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Resumen

Muchos organismos vivos estan expuestos a nanomateriales. Los efectos renales de una dosis Unica intravenosa (5mg/kg) de
diéxido de titanio en ratas Wistar macho adultas fueron obtenidos analizando muestras de orina de 0-5 h, 5-24 h, 24-48 h y
48-72 h, dando efectos tempranos significativos (p < 0.05): a) Incremento de la actividad enzimatica de
y-glutamiltranspeptidasa y dipeptidilaminopeptidasa en todos los tiempos evaluados. b) incremento de la concentracion
urinaria de sodio en todos los tiempos evaluados. ) Incremento en la concentracidon de glucosa y osmolaridad urinaria a las
5-24 h, 24-48 h y 48-72 h. Por consiguiente, las nanoparticulas de diéxido de titanio producen efectos relacionados con el
tiempo en ratas macho adultas. Estos resultados pueden ser usados como biomarcadores de exposiciéon a nanoparticulas.

Abstract

Most living organisms are exposed to nanomaterials. The renal effects of a single and intravenous dose (5 mg/kg) of
titanium dioxide nanoparticles to male adult Wistar rats were obtained analyzing urine samples at 0-5 h, 5-24 h, 24-48 h
and 48-72 h, giving as the earliest and significant (p < 0.05) effects: a) increase of the enzymatic activity of
y-glutamiltranspeptidase, and dipeptidylaminopeptidase at all times tested b) increase the concentration of urinary
sodium at all times tested c) Increase the concentration of urinary glucose and the urine osmolarity at 5-24 h, 24-48 h, and
48-72 h. Thus, the titanium dioxide nanoparticles produced time-related effects in adult male rats. These renal effects
could be used as another biomarker of exposure to nanoparticles.
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Introduction

Natural nanoparticles (NPs) have existed in environment since
the beginning of Earth’s history as volcanic dust, most natural
waters, soils, and sediments; they are generated by geological
and biological processes, and while some can be toxic,
organisms have evolved in an environment containing them.!-?
Nanotechnology represents the design, production and
application of materials at atomic, molecular and
macromolecular scales, in order to produce new nanosized
materials. Nanomaterials are defined as materials containing
man-made nanoparticles or having nanostructured surface
topography. Manufactured NPs have complex colloid and
aggregation chemistry, affected by particle shape, size, surface
area and surface charge, as well as their adsorption properties;
on the other hand, pH, ionic strength, water hardness, and
organic matter alter aggregation and influence their toxicity.>-8
Most living organisms are exposed to NPs through the
gastrointestinal tract, the lungs, and the skin. Once into the
body, NPs interact with macromolecules of the cell organelles,
mainly with proteins and nucleic acids, establishing biological
interfaces that depend on colloidal forces as well as dynamic
biophysicochemical interactions.’

TiO,-NPs are a fine white powder, often used as pigments or
additives for ceramics, paints, paper, plastics, food, sunscreens,
and toothpaste.!? Thus, organisms are exposed to TiO,-NPs and
may develop toxic effects.® !! To study their toxicity, they are
administered by the oral,!2 intravenous,!3-1 intraperitoneal 16 17
and inhalation!® routes in mice and rats. The toxicity of
TiO,-NPs has mainly been studied in vitro.19-22

The main function of kidneys, in mammals, is the excretion of
metabolic end products from the body, and the regulation of
extracellular fluid volume and electrolyte composition.?? Their
high blood flow, combined with their ability to concentrate
solutes, exposes them to high concentration of xenobiotics
present in the systemic circulation. Because of the rich blood
supply of the kidneys, in relation to their mass, this organ is
particularly liable to damage by toxic substances. Xenobiotics
are physiologically concentrated in the renal tissue leading to its
functional impairment.

Since the studies on renal effects of TiO, nanoparticles (NPs)
are relatively scarce, we decided to investigate the in vivo
effects with the hypothesis that administration of a single dose
of TiO,-NPs would produce some of the effects of these NPs, in
the kidneys of adult male rats. These studies would help to
reinforce assessment to the risk of exposure to living beings,
since nanomaterials are found in the environment,?*27 in food
and consumer products,?8-32 at work 3336 and even from implant
release 3’
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Materials and methods

Animals

Male adult Wistar rats (270 + 17g) were used and maintained in
stainless steel cages with a 12 h light/dark regime. We used 6
animals per experimental group (n = 6). The rats were handled
according with the Guiding Principles in the Use of Animals in
Toxicology.

Chemicals
v-L-glutamyl, L-glycylprolyl, and L-alany] p-nitroanilides were
of analytical grade and were purchased from Sigma Chemical
(St. Louis, MO). Titanium dioxide nanoparticles (TiO2-NPs) of
less than 100 nm were obtained from (Sigma-Aldrich). Particle
size and morphology were measured using scanning electron
microscopy (JEOL LV 5900), operating at 20 kV. An image of
the TiO,-NPs used in this study is shown in Figure 1. A stock
suspension of TiO,-NPs was prepared in distilled water (30
mg/mL) and, before administration, it was diluted to desired
concentration also in distilled water. All other reagents were of
analytical grade.

Figure 1. The SEM image with morphology and size of TiO2
nanoparticles (56000x).

Experimental Design

Treatment. The rats were divided in two groups: one group was
treated with a single and intravenous dose of TiO,-NPs (5
mg/kg of body weight) and other group with an equivalent dose
of sodium chloride (control rats). The dose used in our study (5
mg/kg of body weight) and the administration route
(intravenous) are the same as used in other study in 2008, and
is equivalent to the 8.5% of the Letal dose 50, also by the
intravenous route for rats.’®40 The highest concentration of
TiO,-NPs was found in liver, spleen, lung and kidney at 24
hours after intravenous injection, and returned to control values
by day 14 (kidneys).3®



The groups were kept in metabolic cages with food and water ad
libitum, and at room temperature (24 = 1 °C). The urine was
continuously collected, in vessels attached to the metabolic
cages, from O to 5 h, from 5 to 24 h, from 24 to 48 h, and from
48 to 72 h. The sampling times were selected mainly to evaluate
renal biomarkers of early damage. Furthermore these sampling
times are based in the high concentration of TiO2 NPs that the
rats kidneys present at 24 hours post-administration i.v.38
Biochemical assays. All parameters studied were measured in
the  collected urine. The  specific  activity  of
v-glutamyltranspeptidase (EC 2.3.2.2) was determined in 50
mM Tris-HCI, pH 9.0, 10 mM MgCl,, with 20 mM
glycylglycine and vy-glutamyl-p nitroanilide as substrate, in a
spectrophotometer at 405 nm.*!' The specific activity of
dipeptidylaminopeptidase-IV (EC 3.4.14.5) was assayed in 50
mM Tris-Cl, pH 8.0, with glypro-p-nitroanilide as substrate,
also at 405 nm*? in a spectrophotometer. The enzymatic
activities were carried out at room temperature (25 + 1 °C).
These assays were carried out in 0.5 mL final incubation
volume. The initial enzymatic rates were calculated from
continuous recording, in duplicate, in a UV/VIS
spectrophotometer (Varian-DMS 80).

Protein was measured with the Folin phenol reagent using
bovine serum albumin as standard.*> We also measured: the
volume, the concentration of creatinine ** the pH in a pH meter,
the osmolatity in a microsmometer (x#Osmette), the
concentration of glucose in a spectrophotometer (Trinder, 1969)
and the concentration of sodium with a flame photometer
(Corning Flame Photometer 410).

Statistical analysis

We calculated the significance of the differences between group
means with the two-tailed Student’s z-test for grouped data with
ANOVA pos-test of the urinary parameters, using the software
Prism 4 (GraphPad Software Inc.); graphs were produced using
Slide Write Plus version 4.0 for Windows (Advanced Graphics
Software Inc).

Results and Discussion

In the last decade, most of the nanotoxicity studies have
generally focused on culture cells and, among them, in kidney
cells 448 However, there is a growing need for in vivo research
on the effects of nanoparticles 490

In this study the administration of a single dose of TiO,-NPs (5
mg/kg, intravenous) altered the following parameters, as a
reflection of their renal effects:

The effects of TiO2-NPs on the enzymatic activity of
v-glutamyltranspeptidase in the urine of rats
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Titanium dioxide nanoparticles increased significantly (p <
0.05) the specific activity of y-glutamyltranspeptidase by 6.4 +
10vs64.4+10.7(0to5h);43+0.2vs63.3+£9.6(5to24h);
41+02vs409+0.6(24t048h),and3.4+03vs483+£34
nmol p-nitroanilide/min x mg of protein (48 to 72 h),
respectively, compared with the control group, as depicted in
Figure 2.
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Figure 2. The effects of the intravenous administration of titanium
dioxide (5 mg/kg) on the enzymatic activity of
v-glutamyltranspeptidase in the urine of rats, at different time
periods, compared with control rats. The enzymatic activity is
presented as nmol p-NA/min x mg of protein. The values represent
the mean + SEM, n = 6. The significance level is: ** = P<0.01; pNA:
p-Nitroanilide.

The effects of TiO2-NPs on the enzymatic activity of
dipeptidylaminopeptidase-1V in the urine of rats

TiO2 nanoparticles also increased significantly the specific
activity of dipeptidylaminopeptidase-IV (DAP-IV): 4.8 £ 0.6 vs
11.1+09from0to5h;23+02vs9.8 +0.5 from 5 to 24 h;
29+02vs8.1+0.7from24t048 h,and3.0+04vs85+0.3
nmol p-nitroanilide/min x mg of protein from 48 to 72 h,
respectively, compared with the control group (Figure 3).

We found that the earliest renal effects, on male and adult
Wistar rats, were increases of the enzymatic activities of
v-glutamyltranspeptidase and dipeptidylaminopeptidase IV.
These enzymes are predominantly located on the apical
membrane (brush border) of proximal cells.51-54 On the other
hand, enzyme activities in serum, plasma or urine are the most
widely used markers of organ damage in human or experimental
animals in toxicology.>>57 We believe that these effects are
mainly due to a direct interaction of the TiO,-NPs with the
citoplasmic membrane of the brush border cells, that line the
luminal side of proximal convoluted tubules. We believe that
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the observed effects are mainly and initially produced by an
direct interaction among TiO, NPs—cytoplasmic membrane, of
the brush border cells that line the luminal side of renal tubules,
due to their small size and the lack of electric charge, making it
easier to absorb and therefore, the interaction and disruption is
produced on the cytoplasmic membranes. This interpretation is
supported by the effects of cationic NPs and TiO2 NPs
described in model membranes’8%7 and in intact cells.%873
These authors describe their findings as related to the physical
disruption of model biological membranes and living cell
membranes, at nanoscopic scale, by the chemical properties of
nanomaterials that generate ‘“nanoholes” in the membranes and
decrease their stability. These interactions are established with
the biological interfaces and depend on colloidal forces as well
as dynamic biophysicochemical parameters.3?
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Figure 3. The effects of TiO2 (5 mg/kg, intravenous) on the
enzymatic activity of dipeptidylaminopeptidase-IV in the urine of
rats, at different time periods, compared with control rats. The
enzymatic activity is shown as nmol p-NA/min x mg of protein. The
values represent the mean + SEM, n = 6. The significance level is:
** = P<0.01; pNA: p-Nitroanilide.

The effects of TiO,-NPs on the concentration of glucose in
the urine of rats

TiO, nanoparticles increased significantly the glucose
concentration: 29.2+3.2vs 2.1 +03 from5to24h; 142 +4.6
vs 1.9 £ 0.4 from 24 to 48 h, and 19.1 £3.5 vs 1.9 £ 0.3 mg/dl
from 48 to 72 h, respectively, compared with the control group
(Figure 4).

The effects of TiO,-NPs on the concentration of sodium in
the urine of rats

TiO, nanoparticles increased significantly the concentration of
urinary sodium by 35 £3 vs 85+ 17 (5 to 24 h), 31 £ 3 vs 104

50

+ 9 (24 to 48 h), and 35 + 6 vs 126 + 8 mEq/l (48 to 72 h),
respectively, compared with the control group, as shown in
Figure 5.
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Figure 4. The effects of titanium dioxide (5 mg/kg, intravenous) on
the concentration of glucose in the urine of rats, at different time
periods, compared with control rats. The glucose concentration is
presented as mg/dl. The significance levels are: * = P<0.05, ** =
P<0.01.
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Figure 5. The effects of the intravenous administration of TiO, (5
mg/kg) on the concentration of sodium in the urine of rats, at
different time periods, compared with control rats. The sodium
concentration is presented as mEquivalents of Na+/liter. The
significance level is: ** = P<(0.01.

The effects of TiO,-NPs on urinary osmolarity of rats
Titanium dioxide nanoparticles increased significantly the
osmolarity of urine by 311 + 13 vs 580 + 19 (5 to 24 h), by 309
+ 6 vs 434 + 44 (24 to 48 h), and by 361 + 14 vs 516 + 7
mOsmol/l (48 to 72 h), respectively, compared with the control
group, as shown in Figure 6.



800 [
: o
2 600}
% =
S 400}
£
fe
=
=} |
2 200
o
0

Control Control
©5h (524 1)
TiO, Tio,

‘Control Control
Q8 p,  @8TIB po

o5k (5240 (24-481) (48-72h)

Figure 6. The effects of TiO, (5 mg/kg, intravenous) on urinary
osmolarity of rats, at different time periods, compared with control
rats. The osmolarity is shown as

mOQOsmoles/liter. The significance level is: ** = P<0.01.

Briefly, sodium reabsorption takes place in various nephron
segments. The proximal tubule is responsible for reabsorption
of about 67 % of the filtered sodium load. Sodium enters the
proximal tubular cell via a series of carriers that also transport
other solutes.”® Thus, there are specific sodium-glucose,
sodium-phosphate, and several different sodium-amino acid
cotransporters. In the thick limb ascending of Loop Henle, the
sodium is reabsorbed (25 %) by Na-K-2Cl co-transporter
(symporter) across the membrane of the lumen. In the distal
convoluted tubule sodium is transported and reabsorbed (5 %)
against an electrochemical gradient by Na-Cl symporters.”>

The disruption of the citoplasmic membrane by TiO2-NPs
would alter the function of the cotransporters of
sodium-glucose’®7” mainly the rat rfSGLT27® and SGLT-5 in
humans,” as well as ion cotransporters mainly the Na-K-Cl
cotransporter®?-85 mainly the Na-K-Cl cotransporter.8¢ These
transporters are the major participants in urine osmolarity.8’
Those time-related effects of TiO, NPs were detected after the
enzymuria, as increased concentration of the urinary glucose
(glucosuria), and increased concentration of the urinary sodium
(hipernatriuria), along with increased of urine osmolality. The
effects would be due to dysregulation of these nephron
cotransporters

We do not rule out the participation of oxidative stress on the
renal effects generated by TiO, that have been reported 381
However, we believe that oxidative stress by titanium dioxide
would be generated at later times, as described by
Escdrcega-Gonzalez.?

The effects of titanium dioxide on other urinary parameters
TiO, did not modify significantly the concentration of protein,
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the concentration of creatinine, the volume nor the pH of urine;
likewise, titanium dioxide did not modify significantly the water
and food intakes nor the body weigh, as depicted in Table 1.

Parameter [0-5h | 5-24h | 24-48h | 48-72h
Protein (mg/ml)

Control 45+03 88+04 82+02 88+0.2
Treated 53+05 56+03 69+0.3 78+0.1
Volume (ml)

Control 40+05 8.7+0.7 87+05 137+14
Treated 30+0.15 9010 9010 9010
Total Creatinine (mg/dl)

Control 57+2.1 87+1.7 77+27 62+5.1
Treated 47+15 7713 83+28 84+6.5
pH

Control 76+02 74+03 73+03 69+04
Treated 63+03 65+03 68+02 63+02
Water consumption (ml in 19 or 24 h)

Control 35+34 32+30 35+£20
Treated 35+50 32+40 30+40
Food consumption (g in 19 or 24 h)

Control 185+13 193+0.7 208+14
Treated 190+10 16010 15010
Body weight (g in 19 or 24 h)

Control 247+ 15 240+ 11 256+ 13
Treated 227+13 237+ 14 266 + 16

Values represent the mean + sem (n = 6).

Table 1. The effects of titanium dioxide (5 mg/kg body weight) on
other urinary and general parameters studied.

Figure 7 summarizes the possible mechanisms of disruption in
the cytoplasmic membrane of apical cells. Along the renal
tubules, TiO,-NPs might change the molecular environment of
the two enzymes (dipeptidylaminopeptidase IV and
v-glutamiltranspeptidase) as well as of the cotransporters of
Na-glucose and Na-K-Cl, and consequently, the urinary
osmolality. Thus, the TiO, NPs increase the release of the
peptidases from cytoplasmic membrane reflected as their
increase of activity in urine. Furthermore, the TiO, NPs alter
the function of the cotransporters and increase the urinary
amount of glucose, sodium and probably other ions. This
proposed mechanism, may explain the increase on the specific
activity of y-GTP y DAP-IV, similar to the studies on model
membranes and nanoparticles.®* 38

Finally, these renal effects of TiO,-NPs could be used as another
biomarker of exposure to living beings, because nanomaterials
are found in the environment, in food and consumer products, at
work, and in humans, even from implant release.
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Figure 7. Drawing of the possible mecanisms of cytoplasmic
membrane disruption by titanium dioxide nanoparticles at the
luminal side of the brush border cells, all along the renal tubules of
rat  kidneys. yGT: v-glutamiltranspeptidase, = DAP-IV:
dipeptidylaminopeptidase IV, CoT: electroneutral Na-K-Cl
cotransporter, and Gluc T2: Glucose-Na cotransporter 2

Conclusions

The administration of a single dose (intravenous) of TiO,-NPs (5
mg/kg), to adult male rats, produced a disruption on the apical
surface of the nephron cells, and allow us to dissect, timewise,
initial effects (0 to 5 h) on the proximal convoluted tubule of
kidneys, reflected as the urinary increase in activity of
v-glutamiltranspeptidase and dipeptidylaminopeptidase IV.
These effects were followed (5 to 24 h) by the urinary increase in
glucose and sodium concentration, and osmolarity. All effects
remained, at least, for four days. To our knowledge we believe
that this work is the first in vivo study related to early effects of
TiO, on the kidneys of rats. These renal effects could be used as
another biomarker of exposure to these nanoparticles in
organisms including human beings.
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