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ABSTRACT

The main goal of the present paper is to evaluate the perturbed locations and
investigate the linear stability of the triangular points. We studied the problem in
the elliptic restricted three body problem frame of work. The problem is generalized
in the sense that the two primaries are considered as triaxial bodies. It was found
that the locations of these points are affected by the triaxiality coefficients of the
primaries and the eccentricity of orbits. Also, the stability regions depend on the
involved perturbations. We also studied the periodic orbits in the vicinity of the
triangular points.

RESUMEN

Nuestro objetvo principal es determinar las ubicaciones perturbadas e investi-
gar la estabilidad lineal de los puntos triangulares. Realizamos nuestro estudio en el
marco del problema eĺıptico restringido de tres cuerpos. Generalizamos el problema
considerando a los dos cuerpos primarios como cuerpos triaxiales. Encontramos que
la ubicación de los puntos triangulares se ve afectada por los coeficientes de tria-
xialidad de los cuerpos primarios y por la excentricidad de las órbitas. También
notamos que las regiones de estabilidad dependen de las perturbaciones inducidas
y estudiamos las órbitas periódicas en la vecindad de los puntos triangulares.

Key Words: celestial mechanics — gravitation — methods: analytical — methods:
numerical — planets and satellites: dynamical evolution and stability

1. INTRODUCTION

The restricted three-body problem (R3BP) is the
most significant problem in celestial mechanics. This
due to its wide applications in space dynamics and
solar system dynamics. The knowledge of the R3BP
is crucial in almost all space applications. We can de-
fine this problem as a dynamical system in which an
infinitesimal body moves in the gravitational field of
two massive bodies (primaries). The two primaries
move about their common centre of mass in either
circular or elliptic orbits, which leads to the famous
circular or elliptic restricted problems, respectively
(Musielak & Quarles 2014). In the elliptic restricted
three-body problem, ER3BP, it is assumed that the
smaller primary moves around the more massive one
in an elliptical orbit. The influence of the infinites-
imal mass on the motion of the primaries is negli-
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gible. This significantly simplified model has more
applications in space dynamics than the more gen-
eral problem.

Despite the fact that the RTBP is not integrable,
five specified solutions in the rotating frame are
known. These solutions correspond to equilibrium
positions. Three of these equilibrium points, known
as collinear points, are located on the line joining
the two massive primaries in the rotating reference
frame. The remaining two points, called triangu-
lar points, form equilateral triangles with the mas-
sive primaries. The determination of the location of
these libration points is of great interest for different
space applications (Abd El-Salam 2019). In general
the equilateral equilibrium points are conditionally
stable, while the collinear libration points are usu-
ally unstable (Singh & Tyokyaa 2016).

Most of the celestial bodies are of irregular nature
and cannot be assumed to be spherical in the RTBP,
because their stability of movement is influenced by
their shape. The planets of the solar system and
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their satellites are assumed as extended bodies and
cannot be regarded as spheres. Furthermore, the ef-
fect of eccentricity on the orbits is significant. Hence,
in order to achieve an acceptable accuracy, we have
to take into account that the orbits of most celes-
tial bodies are elliptic rather than circular (Singh &
Tyokyaa 2016).

From the theory of small oscillations around the
triangular points two types of periodic orbits can be
obtained; short-period orbits with periods approx-
imately the same as the orbital period of the pri-
maries, and long-period orbits with periods many
times that of the primaries. The importance of inves-
tigating these periodic orbits lies in their frequent ap-
pearance in nature; they provide us with important
information about orbital resonances, spin orbits and
are also useful to approximate quasi-periodic trajec-
tories (Abouelmagd (2013), Mittal et al. (2009), Ku-
mar & Sharma (2020), Ahmed et al. (2020)).

A number of studies have been performed on the
equilateral triangular points of the restricted three-
body problem. Singh & Begha (2011) investigated
the existence of periodic orbits about the triangu-
lar points, namely L4 and L5, in the RTBP when
the primaries are considered as triaxial and oblate
spheroid bodies, besides perturbations due to Corio-
lis and centrifugal forces. The authors found that
long and short periodic orbits exist around these
points, and that their eccentricities and periods are
influenced by the involved perturbations. Singh
& Umar (2012) studied the stability of triangular
points in the ER3BP, when both oblate primaries
emit light energy. The locations of L4 and L5 are
shifted away from the line joining the two primaries,
as compared to the classical case. The stability re-
gion decreases or increases with variations in eccen-
tricity, oblateness and radiation pressure. Naryan &
Usha (2014) investigated the stability of infinitesimal
motions around the equilateral points. They consid-
ered the more massive primary as a radiant source
and the less massive one as a triaxial body. Zahra
et al. (2016), Zahra et al. (2017) studied the loca-
tions and linear stability of the triangular points un-
der the effects of oblateness and triaxiality of the pri-
maries, plus small relativistic perturbations. They
found that the locations of the triangular points are
affected by the considered perturbations. Numeri-
cal explorations were carried out to show the effect
of perturbations on the position and stability. Singh
& Tyokyaa (2016) investigated the positions and sta-
bility of the libration points when both primaries are
taken as oblate spheroids with oblateness up to the
fourth zonal harmonic J4. They found that both har-

monic coefficients J2 and J4, eccentricity and semi-
major axis have destabilizing tendencies and as a re-
sult the size of the region of stability decreases with
an increase in the parameters involved.

Recently, Hadia et al. (2019) studied analytically
the existence and the linear stability of the libration
points assuming the primaries as triaxial bodies and
the Euler angles as specified values. The authors
proved that the positions and the stability of the tri-
angular points change according to the effect of the
triaxiality of the primaries. Furthermore, they pre-
sented the solution of long and short periodic orbits
for a stable motion. Cárcamo-Dı́az et al. (2020) re-
visited the circular spatial restricted problem. The
authors presented some new results in the light of
the concept of Lie stability. This paper studies the
positions and stability of the well-known triangular
points, in the elliptic restricted problem frame of
work. The triaxiality of the primary bodies is taken
into consideration. In addition, we study the peri-
odic orbits around the triangular points. To examine
the present problem we carry out several numerical
explorations.

2. DYNAMICAL MODEL

Let m1, m2 and m3 be the masses of the primary,
secondary, and the third infinitesimal body, respec-
tively. The third body moves under the effect of
the triaxial primaries, but it does not affect their
motion. The two primaries move around their com-
mon centre of mass in elliptic orbits. We consider
a rotating coordinate system (x, y, z) with origin at
the centre of mass of the primaries. The primaries
are permanently located on the x-axis, which is the
line joining them. When investigating the restricted
three-body problem it is better to choose a system of
normalized units. So, we assume that the distance
between the primaries is unity and we choose also
the unit of time to make the gravitational constant
unity. The total mass of the primaries is considered
as 1, i.e. m1 + m2 = 1. In this normalized system

we adopt µ =
m2

m1 +m2
as a dimensionless mass pa-

rameter. According to the above considerations, the
equations of motion of the third infinitesimal body
moving under the effect of the triaxial primaries lo-
cated at (µ, 0), (1−µ, 0) are given by (Ahmed et al.
2020)

ẍ− 2 n ẏ =
∂U

∂x
, ÿ + 2 n ẋ =

∂U

∂y
, (1)



LOCATION AND STABILITY OF L4,5 IN THE TRIAXIAL ER3BP 313

with

U =
n2

2

[
(1− µ) r21 + µ r22

]
+

(1− µ)

r1
+
µ

r2
+

(1− µ) (2 σ1 − σ2)

2 r31
− 3 (1− µ) (σ1 − σ2) y2

2 r51
+

µ (2 γ1 − γ2)

2 r32
− 3 µ (γ1 − γ2) y2

2 r52
.

(2)

r1 =

√
(x+ µ)

2
+ y2,

r2 =

√
(x+ µ− 1)

2
+ y2,

(3)

n =
1

a (1− e2)

{
1 +

3

2

[
(2σ1 − σ2) + (2γ1 − γ2)

]}
.

(4)

Here, U is the restricted three-body potential; n is
the mean motion of the primaries; r1 and r2 are
the distances of the infinitesimal mass from the pri-
maries; σ1, σ2 and γ1, γ2 are the triaxiality coeffi-
cients of the bigger and smaller primaries, respec-
tively.

3. LOCATIONS OF THE TRIANGULAR
POINTS

The libration points represent stationary solutions
of the restricted three-body problem. The posi-
tions of these points can be obtained by setting all
components of the relative velocity and accelera-
tion equal to zero, i.e. we found them by setting
ẋ = ẏ = 0 = ẍ = ÿ. Consequently, the locations of
these points can be found by solving simultaneously
the nonlinear equations Ux = Uy = 0, and y 6= 0.
Setting

Aγ =γ1 − γ2, Aσ = σ1 − σ2,
Aα =2 γ1 − γ2, Aβ = 2 σ1 − σ2,

we have

Ux = −µ (−1 + x+ µ)

[
1

r32
+

3

2 r52
Aα −

15 y2

2 r72
Aγ

]
+

x

a (1− e2)
+ (1− µ) (x+ µ)

[
1

r31
− 3

2 r51
Aβ

+
3

2 a (1− e2)
(Aα +Aβ)− 15 y2

2 r71
Aσ

]
,

(5)

Uy = −y

{
µ

r32
+

1− µ
r31

+
3µ

2r52
Aα +

3 (1− µ)

2r51
Aβ−

1

a (1− e2)

[
1 +

3

2
(Aα +Aβ)

]
−

15 y2

2

[
µ Aγ
r72

+
(1− µ)

r71
Aσ

]
−

3 µ

r52
Aγ +

3 (1− µ)

r51
Aσ

}
,

(6)

Ignoring the triaxiality perturbations due to the pri-
mary bodies yields the equilateral solution of the
classical restricted three-body problem i.e. r1 =
r2 = 1. Then, it may be reasonable to consider that
the locations of these points are the same as given
by classical problem, but perturbed by small terms,
i.e.

ri = 1 + δi, δi << 1, (i = 1, 2) . (7)

Substituting this assumption (7) into (3), solving for
x and y and retaining terms up to the first order in
the small quantities δi we get:

x =
1

2
(2 δ1 − 2 δ2 − 2 µ+ 1) ,

y = ±1

2

√
(3 + 4 (δ1 + δ2)). (8)

Substituting the values of r1, r2, x and y into equa-
tions (5) and (6) and ignoring the terms higher than
order one in δi we obtain the following two simulta-
neous equations in δ1 and δ2.

A1+A2δ1+A3δ2 = 0, B1+B2δ1+B3δ2 = 0. (9)

The corresponding solution is:

δ1 = −A3 B1 −A1 B3

A3 B2 −A2 B3
, A3 B2 −A2 B3 6= 0,

(10)

δ2 = −−A2 B1 +A1 B2

A3 B2 −A2 B3
, A3 B2 −A2 B3 6= 0,

(11)
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Fig. 1. The locations of L4,5 with different triaxiality
coefficients and eccentricity e = 0.2. The color figure
can be viewed online.

where:

A1 = −1

2
+ µ+

3

4

(
µ Aα −Aβ + µ Aβ

)
+

3

4 a (1− e2)

(
Aα +Aβ

)
+

3

2 a (1− e2)

(
1− µ (2 + 3Aα + 3Aβ)

)
+

45

16

(
−µ (Aγ +Aσ) +Aσ

)
,

(12)

A2 =
1

2
− 1

a (1− e2)

(
1 +

3

2
(Aα +Aβ)

)
+

3

2

(
1−µAα+

3

2
(1−µ)Aβ−

55

8
(1−µ)Aσ+

5

4
µAγ

)
,

(13)

A3 = 1 +
3

2
Aβ +

1

a (1− e2)

(
1 +

3

2
(Aα +Aβ)

)
−

15

8
Aσ −

3

2
µ

(
1 +

3

2
Aα +Aβ −

55

8
− 5

4
Aσ

)
,

(14)

B1 = −
√

3

2

{
1− 1

a (1− e2)

[
1 +

3

2

(
Aα +Aβ

)]
−

3

2

[
Aβ −

7

4
Aσ + µ

(
Aα −Aβ −

7

4
Aγ +

7

4
Aσ

)]}
,

(15)

e=0.01
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e=0.1

0.0 0.1 0.2 0.3 0.4 0.5
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Fig. 2. The locations of L4,5 with different eccentricities
and triaxiality coefficients σ1 = 0.0002, σ2 = 0.0005,
γ1 = 0.003 and γ2 = 0.002. The color figure can be
viewed online.

B2 =
7

2
√

3
+

1√
3a (1− e2)

[
1 +

3

2

(
Aα +Aβ

)]
+

√
3

2

[
13

2
Aβ −

121

8
Aσ−

µ

(
3 +Aα +

13

2
Aβ −

37

4
Aγ −

121

8
Aσ

)]
,

(16)

B3 = − 1√
3

(
1 +

1

a (−1 + e2)

)
+

3
√

3

2

[
37

4
Aσ −

Aβ
3

+ µ

(
1 +

13

2
Aα+

Aβ −
121

8
Aγ −

37

4
Aσ

)
− (Aα +Aβ)

a (−1 + e2)

]
.

(17)

4. GRAPHICAL REPRESENTATIONS
(LOCATION)

In Figures 1-2 we plot the locations rL4,5
of the tri-

angular points in the elliptic restricted three body
problem, taking into consideration triaxiality and ec-
centricity effects. Figure 1 represents the variation
of r4,5 against the mass ratio µ. The calculations
are carried out for several dynamical models with
different coefficients γi and σi; and constant eccen-
tricity of the orbit of the primary e = 0.2. As is
clear from the figure, the locations begin to decrease
sharply until we reach the value µ ≈ 0.15, then they
decrease slowly. We also observe that the variation
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in the locations rL4,5
is small, because the triaxiality

coefficients are very small. Figure 2 depicts the vari-
ation of rL4,5 against the mass ratio µ with constant
triaxiality coefficients. We applied our case study to
a range of eccentricities; the eccentricity e takes the
values 0.01, 0.04, 0.06, 0.08 and 0.1. We notice that
the change in the curves is nearly the same for all
considered cases. This is because the chosen values
of e are small. The dynamics is approximately the
same but with different sizes of the perturbations.
We expect that the larger the eccentricity the larger
will be the perturbation in the positions of the tri-
angular points.

5. STABILITY OF THE TRIANGULAR POINTS

The dynamical models which describe the restricted
problem are very difficult. The great complexity of
these models leads us to focus our attention on lin-
earized dynamics, because in this case we obtain sim-
plified mathematical expressions that could be han-
dled easily. The location of the third body is dis-
placed little from the equilibrium point due to the
considered perturbations. If the resultant motion of
this body is a rapid departure from this point, we
call such a position of equilibrium point an unstable
one; if the body just oscillates about the point, it
is said to be a stable position (Abd El-Salam 2019).
To examine the possible motion of the infinitesimal
body in the proximity of the triangular points, the
equations of motion should be linearized. Let the po-
sition of the triangular points be (x◦,y◦) and let the
third body be displaced to the point (x◦ + ξ, y◦ +η),
where ξ and η are small displacement in (x◦, y◦), so
that the linearized equations can be written as:

ξ̈ − 2 n η̇ =
1

a (1− e2)

(
UL4,5
xx ξ + UL4,5

xy η

)
,

η̈ − 2 n ξ̇ =
1

a (1− e2)

(
UL4,5
yy η + UL4,5

xy ξ

)
.

(18)

Here U
L4,5
xx denotes the second derivative of U with

respect to x computed at the stationary solution
and the rest of the derivatives are defined similarly.
The characteristic equation corresponding to equa-
tion (18) may be written as

λ4 +
(
4n2 − UL4,5

xx − UL4,5
yy

)
λ2+

UL4,5
xx UL4,5

yy −
(
UL4,5
xy

)2
= 0,

(19)

which may be written in the form

λ4 + ULi
λ2 + νLi

= 0, (20)

with

ULi =
(
4 n2 − UL4,5

xx − UL4,5
yy

)
,

νLi
= UL4,5

xx UL4,5
yy −

(
UL4,5
xy

)2
. (21)

The roots of equation (21) are

λ1,2 = ±

√
−ULi −

√
U2
Li
− 4 νLi

√
2

, (22)

and

λ3,4 = ±

√
−ULi

+
√
U2
Li
− 4 νLi

√
2

. (23)

The possible solutions for equation (19) will deter-
mine the stability of the equilibrium points. We have
three possibilities: asymptotically stable, when all
the solutions are real and negative; unstable, when
at least one of the solutions is positive and real; and
finally, the stable case when all solutions are purely
imaginary (Szebehely 1967). We will focus our at-
tention only on the case with oscillatory stable so-
lutions about the triangular points. To investigate
the stability/instability we first compute the partial
derivatives required for equations (22) and (23) as

Uxx =
1

a (1− e2)

[
1 +

3

2
(Aα +Aβ)

]
+

µ

{
3 (µ+ x− 1)

2

r52
− 1

r32
+

3

2
Aα

[
5 (µ+ x− 1)

2

r72
− 1

r52

]
−

15

2
y2Aγ

[
7

r92
(µ+ x− 1)

2 − 1

r72

]}
+

(1− µ)

{
3

2
Aβ

[
5 (µ+ x)

2

r71
− 1

r51

]
+[

3 (µ+ x)
2

r51
− 1

r31

]
− 15

2
y2Aσ

[
7 (µ+ x)

2

r91
− 1

r71

]}
,

(24)
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Fig. 3. The imaginary part of the eigenvalues versus the
mass parameter in the classical case, σi = γi = 0. The
color figure can be viewed online.

Uyy =
1

a (1− e2)

[
1 +

3

2
(Aα +Aβ)

]
+

µ

{
3Aγ

[
10y2

r72
− 5y2

2

(
7y2

r92
− 1

r72

)
− 1

r52

]}
+

(1− µ)

{
3 y2

r51
− 1

r31
+

3

2

(
5 y2

r71
− 1

r51

)
Aβ−

3Aσ

[
1

r51
+ 5 y2

(
−2

r71
+

7 y2

2 r91
− 1

2 r71

)]
+

3Aα
2

(
5 y2

r72
− 1

r52

)
+

3 y2

r52
− 1

r32

}
,

(25)

Uxy = y

{
µ (µ+ x− 1)

[
−105 y2Aγ

2 r92
+

15Aα
2 r72

+

15Aγ
r72

+
3

r52

]
+ y (1− µ) (µ+ x)

[
3

r51
−

105 y2 Aσ
2 r91

+
15Aβ
2 r71

+
15Aσ
r71

]}
.

(26)

6. GRAPHICAL REPRESENTATIONS
(STABILITY)

Figures 3-5 illustrate the stability regions taking into
consideration the triaxiality coefficients and the ec-
centricity of the orbits. Figure 3 represents the clas-
sical case i.e. when σi = 0, γi = 0 and e = 0 as well.
Figure 4 depicts the stability regions for dynamical
systems with different triaxiality coefficients, while

Fig. 4. The imaginary part of the eigenvalues versus the
mass parameter with eccentricity e = 0.01 and differ-
ent triaxial parameters. The color figure can be viewed
online.
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λ2

λ3

stable

Unstable region

λ

Fig. 5. The imaginary part of the eigenvalues versus the
mass parameter with different eccentricities and triaxial
parameters, σ1 = 0.001, σ2 = 0.004, γ1 = 0.003 and
γ2 = 0.002. The color figure can be viewed online.

Figure 5 shows these regions for different eccentrici-
ties and constant coefficients. We can see from Fig-
ure 4 that each stability region is characterized by
different values of the triaxiality coefficients. The
size of the regions is not much different from that
of the classical case; this because the perturbation
due to the triaxiality coefficients is small. In Fig-
ure 5 the effect of different eccentricities on the size
of the regions is obvious. Comparing with previ-
ous work e.g. Abd El-Salam (2015), we found that
the size of the regions is slightly different from that
found in the quoted paper due to the perturbations
considered in each case. We expect that as the ec-
centricity increases the stability regions will be de-
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σ1=0.006,σ2=0.004,γ1=0.003,γ2=0.002

σ1=0.003,σ2=0.0002,γ1=0.007,γ2=0.0004

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

e

μ

Fig. 6. The critical mass ratio versus eccentricity for dif-
ferent values of the triaxial parameters. The color figure
can be viewed online.
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Fig. 7. The critical mass ratio versus triaxial parame-
ter σ2, for different values of the eccentricity. The color
figure can be viewed online.
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Fig. 8. The critical mass ratio versus triaxial parame-
ter γ2, for different values of the eccentricity. The color
figure can be viewed online.

TABLE 1

VALUES OF THE CRITICAL MASS RATIO FOR
DIFFERENT DYNAMICAL MODELS

σ1 σ2 γ1 γ2 e a µc

0 0 0 0 0 1 0.0385209

0.006 0.0004 0.03 0.002 0.2 0.92 0.0443621

0.006 0.0004 0.03 0.002 0.4 0.92 0.0401412

0.006 0.0004 0.03 0.002 0.6 0.92 0.0132093

0.003 0.0002 0.007 0.0004 0.02 0.92 0.0456447

0.003 0.0002 0.007 0.0004 0.04 0.92 0.0424109

0.003 0.0002 0.007 0.0004 0.07 0.92 0.00909276

0.009 0.002 0.008 0.002 0.02 0.92 0.042956

0.009 0.004 0.008 0.002 0.02 0.92 0.0425331

0.009 0.008 0.008 0.002 0.02 0.92 0.0416678

0.006 0.001 0.008 0.001 0.08 0.92 0.0466464

0.006 0.001 0.008 0.005 0.08 0.92 0.0431538

0.006 0.001 0.008 0.008 0.08 0.92 0.0427982

stroyed. Table 1 gives the values of the critical mass
for some selected dynamical models. These values
are computed under the effect of the included per-
turbations. We notice from the table that when the
triaxiality coefficients (σi and γi) are equal to zero,
µc reduces to the critical mass value of the classi-
cal restricted problem (see Figure 3). We also notice
from Figures 4, 5 that the triaxiality coefficients of
the primaries change the range of stability.

In addition, we can also investigate the behav-
ior of the system by plotting the critical mass ratio
against the eccentricity for different values of the tri-
axial parameters σi and γi. We plot different com-
binations of triaxial parameters and a stable region
is observed. Figure 6 shows that the increase in the
eccentricity reduces the region of stability of the in-
finitesimal body about the triangular points. Fig-
ures 7 and 8 represent the variation of the critical
mass with the triaxial parameters when the eccen-
tricity is constant. We can see from the two figures
that increasing the triaxial parameters results in a
destabilizing effect in the system.
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Fig. 9. x[t] as a function of time with triaxiality coeffi-
cients σ1 = 0.007, σ2 = 0.002, γ1 = 0.005, γ2 = 0.002,
µ = 0.01, e = 0.01 and a = 0.92. The color figure can be
viewed online.

7. MOTION IN THE PROXIMITY OF THE
TRIANGULAR POINTS

It is known that periodic orbits represent the back-
bone in the study of dynamical systems in celestial
mechanics. Since in the range 0 ≤ µ ≤ µc, the roots
of the characteristic polynomial of the present sys-
tem are purely imaginary, we conclude that the mo-
tion around the triangular points L4 (or L5) is stable
and composed of two harmonic motions. The solu-
tions for the perturbed motion about the triangular
point L4 (in the synodic reference frame) may be
written as

X[t] =

4∑
j=1

αj e
λj t, (27)

Y [t] =

4∑
j=1

βj e
λj t, (28)

where the terms with coefficients αj and βj represent
the short and long periodic motion. The constants
αj and βj are not independent. Applying the ini-
tial conditions to the solutions of the system these
solutions may be written in the form

X[t] = 5.80204 ∗ 10−5 sin (0.241582 t)−
1.31958 ∗ 10−5 sin (1.06221 t)+

3.19255 ∗ 10−5 cos (0.241582 t)−
2.19255 ∗ 10−5 cos (1.06221 t).

(29)

Y [t] = 8.06288‘ ∗ 10−5 cos (0.241582‘ t)−
7.062876‘ ∗ 10−5 cos (1.06221‘ t)−
3.054769‘ ∗ 10−5 sin (0.241582‘ t)+

6.9475842 ∗ 10−5 sin (1.06221 t).

(30)
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Fig. 10. y[t] as a function of time with triaxiality coef-
ficients σ1 = 0.007, σ2 = 0.002,γ1 = 0.005, γ2 = 0.002,
µ = 0.01, e = 0.01 and a = 0.92. The color figure can be
viewed online.
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Fig. 11. Comparison between the long period motion
in both the classical case (blue curve) and the present
dynamical system (magenta curve). The color figure can
be viewed online.

We may note from equations (29) and (30) that
the solution is of the oscillatory type with fundamen-
tal periods of 2 π

0.241582‘ and 2 π
1.06221 times the orbital

periods of the orbiting body. Hence the body will re-
main in the proximity of the triangular point L4 and
the motion is stable. These two different types of
frequencies in the solution exist due to the fact that
the resulting motion of the small body is composed of
two types of motion. Firstly, a short-period motion
with a period close to the orbital period of the less
massive primary, and secondly a superimposed long-
period one known as a libration around the point L4.
The two solutions are depicted in Figures 9 and 10.
The graph of the trajectory in the vicinity of equi-
librium point L4 is shown in Figures 11 and 12 with
magenta color. The graphs contain both the short
and the long-period motions. Figure 11 shows a com-
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Fig. 12. Comparison between the short period motion in
both the classical case (blue) and the present dynamical
system (magenta). The color figure can be viewed online.

parison between the long-period motions in both the
classical case (blue curve) and the present dynami-
cal system (magenta curve), while Figure 12 shows
a comparison between the two systems in the short-
period case. It is observed that the trajectories (ma-
genta curve) in both figures are shifted from those
of the classical case. This is due to the included
perturbations.

8. CONCLUSIONS

We have studied the existence and linear stability of
the triangular points in the elliptic restricted three-
body problem when the primaries are triaxial bodies.
We found that the locations and the linear stability
of the triangular points are affected by the triaxiality

Nihad S. Abd El Motelp: Astronomy; Astronomy Department, National Research Institute of Astronomy and
Geophysics (NRIAG), 11421 Helwan, Cairo, Egypt (nihad.saad@nriag.sci.eg).

M. Radwan: Astronomy; Space Science and Metreology Department, Faculty of Science, Cairo University,
12613 Giza, Egypt (mradwan@sci.cu.edu.eg).

coefficients of the primaries and the eccentricity of
the orbit. We also noticed that the size of the stabil-
ity regions depends on the triaxiality coefficients and
the eccentricity of the orbits. In addition, we studied
the periodic orbits in the vicinity of the triangular
points. We showed that these orbits are elliptical.
Further, we observed that the shape of the periodic
orbits changed due to the triaxiality of the primaries
and showed a deviation from the classical case.
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Cárcamo-Dı́az, D., Palacián, J. F., Vidal, C., & Yanguas,

P. 2020, RCD, 25, 131
Kumar, P. & Sharma, R. K. 2020, Indian Journal of Sci-

ence and Technology, 13, 32
Mittal, A., Ahmad, I., & Bhatnagar, K. B., 2009, Ap&SS,

323, 65
Musielak, Z. E. & Quarles, B. 2014, RPPh, 77, 6, 065901
Narayan, A. & Usha, T. 2014, Ap&SS, 351, 135
Selim, H. H., Guirao, J. L. G., & Abouelmagd, E. I. 2019,

Discrete & Continuous Dynamical Systems-S, 12, 703
Singh, J. & Begha, J. M. 2011, Ap&SS, 332, 319
Singh, J. & Umar, A. 2012, AJ, 143, 109
Singh, J. & Tyokyaa, R. K. 2016, EPJP, 131, 365
Szebehely, V. G. 1967, Theory of orbits. The restricted

problem of three bodies (New York, NY: Academic
Press)

Zahra, K., Radwan, M., & Awad, M. E. 2016, Nonlinear
Analysis and Differential Equations, 4, 609

Zahra, K., Awad, Z., Dwidar, H. R., & Radwan, M. 2017,
SerAJ, 195, 47


