

Efectos renales de una dosis única intravenosa de nanopartículas de dióxido de titanio en ratas macho adultas

The renal effects of a single and intravenous dose of titanium dioxide nanoparticles in adult male rats

Carlos Enrique Escárcega González, María Luisa Rodríguez Vázquez,¹ Fernando Jaramillo Juárez,¹
Haydeé Martínez Ruvalcaba,² Marcelo Silva Briano,³ Araceli Adabache Ortíz,³
Francisco Aníbal Posadas del Río¹

¹Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes

²Departamento de Microbiología, Universidad Autónoma de Aguascalientes

³Departamento de Biología del Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes

Resumen

Muchos organismos vivos están expuestos a nanomateriales. Los efectos renales de una dosis única intravenosa (5mg/kg) de dióxido de titanio en ratas Wistar macho adultas fueron obtenidos analizando muestras de orina de 0-5 h, 5-24 h, 24-48 h y 48-72 h, dando efectos tempranos significativos ($p < 0.05$): a) Incremento de la actividad enzimática de γ -glutamiltranspeptidasa y dipeptidilaminopeptidasa en todos los tiempos evaluados. b) incremento de la concentración urinaria de sodio en todos los tiempos evaluados. c) Incremento en la concentración de glucosa y osmolaridad urinaria a las 5-24 h, 24-48 h y 48-72 h. Por consiguiente, las nanopartículas de dióxido de titanio producen efectos relacionados con el tiempo en ratas macho adultas. Estos resultados pueden ser usados como biomarcadores de exposición a nanopartículas.

Abstract

Most living organisms are exposed to nanomaterials. The renal effects of a single and intravenous dose (5 mg/kg) of titanium dioxide nanoparticles to male adult Wistar rats were obtained analyzing urine samples at 0-5 h, 5-24 h, 24-48 h and 48-72 h, giving as the earliest and significant ($p < 0.05$) effects: a) increase of the enzymatic activity of γ -glutamiltranspeptidase, and dipeptidylaminopeptidase at all times tested b) increase the concentration of urinary sodium at all times tested c) Increase the concentration of urinary glucose and the urine osmolarity at 5-24 h, 24-48 h, and 48-72 h. Thus, the titanium dioxide nanoparticles produced time-related effects in adult male rats. These renal effects could be used as another biomarker of exposure to nanoparticles.

Palabras clave: γ -glutamiltranspeptidasa, dipeptidilaminopeptidasa IV, glucosa, osmolaridad, sodio.

Key words: γ -glutamiltranspeptidase; dipeptidylaminopeptidase IV; glucose; osmolarity; sodium.

Correspondencia:

Dr. Francisco A. Posadas del Río
Departamento de Fisiología y Farmacología
Centro de Ciencias Básicas
Universidad Autónoma de Aguascalientes
Av. Universidad No. 940, 20100 Aguascalientes, Ags.,
México
Teléfono: (524) 49910-345. Fax: (524) 49910-8401
e-mail: fposadas@correo.uaa.mx

Fecha de recepción: 04 de marzo de 2015

Fecha de recepción modificaciones: 25 de mayo de 2015

Fecha de aceptación: 11 de junio de 2015

Introduction

Natural nanoparticles (NPs) have existed in environment since the beginning of Earth's history as volcanic dust, most natural waters, soils, and sediments; they are generated by geological and biological processes, and while some can be toxic, organisms have evolved in an environment containing them.^{1,2} Nanotechnology represents the design, production and application of materials at atomic, molecular and macromolecular scales, in order to produce new nanosized materials. Nanomaterials are defined as materials containing man-made nanoparticles or having nanostructured surface topography. Manufactured NPs have complex colloid and aggregation chemistry, affected by particle shape, size, surface area and surface charge, as well as their adsorption properties; on the other hand, pH, ionic strength, water hardness, and organic matter alter aggregation and influence their toxicity.³⁻⁸ Most living organisms are exposed to NPs through the gastrointestinal tract, the lungs, and the skin. Once into the body, NPs interact with macromolecules of the cell organelles, mainly with proteins and nucleic acids, establishing biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions.⁹

TiO₂-NPs are a fine white powder, often used as pigments or additives for ceramics, paints, paper, plastics, food, sunscreens, and toothpaste.¹⁰ Thus, organisms are exposed to TiO₂-NPs and may develop toxic effects.^{8, 11} To study their toxicity, they are administered by the oral,¹² intravenous,¹³⁻¹⁵ intraperitoneal^{16, 17} and inhalation¹⁸ routes in mice and rats. The toxicity of TiO₂-NPs has mainly been studied *in vitro*.¹⁹⁻²²

The main function of kidneys, in mammals, is the excretion of metabolic end products from the body, and the regulation of extracellular fluid volume and electrolyte composition.²³ Their high blood flow, combined with their ability to concentrate solutes, exposes them to high concentration of xenobiotics present in the systemic circulation. Because of the rich blood supply of the kidneys, in relation to their mass, this organ is particularly liable to damage by toxic substances. Xenobiotics are physiologically concentrated in the renal tissue leading to its functional impairment.

Since the studies on renal effects of TiO₂ nanoparticles (NPs) are relatively scarce, we decided to investigate the *in vivo* effects with the hypothesis that administration of a single dose of TiO₂-NPs would produce some of the effects of these NPs, in the kidneys of adult male rats. These studies would help to reinforce assessment to the risk of exposure to living beings, since nanomaterials are found in the environment,²⁴⁻²⁷ in food and consumer products,²⁸⁻³² at work,³³⁻³⁶ and even from implant release.³⁷

Materials and methods

Animals

Male adult Wistar rats (270 ± 17g) were used and maintained in stainless steel cages with a 12 h light/dark regime. We used 6 animals per experimental group (n = 6). The rats were handled according with the *Guiding Principles in the Use of Animals in Toxicology*.

Chemicals

γ-L-glutamyl, L-glycylprolyl, and L-alanyl *p*-nitroanilides were of analytical grade and were purchased from Sigma Chemical (St. Louis, MO). Titanium dioxide nanoparticles (TiO₂-NPs) of less than 100 nm were obtained from (Sigma-Aldrich). Particle size and morphology were measured using scanning electron microscopy (JEOL LV 5900), operating at 20 kV. An image of the TiO₂-NPs used in this study is shown in Figure 1. A stock suspension of TiO₂-NPs was prepared in distilled water (30 mg/mL) and, before administration, it was diluted to desired concentration also in distilled water. All other reagents were of analytical grade.

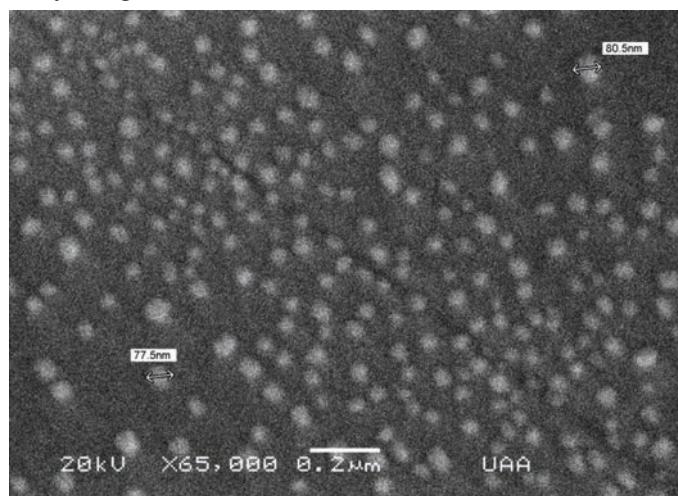


Figure 1. The SEM image with morphology and size of TiO₂ nanoparticles (56000x).

Experimental Design

Treatment. The rats were divided in two groups: one group was treated with a single and intravenous dose of TiO₂-NPs (5 mg/kg of body weight) and other group with an equivalent dose of sodium chloride (control rats). The dose used in our study (5 mg/kg of body weight) and the administration route (intravenous) are the same as used in other study in 2008,³⁸ and is equivalent to the 8.5% of the Letal dose 50, also by the intravenous route for rats.^{39,40} The highest concentration of TiO₂-NPs was found in liver, spleen, lung and kidney at 24 hours after intravenous injection, and returned to control values by day 14 (kidneys).³⁸

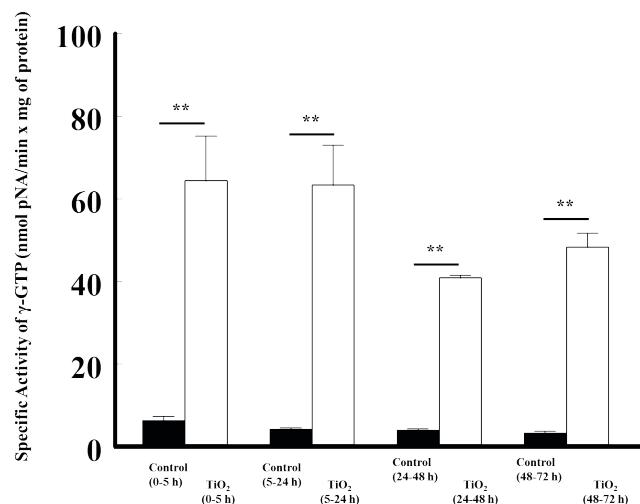
The groups were kept in metabolic cages with food and water *ad libitum*, and at room temperature (24 ± 1 °C). The urine was continuously collected, in vessels attached to the metabolic cages, from 0 to 5 h, from 5 to 24 h, from 24 to 48 h, and from 48 to 72 h. The sampling times were selected mainly to evaluate renal biomarkers of early damage. Furthermore these sampling times are based in the high concentration of TiO₂ NPs that the rats kidneys present at 24 hours post-administration i.v.³⁸

Biochemical assays. All parameters studied were measured in the collected urine. The specific activity of γ -glutamyltranspeptidase (EC 2.3.2.2) was determined in 50 mM Tris-HCl, pH 9.0, 10 mM MgCl₂, with 20 mM glycylglycine and γ -glutamyl-p nitroanilide as substrate, in a spectrophotometer at 405 nm.⁴¹ The specific activity of dipeptidylaminopeptidase-IV (EC 3.4.14.5) was assayed in 50 mM Tris-Cl, pH 8.0, with glypro-p-nitroanilide as substrate, also at 405 nm⁴² in a spectrophotometer. The enzymatic activities were carried out at room temperature (25 ± 1 °C). These assays were carried out in 0.5 mL final incubation volume. The initial enzymatic rates were calculated from continuous recording, in duplicate, in a UV/VIS spectrophotometer (Varian-DMS 80).

Protein was measured with the Folin phenol reagent using bovine serum albumin as standard.⁴³ We also measured: the volume, the concentration of creatinine,⁴⁴ the pH in a pH meter, the osmolality in a microsmometer (μ Osmette), the concentration of glucose in a spectrophotometer (Trinder, 1969) and the concentration of sodium with a flame photometer (Corning Flame Photometer 410).

Statistical analysis

We calculated the significance of the differences between group means with the two-tailed Student's *t*-test for grouped data with ANOVA pos-test of the urinary parameters, using the software Prism 4 (GraphPad Software Inc.); graphs were produced using Slide Write Plus version 4.0 for Windows (Advanced Graphics Software Inc).

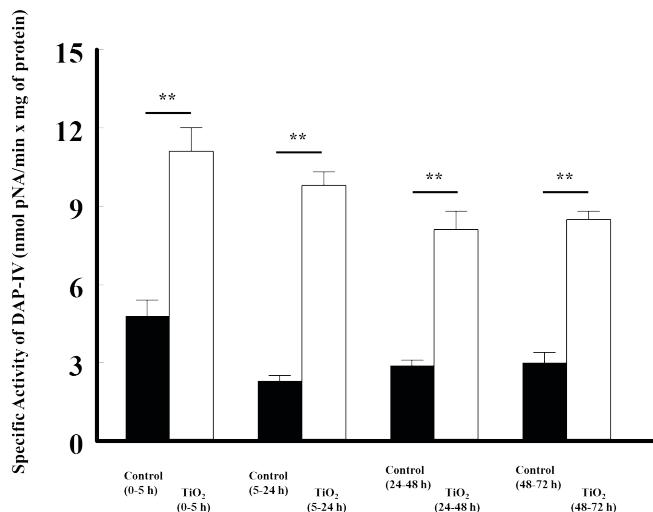

Results and Discussion

In the last decade, most of the nanotoxicity studies have generally focused on culture cells and, among them, in kidney cells.⁴⁵⁻⁴⁸ However, there is a growing need for *in vivo* research on the effects of nanoparticles.^{49,50}

In this study the administration of a single dose of TiO₂-NPs (5 mg/kg, intravenous) altered the following parameters, as a reflection of their renal effects:

The effects of TiO₂-NPs on the enzymatic activity of γ -glutamyltranspeptidase in the urine of rats

Titanium dioxide nanoparticles increased significantly ($p < 0.05$) the specific activity of γ -glutamyltranspeptidase by 6.4 ± 1.0 vs 64.4 ± 10.7 (0 to 5 h); 4.3 ± 0.2 vs 63.3 ± 9.6 (5 to 24 h); 4.1 ± 0.2 vs 40.9 ± 0.6 (24 to 48 h), and 3.4 ± 0.3 vs 48.3 ± 3.4 nmol p-nitroanilide/min x mg of protein (48 to 72 h), respectively, compared with the control group, as depicted in Figure 2.


Figure 2. The effects of the intravenous administration of titanium dioxide (5 mg/kg) on the enzymatic activity of γ -glutamyltranspeptidase in the urine of rats, at different time periods, compared with control rats. The enzymatic activity is presented as nmol p-NA/min x mg of protein. The values represent the mean \pm SEM, n = 6. The significance level is: ** = P < 0.01; pNA: p-Nitroanilide.

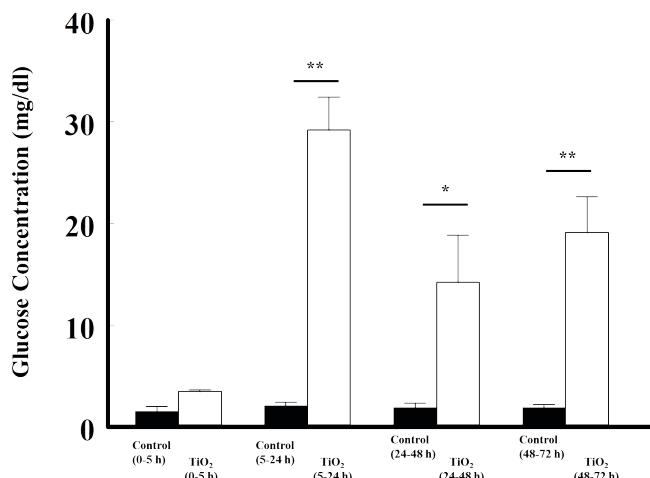
The effects of TiO₂-NPs on the enzymatic activity of dipeptidylaminopeptidase-IV in the urine of rats

TiO₂ nanoparticles also increased significantly the specific activity of dipeptidylaminopeptidase-IV (DAP-IV): 4.8 ± 0.6 vs 11.1 ± 0.9 from 0 to 5 h; 2.3 ± 0.2 vs 9.8 ± 0.5 from 5 to 24 h; 2.9 ± 0.2 vs 8.1 ± 0.7 from 24 to 48 h, and 3.0 ± 0.4 vs 8.5 ± 0.3 nmol p-nitroanilide/min x mg of protein from 48 to 72 h, respectively, compared with the control group (Figure 3).

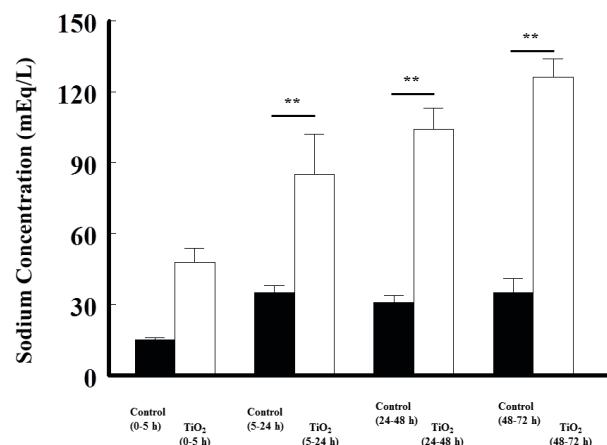
We found that the earliest renal effects, on male and adult Wistar rats, were increases of the enzymatic activities of γ -glutamyltranspeptidase and dipeptidylaminopeptidase IV. These enzymes are predominantly located on the apical membrane (brush border) of proximal cells.⁵¹⁻⁵⁴ On the other hand, enzyme activities in serum, plasma or urine are the most widely used markers of organ damage in human or experimental animals in toxicology.⁵⁵⁻⁵⁷ We believe that these effects are mainly due to a direct interaction of the TiO₂-NPs with the citoplasmic membrane of the brush border cells, that line the luminal side of proximal convoluted tubules. We believe that

the observed effects are mainly and initially produced by an direct interaction among TiO_2 NPs–cytoplasmic membrane, of the brush border cells that line the luminal side of renal tubules, due to their small size and the lack of electric charge, making it easier to absorb and therefore, the interaction and disruption is produced on the cytoplasmic membranes. This interpretation is supported by the effects of cationic NPs and TiO_2 NPs described in model membranes⁵⁸⁻⁶⁷ and in intact cells.⁶⁸⁻⁷³ These authors describe their findings as related to the physical disruption of model biological membranes and living cell membranes, at nanoscopic scale, by the chemical properties of nanomaterials that generate “nanoholes” in the membranes and decrease their stability. These interactions are established with the biological interfaces and depend on colloidal forces as well as dynamic biophysicochemical parameters.^{8,9}

Figure 3. The effects of TiO_2 (5 mg/kg, intravenous) on the enzymatic activity of dipeptidylaminopeptidase-IV in the urine of rats, at different time periods, compared with control rats. The enzymatic activity is shown as nmol p-NA/min x mg of protein. The values represent the mean \pm SEM, n = 6. The significance level is: ** = P<0.01; pNA: p-Nitroanilide.


The effects of TiO_2 -NPs on the concentration of glucose in the urine of rats

TiO_2 nanoparticles increased significantly the glucose concentration: 29.2 ± 3.2 vs 2.1 ± 0.3 from 5 to 24 h; 14.2 ± 4.6 vs 1.9 ± 0.4 from 24 to 48 h, and 19.1 ± 3.5 vs 1.9 ± 0.3 mg/dl from 48 to 72 h, respectively, compared with the control group (Figure 4).


The effects of TiO_2 -NPs on the concentration of sodium in the urine of rats

TiO_2 nanoparticles increased significantly the concentration of urinary sodium by 35 ± 3 vs 85 ± 17 (5 to 24 h), 31 ± 3 vs 104

± 9 (24 to 48 h), and 35 ± 6 vs 126 ± 8 mEq/l (48 to 72 h), respectively, compared with the control group, as shown in Figure 5.

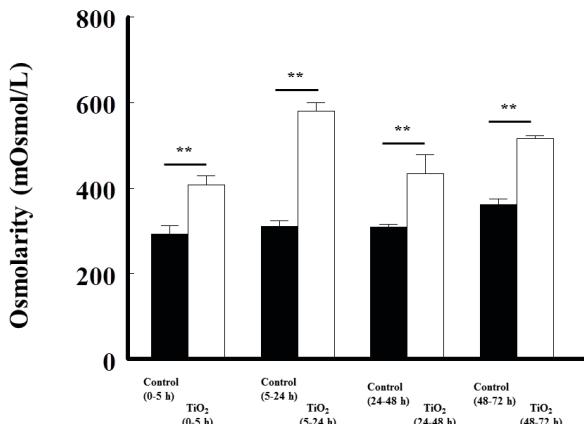

Figure 4. The effects of titanium dioxide (5 mg/kg, intravenous) on the concentration of glucose in the urine of rats, at different time periods, compared with control rats. The glucose concentration is presented as mg/dl. The significance levels are: * = P<0.05, ** = P<0.01.

Figure 5. The effects of the intravenous administration of TiO_2 (5 mg/kg) on the concentration of sodium in the urine of rats, at different time periods, compared with control rats. The sodium concentration is presented as mEquivalents of Na^+ /liter. The significance level is: ** = P<0.01.

The effects of TiO_2 -NPs on urinary osmolarity of rats

Titanium dioxide nanoparticles increased significantly the osmolarity of urine by 311 ± 13 vs 580 ± 19 (5 to 24 h), by 309 ± 6 vs 434 ± 44 (24 to 48 h), and by 361 ± 14 vs 516 ± 7 mOsmol/l (48 to 72 h), respectively, compared with the control group, as shown in Figure 6.

Figure 6. The effects of TiO₂ (5 mg/kg, intravenous) on urinary osmolarity of rats, at different time periods, compared with control rats. The osmolarity is shown as mOsmoles/liter. The significance level is: ** = P<0.01.

Briefly, sodium reabsorption takes place in various nephron segments. The proximal tubule is responsible for reabsorption of about 67 % of the filtered sodium load. Sodium enters the proximal tubular cell via a series of carriers that also transport other solutes.⁷⁴ Thus, there are specific sodium-glucose, sodium-phosphate, and several different sodium-amino acid cotransporters. In the thick limb ascending of Loop Henle, the sodium is reabsorbed (25 %) by Na-K-2Cl co-transporter (symporter) across the membrane of the lumen. In the distal convoluted tubule sodium is transported and reabsorbed (5 %) against an electrochemical gradient by Na-Cl symporters.⁷⁵

The disruption of the citoplasmic membrane by TiO₂-NPs would alter the function of the cotransporters of sodium-glucose^{76,77} mainly the rat rSGLT2⁷⁸ and SGLT-5 in humans,⁷⁹ as well as ion cotransporters mainly the Na-K-Cl cotransporter⁸⁰⁻⁸⁵ mainly the Na-K-Cl cotransporter.⁸⁶ These transporters are the major participants in urine osmolarity.⁸⁷ Those time-related effects of TiO₂ NPs were detected after the enzymuria, as increased concentration of the urinary glucose (glucosuria), and increased concentration of the urinary sodium (hipernatriuria), along with increased of urine osmolality. The effects would be due to dysregulation of these nephron cotransporters

We do not rule out the participation of oxidative stress on the renal effects generated by TiO₂ that have been reported.⁸⁸⁻⁹¹ However, we believe that oxidative stress by titanium dioxide would be generated at later times, as described by Escárcega-González.⁹²

The effects of titanium dioxide on other urinary parameters

TiO₂ did not modify significantly the concentration of protein,

the concentration of creatinine, the volume nor the pH of urine; likewise, titanium dioxide did not modify significantly the water and food intakes nor the body weigh, as depicted in Table 1.

Parameter	0 - 5 h	5 - 24 h	24 - 48 h	48 - 72 h
Protein (mg/ml)				
Control	4.5 ± 0.3	8.8 ± 0.4	8.2 ± 0.2	8.8 ± 0.2
Treated	5.3 ± 0.5	5.6 ± 0.3	6.9 ± 0.3	7.8 ± 0.1
Volume (ml)				
Control	4.0 ± 0.5	8.7 ± 0.7	8.7 ± 0.5	13.7 ± 1.4
Treated	3.0 ± 0.15	9.0 ± 1.0	9.0 ± 1.0	9.0 ± 1.0
Total Creatinine (mg/dl)				
Control	57 ± 2.1	87 ± 1.7	77 ± 2.7	62 ± 5.1
Treated	47 ± 1.5	77 ± 1.3	83 ± 2.8	84 ± 6.5
pH				
Control	7.6 ± 0.2	7.4 ± 0.3	7.3 ± 0.3	6.9 ± 0.4
Treated	6.3 ± 0.3	6.5 ± 0.3	6.8 ± 0.2	6.3 ± 0.2
Water consumption (ml in 19 or 24 h)				
Control		35 ± 3.4	32 ± 3.0	35 ± 2.0
Treated		35 ± 5.0	32 ± 4.0	30 ± 4.0
Food consumption (g in 19 or 24 h)				
Control		18.5 ± 1.3	19.3 ± 0.7	20.8 ± 1.4
Treated		19.0 ± 1.0	16.0 ± 1.0	15.0 ± 1.0
Body weight (g in 19 or 24 h)				
Control		247 ± 15	240 ± 11	256 ± 13
Treated		227 ± 13	237 ± 14	266 ± 16

Values represent the mean ± sem (n = 6).

Table 1. The effects of titanium dioxide (5 mg/kg body weight) on other urinary and general parameters studied.

Figure 7 summarizes the possible mechanisms of disruption in the cytoplasmic membrane of apical cells. Along the renal tubules, TiO₂-NPs might change the molecular environment of the two enzymes (dipeptidylaminopeptidase IV and γ -glutamyltranspeptidase) as well as of the cotransporters of Na-glucose and Na-K-Cl, and consequently, the urinary osmolality. Thus, the TiO₂ NPs increase the release of the peptidases from cytoplasmic membrane reflected as their increase of activity in urine. Furthermore, the TiO₂ NPs alter the function of the cotransporters and increase the urinary amount of glucose, sodium and probably other ions. This proposed mechanism, may explain the increase on the specific activity of γ -GTP y DAP-IV, similar to the studies on model membranes and nanoparticles.^{64, 58}

Finally, these renal effects of TiO₂-NPs could be used as another biomarker of exposure to living beings, because nanomaterials are found in the environment, in food and consumer products, at work, and in humans, even from implant release.

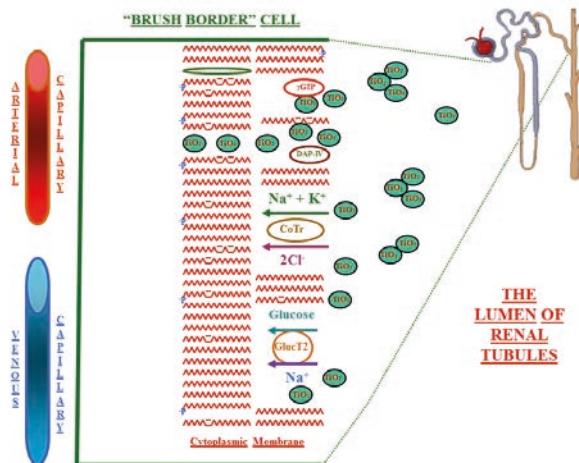


Figure 7. Drawing of the possible mechanisms of cytoplasmic membrane disruption by titanium dioxide nanoparticles at the luminal side of the brush border cells, all along the renal tubules of rat kidneys. γ GT: γ -glutamyltranspeptidase, DAP-IV: dipeptidylaminopeptidase IV, CoT: electroneutral $\text{Na}^-\text{K}^-\text{Cl}^-$ cotransporter, and Gluc T2: Glucose- Na^+ cotransporter 2

Conclusions

The administration of a single dose (intravenous) of TiO_2 -NPs (5 mg/kg), to adult male rats, produced a disruption on the apical surface of the nephron cells, and allow us to dissect, timewise, initial effects (0 to 5 h) on the proximal convoluted tubule of kidneys, reflected as the urinary increase in activity of γ -glutamyltranspeptidase and dipeptidylaminopeptidase IV. These effects were followed (5 to 24 h) by the urinary increase in glucose and sodium concentration, and osmolarity. All effects remained, at least, for four days. To our knowledge we believe that this work is the first *in vivo* study related to early effects of TiO_2 on the kidneys of rats. These renal effects could be used as another biomarker of exposure to these nanoparticles in organisms including human beings.

Acknowledgements

The authors acknowledge the doctoral fellowship to M. en C. Carlos Enrique Escárcega-González (CONACYT-CVU: 377051), and the research funding for our Academic Group from PROMEP-SEP (UAA CA25) to the Universidad Autónoma de Aguascalientes.

References

- Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. *Ecotoxicol*. 2008; 17(5):315-325.
- Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey GL. Nanomaterials and the environment: A review for the biennium 2008-2010. *J Hazar Mater*. 2011; 186(1):1-15.
- Bruno ME, Tasat DR, Ramos E, Paparella ML, Evelson P, Rebagliati RJ, Cabrini RL, Guglielmotti MB, Olmedo DG. Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. *J Biomed Mater Res A*. 2013; 102(5):1439-1448.
- Chaudhry Q, Groves K. Nanotechnology applications for food ingredients, additives and supplements. In: Chaudhry Q, Castle L, Watkins R, eds. *Nanotechnologies in Food*. Cambridge, UK: RSC Publishing; 2010, p. 69-85
- Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM. What do we (need to) know about the kinetic properties of nanoparticles in the body? *Reg Toxicol Pharmacol*. 2007; 49(3):217-229.
- Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ. Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. *ACS Nano*. 2010; 4(10):5527-5531.
- Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. *Part Fibre Toxicol*. 2013; 10:15.
- Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. *Annu Rev Pharmacol Toxicol*. 2010; 50:63-88.
- Nel A, Mädler L, Velegol D, Xia T, Hoek E, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. *Nat Mater*. 2009; 8(7):543-557.
- Chen X, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, forms, and applications. *Chem Rev*. 2007; 107(7):2891-2959.
- Feng W, Wang B, Zhao Y. Chapter 13. Nanotoxicity of metal oxide nanoparticles *in vivo*. In Sahu SC, Casciano DA, eds. *Nanotoxicity*. Chichester, UK: John Wiley & Sons; 2009, p. 247-269.
- Cho W-S, Kang B-C, Lee JK, Jeong J, Che J-H, Seok SH. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. *Part Fibre Toxicol*. 2013; 10:9.
- Sugibayashi K, Todo H, Kimura E. Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. *J Toxicol Sci*. 2008; 33(3):293-298.
- Xie G, Wang C, Sun J, Zhong G. Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. *Toxicol Lett*. 2011; 205(1):55-61.
- Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. *PLoS ONE*. 2007; 8:e70618.

16. Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. *J Appl Toxicol.* 2009; 29(4):330-337.
17. Olmedo DG, Tasat DR, Evelson P, Rebagliatti R, Guglielmotti MB, Cabrini RL. In vivo comparative biokinetics and biocompatibility of titanium and zirconium microparticles. *J Biomed Mater Res A.* 2011; 98(4):604-613.
18. Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y. Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. *J Toxicol Environ Health A.* 2009; 72(11-12):740-745.
19. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. *Toxicol Appl Pharmacol.* 2012; 258(2):151-165.
20. Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L'Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M. Toxicological consequences of TiO₂, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: An in vitro study. *J Nanopart Res.* 2010; 12(1):61-73.
21. Iavicoli I, Leso V, Fontana L, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies. *Eur Rev Med Pharmacol Sci.* 2011; 15(5):481-508.
22. Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ. Cellular toxicity of TiO₂ nanoparticles in anatase and rutile crystal phase. *Biol Trace Elem Res.* 2011; 141(1-3):3-15.
23. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. *Environ Health Perspect.* 2005; 113(11):1555-1560.
24. Baalousha M, Lead JR, Von der Kammer F, Hofmann T. Natural colloids and nanoparticles in aquatic and terrestrial environments. In *Environmental and Human Health Impacts of Nanotechnology.* JR Lead, E Smith eds. New York:Wiley; 2009, p.109-161
25. Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. *Trend Anal Chem.* 2011; 30(3): 517-527.
26. Menard A, Drobne D, Jemec A. Ecotoxicity of nanosized TiO₂. Review of in vivo data. *Environ Pollut.* 2011; 159(3): 677-684.
27. Richardson SD, Ternes TA. Water analysis: Emerging contaminants and current issues *Anal Chem.* 2011; 83(12): 4614-4648.
28. Blasco C, Picó Y. Determining nanomaterials in food. *Trend Anal Chem.* 2011; 30(1): 84-99.
29. Calzolai L, Gilliland D, Rossi F. Measuring nanoparticles size distribution in food and consumer products: A review. *Food Addit Contam.* 2012; 29(8): 1183-1193.
30. Nohynek GL, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. *Toxicol Appl Pharm* 2010; 243(2): 239-259.
31. Weir A, Westerhoff P, Fabricius PL, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. *Environ Sci Technol.* 2012; 46(4): 2242-2250.
32. Yang Y, Doudrick K, Bi X, Hristovski K, Herkes P, Westerhoff P, Kaegi R. Characterization of food-grade titanium dioxide: The presence of nanosized particles. *Environ Sci Technol.* 2014; 48(11): 6391-6400.
33. Helland A, Scheringer M, Siegrist M, Kastenholz HG, Wiek A, Scholz RW. Risk assessment of engineered nanomaterials: A survey of industrial approaches. *Environ Sci Technol.* 2008; 42(2): 640-646.
34. Kuhlbusch TA, Asbach C, Fissan H, Göhler D, Stintz M. Nanoparticle exposure at nanotechnology workplaces A review. *Part Fibre Toxicol.* 2011; 8: 22, 2011.
35. Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Sung JH, Lee BG, Yang JS, Kim HY, Kang CS, Yu JJ. Exposure assessment of workplaces manufacturing nanosized TiO₂ and silver. *Inhal Toxicol.* 2010; 22(5): 369-381.
36. Reijnders L. Human health hazards of persistent inorganic and carbon nanoparticles. *J Mater Sci.* 2012; 47(13): 5061-5073.
37. Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E, Paz-Aparicio J, Diánez Raimundez J, Tejerina JM, Peña MA, Sanz-Medel A. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. *Anal Bioanal Chem.* 2011; 401(9): 2747-2754.
38. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van RB. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. *Arch Toxicol.* 2008; 82(3):151-157.
39. Šebeková K, Dušinská M, Simon Klenovics K, Kollárová R, Boor P, Kebis A, Staruchová M, Vlková B, Celec P, Hodosy J, Bačiak L, Tušková R, Beňo M, Tulinská J, Príbojová J, Bilaničová D, Pojana G, Marcoxomini A, Volkovová K. Comprehensive assessment of nephrotoxicity of intravenously administered sodium-oleate-coated ultra-small superparamagnetic iron oxide (USPIO) and titanium dioxide (TiO₂) nanoparticles in rats. *Nanotoxicology* 2014; 8(2):142-157.
40. Volkovová K, Ulicna O, Kucharska J, Handy R, Staruchova M, Kebis A, Pribojova J, Tulinska J, Dusinska M. Health effects of selected nanoparticles in vivo: Liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate coated iron oxide nanoparticles in rodents. *Nanotoxicology* in press, 2014.
41. Orlowski M, Meister A. γ -Glutamyl-p-nitroanilide: A new convenient substrate for determination of L- and D- γ -Glutamyltranspeptidase activities. *Biochim Biophys Acta.* 1963; 73:679-681.

42. Yoshimoto T, Fischl M, Orlowski RC, Roderich W. Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase. Comparison of two peptidases with high specificity for proline residues. *J Biol Chem.* 1978; 253:3708-3716.
43. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurements with the Folin phenol reagent. *J Biol Chem.* 1951; 193:265-275.
44. Jaffe M. Über den niederschlag, welchen pikrinsaure in normalen harn erzeugt und über eine neue reaction des kreatinins. *Z Physiol Chem.* 1886; 10:391-400.
45. Choi CM, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. *Proc Natl Acad Sci USA.* 2011; 108(16):6656-6661.
46. Ismagilov ZR, Shikina NV, Mazurkova NA, Tsikoza LT, Tuzikov FV, Ushakov VA, Ishchenko AV, Rudina NA, Korneev DV, Ryabchikova EI. Synthesis of nanoscale TiO₂ and study of the effect of their crystal structure on single cell response. *Sci World J.* 2012; Article ID 498345.
47. L'Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Cambar J, Brochard P, Ohayon C. In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol. 2008; 5:22.
48. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L'Azou B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol. 2011; 8:10.
49. Fischer HC, Chan WC. Nanotoxicity: The growing need for in vivo study. *Curr Opin Biotechnol.* 2007; 18(6):565-571.
50. Iavicoli I, Leso V, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: A review of in vivo studies. *J Nanomater.* 2012; Article ID 964381.
51. Guder WG, Ross BD. Enzyme distribution along the nephron. *Kidney Int* 1984; 26:101-111.
52. Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. *Crit Rev Clin Lab Sci* 2003; 40(3):209-294.
53. Kim YB, Kopcho LM, Kirby MS, Hamann LG, Weigelt CA, Metzler WJ, Marcinkeviciene J. Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). *Arch Biochem Biophys* 2006; 445(1):9-18.
54. Smith TK, Ikeda Y, Fujii J, Taniguchi N, Meister A. Different sites of acivicin binding and inactivation of γ -glutamyl transpeptidases. *Proc Natl Acad Sci USA.* 1995; 92(6):2360-2364.
55. Braun JP, Aktas M, Lefebvre H, Rico AG, Toutain PL. Clinical enzymology for the assessment of organ damage: Interspecific differences. *Comp Haematol Int.* 1993; 3(1):27-32.
56. Trevisan A, Giraldo M, Borella M, Maso S. Historical control data on urinary and renal tissue biomarkers in naive male Wistar rats. *J Appl Toxicol.* 2001; 21(5):409-413.
57. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. *Toxicol Sci.* 2008; 101(1):159-170.
58. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. *Adv Drug Deliv Rev* 2009; 60(3):457-466.
59. Chen KL, Bothun GD. Nanoparticles meet cell membranes: Probing nonspecific interactions using model membranes. *Environ Sci Technol.* 2014; 48(2):873-880.
60. Gkeka P, Sarkisov L, Angelikopoulos P. Homogeneous hydrophobic-hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes. *J Phys Chem Lett.* 2013 4(11):1907-1912.
61. Hong S, Hessler JA, Banaszak Holl MM, Leroueil PR, Mecke A, Orr BG. Physical interactions of nanoparticles with biological membranes: The observation of nanoscale hole formation. *J Chem Health Saf.* 2006; 13(3):16-20.
62. Leroueil PR, Hong SY, Mecke A, Baker JR, Orr BG, Holl MMB. Nanoparticle interaction with biological membranes: Does nanotechnology present a janus face? *Acc Chem Res.* 2007; 40(5):335-342.
63. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. *J Am Chem Soc.* 2013; 135(4):1438-1444.
64. Li S, Malmstadt N. Deformation and poration of lipid bilayer membranes by cationic nanoparticles. *Soft Matter.* 2013; 9(20):4969-4976.
65. Moghadam BY, Hou WC, Corredor C, Westerhoff P, Posner JD. Role of nanoparticle surface functionality in the disruption of model cell membranes. *Langmuir.* 2012; 28(47):16318-16326.
66. Negoda A, Liu Y, Hou W-C, Corredor C, Moghadam BY, Musolff C, Li L, Walker W, Westerhoff P, Mason AJ, Duxbury P, Posner JD, Worden RM. Engineered nanomaterial interactions with bilayer lipid membranes: Screening platforms to assess nanoparticle toxicity. *Int J Biomed Nanosci Nanotechnol.* 2013 3(1/2):52-83.
67. Wu YL, Putcha N, Ng KW, Leong DT, Lim CT, Loo SCJ, Chen X. Biophysical responses upon the interaction of nanomaterials with cellular interfaces. *Acc Chem Res.* 2013; 46(3):782-791.
68. Andreozzi P, Martinelli C, Carney RP, Carney TM, Stellacci F. Erythrocyte incubation as a method for free-dye presence determination in fluorescently labeled nanoparticles. *Mol Pharmacol.* 2013; 10(3):875-882.

69. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P. Effect of nanoparticle surface charge at the plasma membrane and beyond. *Nano Lett.* 2010; 10(7):2543-2548.
70. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. *Environ Health Perspect.* 2005; 113(11):1555-1560.
71. Planque MRR, Aghdaei S, Roose T, Morgan H. Electrophysiological characterization of membrane disruption by nanoparticles. *ACS Nano.* 2011; 5(5):3599-3606.
72. Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. *Environ Sci Technol.* 2006; 40(14):4353-4359.
73. Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R. Perturbational profiling of nanomaterial biologic activity. *Proc Natl Acad Sci USA.* 2008; 105(21):7387-7392.
74. Aronson PS. Ion exchangers mediating NaCl transport in the renal proximal tubule. *Cell Biochem Biophys.* 2002; 36:147.
75. Reeves WB, Andreoli TE. Sodium chloride transport in the loop of Henle, distal convoluted tubule and collecting duct. 3a Ed. New York: In Seldin DW, Giebisch G, eds: *The Kidney—Physiology and Pathophysiology*; 2000, Raven Press.
76. Horiba N, Masuda S, Takeuchi A, Takeuchi D, Okuda M, Inui K. Cloning and characterization of a novel Na⁺-dependent glucose transporter (NaGLT1) in rat kidney. *J Biol Chem.* 2003; 278(17):14669-14676.
77. Wright EM. Glucose transport families SLC5 and SLC50. *Mol Aspects Med.* 2013; 34(2-3):183-196.
78. Sabolic, Vrhovac I, Eror DB, Gerasimova M, Rose M, D. Breljak MD, Ljubojevic Brzica MH, Sebastiani A, Thal SC, Sauvant C, Kipp H, Vallon V, and Koepsell H. Expression of Na⁺-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. *Am J physiol-cell pH.* 2012; 302(8):C1174-C1188.
79. Grempler, Augustin R, Froehner S, Hildebrandt T. Functional characterization of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. *FEBS lett.* 2012; 586(3):247-253.
80. Arroyo JP, Kahle KT, Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. *Mol Aspects Med.* 2013; 34(2-3):288-298.
81. Gamba G. Molecular physiology and pathophysiology of electroneutral cation chloride cotransporters. *Physiol Rev.* 2005; 85(2):423-493.
82. Kaplan MR, Plotkin MD, Lee W-S, Xu Z-C, Lytton J, Hebert SC. Apical localization of the Na-K-Cl cotransporter, rBSC1, on rat thick ascending limbs. *Kidney Int.* 1996; 49(1):40-47.
83. Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. *Pflügers Arch-Eur J Physiol.* 2014; 466(2):91-105.
84. Plotkin MD, Kaplan MR, Verlander JM, Lee W-S, Brown D, Poch E, Gullans SR, Hebert SC. Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1, in the rat kidney. *Kidney Int.* 1996; 50(1):174-183.
85. Russell JM. Sodium-potassium-chloride cotransport. *Physiol Rev.* 2000; 80(1):211-276.
86. Yang T, Huang YG, Singh I, Schnermann J, and Briggs JP. Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. *Am J Physiol -Renal* 1996; 271(4):F931-F939.
87. Choi HJ, Yoon YJ, Kwon YK, Lee YJ, Chae S, Hwang D, Hwang G-S, Kwon TH. Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct. *J Proteome Res.* 2012; 11(7):3816-3828.
88. Bolt HM, Marchan R, Hengstler JG. Nanotoxicology and oxidative stress control: Cutting-edge topics in toxicology. *Arch Toxicol.* 2012; 86(11):1629-1635.
89. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feithd J, Moisan F, Pairon J-C, Marano F. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. *Toxicology* 2009; 260(1-3):142-149.
90. Kenzaoui BH, Bernasconi C, Juillerat-Jeanneret L. Stress reaction of kidney epithelial cells to inorganic solid-core nanoparticles. *Cell Biol Toxicol.* 2013 49(1):39-58.
91. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. *Biomed Res Int* 2013; Article ID 942916.
92. Escárcega-González. Estudio de la toxicidad de nanopartículas de TiO₂ y TiO₂/Ag en ratas wistar machos. Thesis for Master in Science (Toxicology). Departamento de Farmacología y Fisiología y Departamento de Departamento de Química. Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Aguascalientes, Ags., México. 2012.