are 
important parameters in analyzing the basin shape. The estimated 
elongation ratio ranged from 0.48 to 0.93, which shows that the basins 
areas are characterized by high run off capacity along the stream flow 
path, a feature associated with high relief and steep slopes (Strahler, 
1964). The value of form factor was measured and ranged from 0.19 
to 0.68. This indicates that the basins have more elongated shape in 
nature, with the characteristic of flatter peak flow for a longer duration. 
As such, elongated basins are highly vulnerable to flood flows than 
circular-shaped basin areas. Likewise, the basin relief (Hr) and relief 
ratio (Rr) show similar values by both methods, and these parameters 
indicate the intensity of the erosion process operating on the slope of 
the basins, low infiltration, and high runoff conditions.

The basin relief (Table, 1) is also closely matched for both methods, 
showing that the overall vertical precision of the DEM is satisfactory 
for spatial analysis at this scale. The results comparisons for the main 

A 
(km2)

P 
(km)

L 
(km)

H 
(m a.s.l.)

h 
(m a.s.l.)

Mcl 
(m)

Re Ff S W 
(m)

Hr 
(m)

Rr MR Slope Q
(m3/s)

1 16.76 21.912 8.453 4,849 2,919 9,062.71 0.54 0.23 1.07 1,983.15 1,930 0.23 0.47 13.18 52.0
1 17.32 27.24 8.43 4,849 2,914 9,541.87 0.56 0.24 1.13 2,055.71 1,935 0.23 0.46 24.78 51.1
2 57.30 34.164 11.07 5,409 3,058 12,818.57 0.771 0.46 1.15 5,174.61 2,351 0.212 0.31 12.25 132.3
2 49.92 43.33 11.22 5,479 3,075 14,792.37 0.71 0.40 1.32 4,447.06 2,404 0.21 0.34 25.46 98.8
2b 7.68 19.08 6.36 4,615 3,025 7,466.88 0.49 0.19 1.17 1,207.17 1,590 0.25 0.57 22.67 27.1
3 4.22 9.46 3.99 5,360 3,390 4,012.99 0.58 0.26 1.00 1,055.30 1,970 0.49 0.96 29.47 26.9
3 4.04 12.69 4.30 5,360 3,315 4,723.83 0.53 0.22 1.10 938.16 2,045 0.47 1.02 30.39 22.8
4 7.72 14.23 5.45 5,520 3,465 5,695.97 0.57 0.25 1.04 1,415.39 2,055 0.37 0.74 22.12 37.4
4 8.04 18.17 5.31 5,527 3,468 6,255.58 0.60 0.29 1.18 1,515.62 2,059 0.39 0.73 26.21 35.9
5 2.75 7.87 3.60 5,244 3,483 3,673.75 0.52 0.21 1.02 764.50 1,761 0.489 1.06 29.20 18.3
5 2.50 10.16 3.44 5,153 3,488 3,831.19 0.52 0.21 1.11 725.06 1,665 0.48 1.05 28.68 15.8
6 2.99 9.23 3.93 5,519 3,734 4,136.64 0.49 0.19 1.05 760.51 1,785 0.45 1.03 26.93 18.1
6 2.82 10.24 3.60 5,472 3,714 3,770.40 0.53 0.22 1.05 783.71 1,758 0.49 1.05 27.69 18.3
7 20.55 21.16 7.78 6,087 3,805 8,203.35 0.65 0.33 1.05 2,641.25 2,282 0.29 0.50 17.03 74.0
7 22.12 30.23 9.01 6,169 3,687 10,911.26 0.59 0.27 1.21 2,454.78 2,482 0.28 0.53 19 61.8
8 7.15 13.06 5.19 5,554 3,752 5,443.81 0.58 0.26 1.05 1,377.38 1,802 0.34 0.67 20.30 34.7
8 7.68 20.33 6.43 5,841 3,771 7,726.84 0.49 0.19 1.20 1,194.76 2,070 0.32 0.75 21.11 28.4
9 1.77 5.74 2.42 4,796 3,792 2,404.60 0.62 0.30 0.99 734.389 1,004 0.41 0.75 24.45 14.3
9 1.55 7.62 2.35 4,815 3,785 2,735.61 0.60 0.28 1.16 661.04 1,030 0.44 0.83 24.33 11.4
10 54.82 33.68 10.92 6,193 3,821 12,984.00 0.76 0.45 1.19 5,017.48 2,372 0.21 0.32 12.53 125.2
10 55.02 43.37 11.05 6,258 3,823 14,515.72 0.76 0.45 1.31 4,975.55 2,435 0.22 0.33 21.68 111.8
11 8.39 14.51 5.69 5,646 3,855 6,103.04 0.57 0.26 1.07 1,474.53 1,791 0.31 0.62 18.30 36.8
11 8.77 19.31 6.44 5,762 3,851 7,350.70 0.52 0.21 1.14 1,361.38 1,911 0.30 0.65 24 33.1
12 2.64 7.18 2.89 5,570 4,081 2,933.98 0.63 0.32 1.01 914.66 1,489 0.51 0.91 30.99 20.0
12 2.71 9.06 3.33 5,595 4,074 3,306.15 0.56 0.25 0.99 816.05 1,521 0.46 0.92 24.1 18.8
13 7.78 13.31 4.21 5,715 4,006 4,842.30 0.74 0.44 1.15 1,847.92 1,709 0.40 0.61 23.58 41.0
13 7.93 19.46 5.27 5,745 3,989 6,186.03 0.60 0.29 1.17 1,505.10 1,756 0.33 0.62 24.1 34.2
14 3.774 8.946 3.594 5,610 4,130 3,682.29 0.61 0.292 1.024 1,049.75 1,480 0.41 0.762 24.20 23.9
14 3.47 11.90 3.77 5,611 4,098 4,391.38 0.56 0.24 1.16 919.34 1,513 0.40 0.81 24.09 19.2
15 49.802 30.892 8.707 5,749 4,115 11,853.94 0.91 0.657 1.361 5,719.08 1,634 0.19 0.23 10.81 110.3
15 51.04 40.38 8.67 5,797 4,100 13,070.26 0.93 0.68 1.51 5,882.43 1,697 0.20 0.24 23.05 102.6
16 57.773 39.636 12.80 5,242 4,073 12,589.08 0.67 0.352 0.983 4,510.90 1,169 0.09 0.15 5.23 105.7
16 58.06 44.69 13.26 5,164 4,024 15,191.85 0.65 0.33 1.15 4,379.25 1,140 0.09 0.15 22.22 83.5

Table 2. Morphometric parameters and calculated peak discharge of basins. The values of digital-manual delineations basins are shown in gray shading. Where: 
area (A), perimeter (P), length (L), mean width (W), maximum and minimum heights (H, h), main channel length (Mcl), basin relief (Hr),  Elongation ratio (Re), 
Form factor (Ff), Sinuosity index (S), Basin relief (r), Relief ratio (Rr), Melton ratio (MR).
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the traditional manual method require time, precise workmanship 
and judgments by specialists. In contrast, for the same analysis, the 
automated techniques reduce the computation to just few minutes. 
However, it should be kept in mind that the automated procedure is 
not completely foolproof and some degree of judgment and subjectivity 
may be required as well.

Finally, the results presented in this paper could be included as a 
tool when planning, designing, and managing the roads through areas 
featuring similar conditions as those of the present work. 
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