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Resumen
Muchos organismos vivos están expuestos a nanomateriales. Los efectos renales de una dosis única intravenosa (5mg/kg) de 
dióxido de titanio en ratas Wistar macho adultas fueron obtenidos analizando muestras de orina de 0-5 h, 5-24 h, 24-48 h y 
48-72 h, dando efectos tempranos signi�cativos (p < 0.05): a) Incremento de la actividad enzimática de 
γ-glutamiltranspeptidasa y dipeptidilaminopeptidasa en todos los tiempos evaluados. b) incremento de la concentración 
urinaria de sodio en todos los tiempos evaluados. c) Incremento en la concentración de glucosa y osmolaridad urinaria a las 
5-24 h, 24-48 h y 48-72 h. Por consiguiente, las nanopartículas de dióxido de titanio producen efectos relacionados con el 
tiempo en ratas macho adultas. Estos resultados pueden ser usados como biomarcadores de exposición a nanopartículas.

Abstract
Most living organisms are exposed to nanomaterials. The renal e�ects of a single and intravenous dose (5 mg/kg) of 
titanium dioxide nanoparticles to male adult Wistar rats were obtained analyzing urine samples at 0-5 h, 5-24 h, 24-48 h 
and 48-72 h, giving as the earliest and signi�cant (p < 0.05) e�ects: a) increase of the enzymatic activity of 
γ-glutamiltranspeptidase, and dipeptidylaminopeptidase at all times tested b) increase the concentration of urinary 
sodium at all times tested c) Increase the concentration of urinary glucose and the urine osmolarity at 5-24 h, 24-48 h, and 
48-72 h. Thus, the titanium dioxide nanoparticles produced time-related e�ects in adult male rats. These renal e�ects 
could be used as another biomarker of exposure to nanoparticles.
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Introduction

Natural nanoparticles (NPs) have existed in environment since 
the beginning of Earth’s history as volcanic dust, most natural 
waters, soils, and sediments; they are generated by geological 
and biological processes, and while some can be toxic, 
organisms have evolved in an environment containing them.1,2  
Nanotechnology represents the design, production and 
application of materials at atomic, molecular and 
macromolecular scales, in order to produce new nanosized 
materials. Nanomaterials are defined as materials containing 
man-made nanoparticles or having nanostructured surface 
topography. Manufactured NPs have complex colloid and 
aggregation chemistry, affected by particle shape, size, surface 
area and surface charge, as well as their adsorption properties; 
on the other hand, pH, ionic strength, water hardness, and 
organic matter alter aggregation and influence their toxicity.3-8 
Most living organisms are exposed to NPs through the 
gastrointestinal tract, the lungs, and the skin. Once into the 
body, NPs interact with macromolecules of the cell organelles, 
mainly with proteins and nucleic acids, establishing biological 
interfaces that depend on colloidal forces as well as dynamic 
biophysicochemical interactions.9

TiO2-NPs are a fine white powder, often used as pigments or 
additives for ceramics, paints, paper, plastics, food, sunscreens, 
and toothpaste.10 Thus, organisms are exposed to TiO2-NPs and 
may develop toxic effects.8, 11 To study their toxicity, they are 
administered by the oral,12 intravenous,13-15 intraperitoneal16, 17 
and inhalation18 routes in mice and rats. The toxicity of 
TiO2-NPs has mainly been studied in vitro.19-22

The main function of kidneys, in mammals, is the excretion of 
metabolic end products from the body, and the regulation of 
extracellular fluid volume and electrolyte composition.23 Their 
high blood flow, combined with their ability to concentrate 
solutes, exposes them to high concentration of xenobiotics 
present in the systemic circulation. Because of the rich blood 
supply of the kidneys, in relation to their mass, this organ is 
particularly liable to damage by toxic substances. Xenobiotics 
are physiologically concentrated in the renal tissue leading to its 
functional impairment.

Since the studies on renal effects of TiO2 nanoparticles (NPs) 
are relatively scarce, we decided to investigate the in vivo 
effects with the hypothesis that administration of a single dose 
of TiO2-NPs would produce some of the effects of these NPs, in 
the kidneys of adult male rats. These studies would help to 
reinforce assessment to the risk of exposure to living beings, 
since nanomaterials are found in the environment,24-27 in food 
and consumer products,28-32 at work,33-36 and even from implant 
release.37

Materials and methods

Animals
Male adult Wistar rats (270 ± 17g) were used and maintained in 
stainless steel cages with a 12 h light/dark regime. We used 6 
animals per experimental group (n = 6). The rats were handled 
according with the Guiding Principles in the Use of Animals in 
Toxicology.

Chemicals
γ-L-glutamyl, L-glycylprolyl, and L-alanyl p-nitroanilides were 
of analytical grade and were purchased from Sigma Chemical 
(St. Louis, MO). Titanium dioxide nanoparticles (TiO2-NPs) of 
less than 100 nm were obtained from (Sigma-Aldrich). Particle 
size and morphology were measured using scanning electron 
microscopy (JEOL LV 5900), operating at 20 kV. An image of 
the TiO2-NPs used in this study is shown in Figure 1. A stock 
suspension of TiO2-NPs was prepared in distilled water (30 
mg/mL) and, before administration, it was diluted to desired 
concentration also in distilled water. All other reagents were of 
analytical grade.

Figure 1. The SEM image with morphology and size of TiO2 
nanoparticles (56000x).

Experimental Design
Treatment. The rats were divided in two groups: one group was 
treated with a single and intravenous dose of TiO2-NPs (5 
mg/kg of body weight) and other group with an equivalent dose 
of sodium chloride (control rats). The dose used in our study (5 
mg/kg of body weight) and the administration route 
(intravenous) are the same as used in other study in 2008,38 and 
is equivalent to the 8.5% of the Letal dose 50, also by the 
intravenous route for rats.39,40 The highest concentration of 
TiO2-NPs was found in liver, spleen, lung and kidney at 24 
hours after intravenous injection, and returned to control values 
by day 14 (kidneys).38 
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The groups were kept in metabolic cages with food and water ad 
libitum, and at room temperature (24 ± 1 °C). The urine was 
continuously collected, in vessels attached to the metabolic 
cages, from 0 to 5 h, from 5 to 24 h, from 24 to 48 h, and from 
48 to 72 h. The sampling times were selected mainly to evaluate 
renal biomarkers of early damage. Furthermore these sampling 
times are based in the high concentration of TiO2 NPs that the 
rats kidneys present at 24 hours post-administration i.v.38 
Biochemical assays. All parameters studied were measured in 
the collected urine. The specific activity of 
γ-glutamyltranspeptidase (EC 2.3.2.2) was determined in 50 
mM Tris-HCl, pH 9.0, 10 mM MgCl2, with 20 mM 
glycylglycine and γ-glutamyl-p nitroanilide as substrate, in a 
spectrophotometer at 405 nm.41 The specific activity of 
dipeptidylaminopeptidase-IV (EC 3.4.14.5) was assayed in 50 
mM Tris-Cl, pH 8.0, with glypro-p-nitroanilide as substrate, 
also at 405 nm42 in a spectrophotometer. The enzymatic 
activities were carried out at room temperature (25 ± 1 °C). 
These assays were carried out in 0.5 mL final incubation 
volume. The initial enzymatic rates were calculated from 
continuous recording, in duplicate, in a UV/VIS 
spectrophotometer (Varian-DMS 80).
Protein was measured with the Folin phenol reagent using 
bovine serum albumin as standard.43 We also measured: the 
volume, the concentration of creatinine,44 the pH in a pH meter, 
the osmolatity in a microsmometer (µOsmette), the 
concentration of glucose in a spectrophotometer (Trinder, 1969) 
and the concentration of sodium with a flame photometer 
(Corning Flame Photometer 410).

Statistical analysis
We calculated the significance of the differences between group 
means with the two-tailed Student’s t-test for grouped data with 
ANOVA pos-test of the urinary parameters, using the software 
Prism 4 (GraphPad Software Inc.); graphs were produced using 
Slide Write Plus version 4.0 for Windows (Advanced Graphics 
Software Inc).

Results and Discussion

In the last decade, most of the nanotoxicity studies have 
generally focused on culture cells and, among them, in kidney 
cells.45-48 However, there is a growing need for in vivo research 
on the effects of nanoparticles.49,50

In this study the administration of a single dose of TiO2-NPs (5 
mg/kg, intravenous) altered the following parameters, as a 
reflection of their renal effects:

The effects of TiO2-NPs on the enzymatic activity of 
γ-glutamyltranspeptidase in the urine of rats

Titanium dioxide nanoparticles increased significantly (p < 
0.05) the specific activity of γ-glutamyltranspeptidase by 6.4 ± 
1.0 vs 64.4 ± 10.7 (0 to 5 h); 4.3 ± 0.2 vs 63.3 ± 9.6 (5 to 24 h); 
4.1 ± 0.2 vs 40.9 ± 0.6 (24 to 48 h), and 3.4 ± 0.3 vs 48.3 ± 3.4 
nmol p-nitroanilide/min x mg of protein (48 to 72 h), 
respectively, compared with the control group, as depicted in 
Figure 2.

Figure 2. The effects of the intravenous administration of titanium 
dioxide (5 mg/kg) on the enzymatic activity of 
γ-glutamyltranspeptidase in the urine of rats, at different time 
periods, compared with control rats. The enzymatic activity is 
presented as nmol p-NA/min x mg of protein. The values represent 
the mean ± SEM, n = 6. The significance level is: ** = P<0.01; pNA: 
p-Nitroanilide.

The effects of TiO2-NPs on the enzymatic activity of 
dipeptidylaminopeptidase-IV in the urine of rats
TiO2 nanoparticles also increased significantly the specific 
activity of dipeptidylaminopeptidase-IV (DAP-IV): 4.8 ± 0.6 vs 
11.1 ± 0.9 from 0 to 5 h; 2.3 ± 0.2 vs 9.8 ± 0.5 from 5 to 24 h; 
2.9 ± 0.2 vs 8.1 ± 0.7 from 24 to 48 h, and 3.0 ± 0.4 vs 8.5 ± 0.3 
nmol p-nitroanilide/min x mg of protein from 48 to 72 h, 
respectively, compared with the control group (Figure 3).

We found that the earliest renal effects, on male and adult 
Wistar rats, were increases of the enzymatic activities of 
γ-glutamyltranspeptidase and dipeptidylaminopeptidase IV. 
These enzymes are predominantly located on the apical 
membrane (brush border) of proximal cells.51-54 On the other 
hand, enzyme activities in serum, plasma or urine are the most 
widely used markers of organ damage in human or experimental 
animals in toxicology.55-57 We believe that these effects are 
mainly due to a direct interaction of the TiO2-NPs with the 
citoplasmic membrane of the brush border cells, that line the 
luminal side of proximal convoluted tubules. We believe that 
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the observed effects are mainly and initially produced by an 
direct interaction among TiO2 NPs–cytoplasmic membrane, of 
the brush border cells that line the luminal side of renal tubules, 
due to their small size and the lack of electric charge, making it 
easier to absorb and therefore, the interaction and disruption is 
produced on the cytoplasmic membranes. This interpretation is 
supported by the effects of cationic NPs and TiO2 NPs 
described in model membranes58-67 and in intact cells.68-73 
These authors describe their findings as related to the physical 
disruption of model biological membranes and living cell 
membranes, at nanoscopic scale, by the chemical properties of 
nanomaterials that generate “nanoholes” in the membranes and 
decrease their stability. These interactions are established with 
the biological interfaces and depend on colloidal forces as well 
as dynamic biophysicochemical parameters.8,9

Figure 3. The effects of TiO2 (5 mg/kg, intravenous) on the 
enzymatic activity of dipeptidylaminopeptidase-IV in the urine of 
rats, at different time periods, compared with control rats. The 
enzymatic activity is shown as nmol p-NA/min x mg of protein. The 
values represent the mean ± SEM, n = 6. The significance level is: 
** = P<0.01; pNA: p-Nitroanilide.

The effects of TiO2-NPs on the concentration of glucose in 
the urine of rats
TiO2 nanoparticles increased significantly the glucose 
concentration: 29.2 ± 3.2 vs 2.1 ± 0.3 from 5 to 24 h; 14.2 ± 4.6 
vs 1.9 ± 0.4 from 24 to 48 h, and 19.1 ± 3.5 vs 1.9 ± 0.3 mg/dl 
from 48 to 72 h, respectively, compared with the control group 
(Figure 4).

The effects of TiO2-NPs on the concentration of sodium in 
the urine of rats
TiO2 nanoparticles increased significantly the concentration of 
urinary sodium by 35 ± 3 vs 85 ± 17 (5 to 24 h), 31 ± 3 vs 104 

± 9 (24 to 48 h), and 35 ± 6 vs 126 ± 8 mEq/l (48 to 72 h), 
respectively, compared with the control group, as shown in 
Figure 5.

Figure 4. The effects of titanium dioxide (5 mg/kg, intravenous) on 
the concentration of glucose in the urine of rats, at different time 
periods, compared with control rats. The glucose concentration is 
presented as mg/dl. The significance levels are: * = P<0.05, ** = 
P<0.01.

Figure 5. The effects of the intravenous administration of TiO2 (5 
mg/kg) on the concentration of sodium in the urine of rats, at 
different time periods, compared with control rats. The sodium 
concentration is presented as mEquivalents of Na+/liter. The 
significance level is: ** = P<0.01.
 
The effects of TiO2-NPs on urinary osmolarity of rats
Titanium dioxide nanoparticles increased significantly the 
osmolarity of urine by 311 ± 13 vs 580 ± 19 (5 to 24 h), by 309 
± 6 vs 434 ± 44 (24 to 48 h), and by 361 ± 14 vs 516 ± 7 
mOsmol/l (48 to 72 h), respectively, compared with the control 
group, as shown in Figure 6.
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Figure 6. The effects of TiO2 (5 mg/kg, intravenous) on urinary 
osmolarity of rats, at different time periods, compared with control 
rats. The osmolarity is shown as 
mOsmoles/liter. The significance level is: ** = P<0.01.

Briefly, sodium reabsorption takes place in various nephron 
segments. The proximal tubule is responsible for reabsorption 
of about 67 % of the filtered sodium load. Sodium enters the 
proximal tubular cell via a series of carriers that also transport 
other solutes.74 Thus, there are specific sodium-glucose, 
sodium-phosphate, and several different sodium-amino acid 
cotransporters. In the thick limb ascending of Loop Henle, the 
sodium is reabsorbed (25 %) by Na-K-2Cl co-transporter 
(symporter) across the membrane of the lumen. In the distal 
convoluted tubule sodium is transported and reabsorbed (5 %) 
against an electrochemical gradient by Na-Cl symporters.75 

The disruption of the citoplasmic membrane by TiO2-NPs 
would alter the function of the cotransporters of 
sodium-glucose76,77 mainly the rat rSGLT278 and SGLT-5 in 
humans,79 as well as ion cotransporters mainly the Na-K-Cl 
cotransporter80-85 mainly the Na-K-Cl cotransporter.86 These 
transporters are the major participants in urine osmolarity.87 
Those time-related effects of TiO2 NPs were detected after the 
enzymuria, as increased concentration of the urinary glucose 
(glucosuria), and increased concentration of the urinary sodium 
(hipernatriuria), along with increased of urine osmolality. The 
effects would be due to dysregulation of these nephron 
cotransporters

We do not rule out the participation of oxidative stress on the 
renal effects generated by TiO2 that have been reported.88-91 
However, we believe that oxidative stress by titanium dioxide 
would be generated at later times, as described by 
Escárcega-González.92

The effects of titanium dioxide on other urinary parameters
TiO2 did not modify significantly the concentration of protein, 

the concentration of creatinine, the volume nor the pH of urine; 
likewise, titanium dioxide did not modify significantly the water 
and food intakes nor the body weigh, as depicted in Table 1.

Table 1. The effects of titanium dioxide (5 mg/kg body weight) on 
other urinary and general parameters studied.

Figure 7 summarizes the possible mechanisms of disruption in 
the cytoplasmic membrane of apical cells. Along the renal 
tubules, TiO2-NPs might change the molecular environment of 
the two enzymes (dipeptidylaminopeptidase IV and 
γ-glutamiltranspeptidase) as well as of the cotransporters of 
Na-glucose and Na-K-Cl, and consequently, the urinary 
osmolality. Thus, the TiO2 NPs increase the release of the 
peptidases from cytoplasmic membrane reflected as their 
increase of activity in urine.  Furthermore, the TiO2 NPs alter 
the function of the cotransporters and increase the urinary 
amount of glucose, sodium and probably other ions. This 
proposed mechanism, may explain the increase on the specific 
activity of γ-GTP y DAP-IV, similar to the studies on model 
membranes and nanoparticles.64, 58

Finally, these renal effects of TiO2-NPs could be used as another 
biomarker of exposure to living beings, because nanomaterials 
are found in the environment, in food and consumer products, at 
work, and in humans, even from implant release.

Parameter      0 - 5 h            5 - 24 h             24 - 48 h             48 - 72 h
Protein  (mg/ml)
Control          4.5 ± 0.3          8.8 ± 0.4            8.2 ± 0.2             8.8 ± 0.2
Treated          5.3 ± 0.5          5.6 ± 0.3            6.9 ± 0.3             7.8 ± 0.1
Volume (ml)
Control          4.0 ± 0.5          8.7 ± 0.7            8.7 ± 0.5            13.7 ± 1.4
Treated          3.0 ± 0.15        9.0 ± 1.0            9.0 ± 1.0              9.0 ± 1.0
Total Creatinine (mg/dl)
Control          57 ± 2.1           87 ± 1.7             77 ± 2.7               62 ± 5.1
Treated          47 ± 1.5           77 ± 1.3             83 ± 2.8               84 ± 6.5
pH
Control          7.6 ± 0.2          7.4 ± 0.3            7.3 ± 0.3              6.9 ± 0.4
Treated          6.3 ± 0.3          6.5 ± 0.3            6.8 ± 0.2              6.3 ± 0.2
Water consumption (ml in 19 or 24 h)
Control                                   35 ± 3.4              32 ± 3.0              35 ± 2.0
Treated                                   35 ± 5.0              32 ± 4.0              30 ± 4.0
Food consumption (g in 19 or 24 h)
Control                                   18.5 ± 1.3            19.3 ± 0.7           20.8 ± 1.4
Treated                                   19.0 ± 1.0            16.0 ± 1.0           15.0 ± 1.0
Body weight (g in 19 or 24 h)
Control                                   247 ± 15              240 ± 11             256 ± 13
Treated                                   227 ± 13              237 ± 14             266 ± 16
Values represent the mean ± sem (n = 6). 
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Figure 7. Drawing of the possible mecanisms of cytoplasmic 
membrane disruption by titanium dioxide nanoparticles at the 
luminal side of the brush border cells, all along the renal tubules of 
rat kidneys. γGT: γ-glutamiltranspeptidase, DAP-IV: 
dipeptidylaminopeptidase IV, CoT: electroneutral Na-K-Cl 
cotransporter, and Gluc T2: Glucose-Na cotransporter 2

Conclusions

The administration of a single dose (intravenous) of TiO2-NPs (5 
mg/kg), to adult male rats, produced a disruption on the apical 
surface of the nephron cells, and allow us to dissect, timewise, 
initial effects (0 to 5 h) on the proximal convoluted tubule of 
kidneys, reflected as the urinary increase in activity of 
γ-glutamiltranspeptidase and dipeptidylaminopeptidase IV. 
These effects were followed (5 to 24 h) by the urinary increase in 
glucose and sodium concentration, and osmolarity. All effects 
remained, at least, for four days. To our knowledge we believe 
that this work is the first in vivo study related to early effects of 
TiO2 on the kidneys of rats. These renal effects could be used as 
another biomarker of exposure to these nanoparticles in 
organisms including human beings. 
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