

cDNA ISOLATION AND GENE EXPRESSION OF KAURENE OXIDASE FROM MONTANOA TOMENTOSA (ZOAPATLE)

NEMESIO VILLA-RUANO¹, MARTHA G. BETANCOURT-JIMÉNEZ¹ AND EDMUNDO LOZOYA-GLORIA^{1*}

(Received January 2010; Accepted July 2010)

ABSTRACT

The *ent*-kaurenoic acid (KA) is the precursor of gibberellins in all plants. In a previous report, we proposed the biosynthetic conversion of KA into grandiflorenic acid (GF) in “zoapatle” (*Montanoa tomentosa*), which is the most important bioactive diterpene of this Mexican medicinal plant. It is known that KA is the product of *ent*-kaurene oxidase enzyme (KO), being so a key enzyme for all plants. This time, we show the isolation of a full-length *ent*-kaurene oxidase cDNA from *Montanoa tomentosa* (MtKO-cDNA). Expression analyses of MtKO-cDNA were compared with endogenous levels of KA in leaves of different ages. Obtained data shown that KA is mainly synthesized in the mesophyll of young leaves and accumulated later on in old leaves including glandular trichomes. However, *MtKO* gene expression was clear in young leaves but low or null in old tissues and trichomes. The detection of low levels of *MtKO* transcript in glandular trichomes suggests that these structures may have some role in KA biosynthesis. The high concentration of KA in the whole leaf suggests a possible defense mechanism based on the production and accumulation of such diterpene. The present investigation is a contribution to the characterization of the metabolic pathway of *M. tomentosa* pharmacological diterpenes.

Keywords: *ent*-kaurene oxidase, *ent*-kaurenoic acid, glandular trichomes, grandiflorenic acid, *Montanoa tomentosa*.

RESUMEN

El ácido *ent*-kaurenoico (KA) es el precursor de las giberelinas en todas las plantas. Previamente propusimos la conversión biosintética del KA en ácido grandiflorénico (GF) en el “zoapatle” (*Montanoa tomentosa*), que es el diterpeno bioactivo más importante de esta planta medicinal Mexicana. Se sabe que el KA es el producto de la enzima *ent*-kaureno oxidasa (KO) considerada como una enzima clave para todas las plantas. Aquí reportamos el aislamiento de un ADNc completo de la *ent*-kaureno oxidasa de *Montanoa tomentosa* (MtKO-cDNA). El análisis de la expresión del gen correspondiente se comparó con los niveles endógenos de KA en hojas de diferen-

¹Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Libramiento Norte Carretera Irapuato-León, P.O. Box 629, C.P. 36821 Irapuato, Guanajuato, México.

*Tel. +52 462 6239659, Fax. +52 462 6245849, E-mail: HYPERLINK “mailto:elozoya@ira.cinvestav.mx” elozoya@ira.cinvestav.mx

tes edades. Los datos obtenidos sugieren que el KA es sintetizado principalmente en el mesófilo de las hojas jóvenes y acumulado posteriormente en hojas viejas y tricomas glandulares. Sin embargo, la expresión del gen MtKO fue clara en tejidos jóvenes y escasa o nula en las hojas viejas así como en los tricomas. La detección de bajos niveles del transcripto de la MtKO en los tricomas glandulares, sugiere que estas estructuras podrían estar involucradas en la biosíntesis del KA. La presencia de altas concentraciones de KA en la hoja entera sugiere un posible mecanismo de defensa basado en la producción y la acumulación de este diterpeno. La presente investigación es una contribución a la caracterización de la vía metabólica de los diterpenos farmacológicos de *M. tomentosa*.

INTRODUCTION

Montanoa tomentosa (zoapatle) is a Mexican medicinal plant that belongs to the Compositae family, used for common disorders in women's health. The pharmaceutical bioactive compounds are KA ([4 α]-kaur-6-en-18-oic acid) and GF ([4 α]-kaura-9 [11]-16-dien-18-oic acid). In roots besides KA and GF, monoginoic acid (MO) (13-methyl-[4 α]-norkaur-15-en-18-oic acid) is the most abundant but less studied related diterpene (Enriquez *et al.*, 1997). GF and KA have been associated with uterotonic activities in female rats (Campos-Bedolla *et al.*, 1997) and the aqueous crude extract of zoapatle was proposed to have aphrodisiac effects in male rats (Carro-Juarez *et al.*, 2004). Recently, the biosynthetic relationship among these diterpenes was studied in the plant itself (Villa-Ruano *et al.*, 2009), opening the possibility for future biotechnological manipulation.

It is known that KA is the precursor of all gibberellins that are diterpene plant hormones biosynthesized by complex pathways controlling growth and development (Yamaguchi, 2008). Recently, gibberellins and abscisic acid (ABA) were involved in the phytochrome-mediated germination response (Seo *et al.*, 2009). KA has been found in glandular trichomes of *M. tomentosa* leaves (Robles-Zepeda *et al.*, 2009), and this as well as other diterpenes and hormones such as gibberellic acid (GA) among others (Bari & Jones, 2009), may be related to ecological roles as plant defense

substances specifically against bacteria (Zgoda-Pols *et al.*, 2002), protozoa (Vieira *et al.*, 2005), fungi (Cotoras *et al.*, 2004), insects (Topcu and Gören, 2007) and viruses (Zhu *et al.*, 2005).

The KO, a P450 enzyme, catalyzes the transformation of *ent*-kaurene into KA in three oxidation steps (Helliwell *et al.*, 1999), and due to its central role in the biosynthesis of gibberellins and other diterpenes with relevant ecological and pharmacological roles; it is considered as a key enzyme in plants. In the present work we report the identification and isolation of a full-length cDNA of KO from *Montanoa tomentosa* (MtKO-cDNA). MtKO gene expression was studied by quantifying MtKO-mRNA transcript abundance in young shoots, mesophyll and glandular trichomes at different leaf ages. KA content in different leaf ages was also determined to compare it with MtKO gene expression.

MATERIALS AND METHODS

Plant material

New, young, mature, and old leaves of *Montanoa tomentosa* including the apex, as well as young shoots were taken from plants grown at 23-27 °C and 16 h/8 h light/dark photoperiod for two years in an experimental greenhouse at Cinvestav-IPN Unidad Irapuato in México. Dr. Jerzy Rzedowszki from the Instituto de Ecología UNAM, Michoacán México, previously certified these plants.

Nucleic acid extraction

Total RNA extraction was carried out as described in the Trizol protocol (Invitrogen™), starting from 100 mg of fresh tissue previously grounded in a mortar in the presence of liquid nitrogen. A phenol: chloroform: isopropanol (25:24:1, v/v/v) extraction was done and the RNA integrity was confirmed by agarose 1% gel electrophoresis after staining with ethidium bromide. RNA from glandular trichomes was obtained according with Yerguer *et al* (1992). Briefly, trichomes from frozen plant tissue were specifically broken by strong vortexing with powdered dry ice, and sieved from larger tissue fragments for collecting glandular heads. This method preserves the integrity of active enzymes and nucleic acids from glandular trichomes avoiding contamination with mesophyll cells material. The non-sieved remaining tissue was confirmed as naked mesophyll without trichomes by microscopy, and grounded in the presence of liquid N₂ for RNA extraction as it is described above.

Isolation and molecular cloning of full length MtKO-cDNA by RT-PCR

All the retro transcription reactions were made from 10 µg of total RNA using the reverse transcriptase enzyme SuperScript II (Invitrogen™). Degenerated primers 5'-GGGAATYTRYTGCARTTGAAGGAGAAG-3' and 5'-CCCTCTTYCCNSCTCCRAACGC-CAT-3' were used to amplify a 1200 bp internal fragment of a putative MtKO-cDNA from total RNA. These oligonucleotides were designed according to conserved domains of putative P450 plant enzymes available in the NCBI Gen Bank such as *Stevia rebaudiana* (AY42951), *Arabidopsis thaliana* (AAC39507), *Pisum sativum* (AAP69988), *Cucurbita maxima* (AAG41776), and *Fragaria grandiflora* (AAG41776). PCR running conditions to obtain this amplicon were as follows: 4 min at 94 °C of initial denaturation, 30 cycles at 94 °C for 30 sec, 57 °C for 30 sec, and 72 °C for 1 min 20 sec

polymerization, finishing with 5 min at 72 °C. Full-length MtKO-cDNA was obtained by completing the 5' and 3'- ends according with the manual of the Gen RACER Kit (Invitrogen™). Specific oligonucleotides to get the 5'-end were 5'-GGCGTTGACGGTCTT-GTGATAATC-3' and 5'-GGTTTTATCAGCT-GTGAGGACC-3', and for the 3'-end were 5'-GGGACATCCAAAGTGTGTGGG-3' and 5'-GGGAGCCTATTATCGAATCATCAG-3'. In both cases, the used conditions were 5 cycles at 94 °C for 30 sec, 63 °C for 30 sec, and 72 °C for 1 min; followed by 25 cycles at 94 °C for 30 sec, 57 °C for 30 sec and 72 °C for 1 min, finishing with an extension of 72 °C for 4 min. All PCR products were individually ligated to the TOPO TA cloning vector (Invitrogen™). Finally, the complete cDNA was amplified from the cloned one using 5'-ATGGATACCCTCACCGGATTC-3' as forward primer and 5'-TCAATTCT-GGGCTTATTAAGGC-3' as reverse primer in a PCR reaction consisting of 4 min at 94 °C of initial denaturation, 35 cycles at 94 °C for 30 sec, 57 °C for 30 sec, and 72 °C for 1 min 40 sec, finishing with 5 min at 72 °C. Resulted PCR products were sequenced by triplicate on ABI PRISM 3700 instruments (ABI, Foster City, CA). The identity of these sequences was edited and compared with available sequences in the Gen Bank using the Blast X program.

MtKO gene expression analysis

Gene expression was analyzed by semi-quantitative RT-PCR using the protocol of SuperScript II (Invitrogen™) for synthesizing the cDNA pools. Specific oligonucleotides to perform the PCR reactions were as described above. The β-actin gene expression was assayed as a constitutive and positive control in the transcription analysis of MtKO gene. Oligonucleotides used to amplify β-actin transcripts were 5'-GCAGACGGTGAGGATATCC-3' as forward primer and 5'-CAGCAAGATCCAAACGAAG-3' as reverse primer, and oligonucleotides for MtKO transcript amplification were

those used to amplify the full length MtKO-cDNA in the same PCR conditions as described above. PCR products were analyzed by agarose 1% gel electrophoresis after staining with ethidium bromide.

Metabolite extraction and analysis

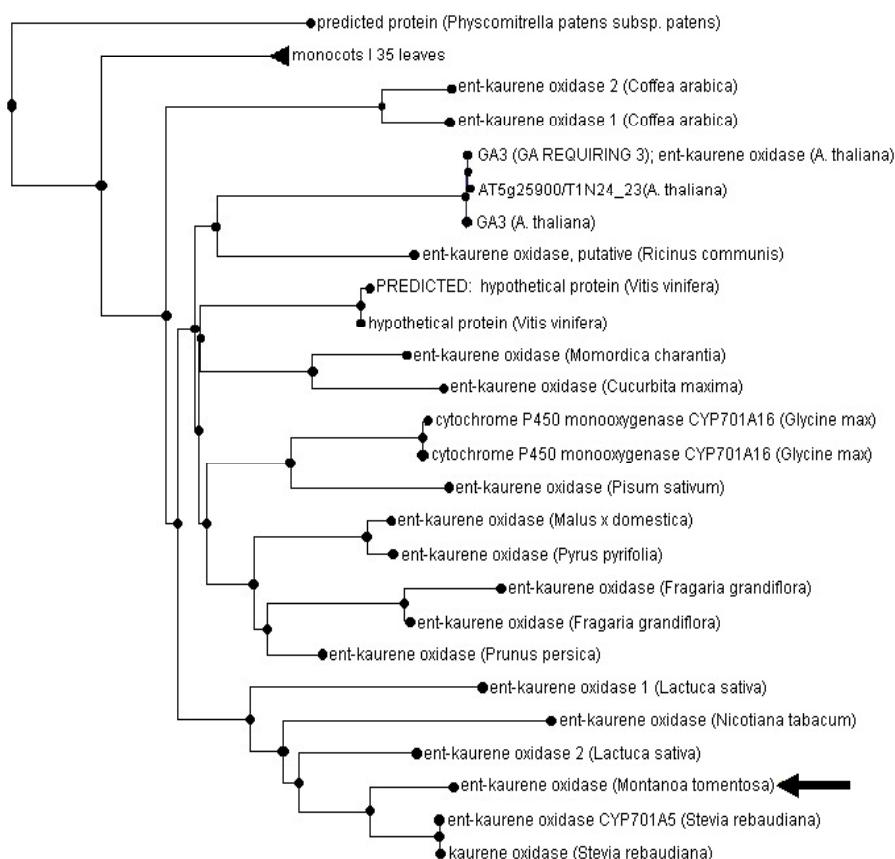
KA was extracted, identified, and quantified by GC-MS according to Villa-Ruano *et al.*, 2009. Identity of this diterpene was confirmed by their respective retention time and spectra as follows: KA: *m/z* 374 (M⁺ 86% rel. int.), 359 (97), 331 (66), 257 (100), 241 (68), 143 (29), 91 (30), 73 (81). Abietic acid was used as internal standard; all the assays were performed in triplicate.

RESULTS AND DISCUSSION

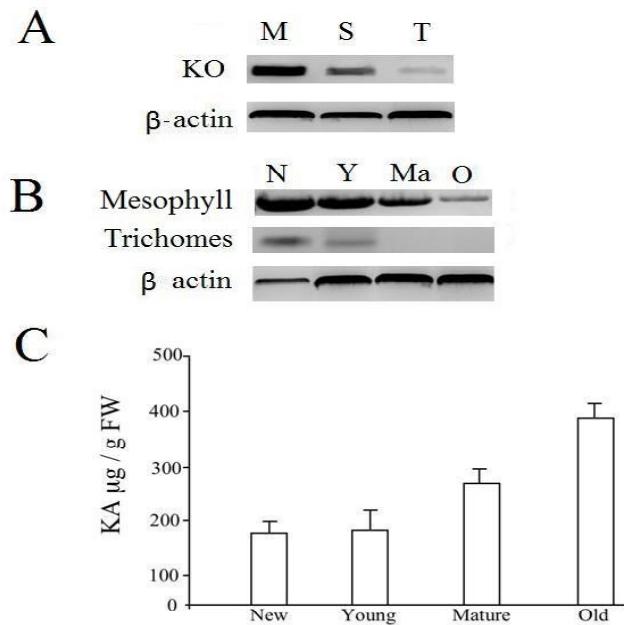
MtKO-cDNA nucleotide sequence and comparison to other sequences

Full-length MtKO-cDNA was successfully completed at both 5' and 3' ends having 1542 bp coding for 514 aa. Total amino acid sequence was analyzed and translated with ExPASY software (<http://ca.expasy.org/tools/dna.html>). When compared specifically to the *Stevia rebaudiana* KO (AAV42951) aa sequence, a high amino acid (87%) homology was shown. Important and conserved catalytic domains of P450 enzyme regions were found in the MtKO sequence (Davidson *et al.*, 2004) (Figure 1). Amino acid sequence com-

Mt	1	MDLTGILTIVNQTIGIDGMAVVLIVALSFWYLRLTFAFNHSRRSNNLPPVPEPGVPLLG	60
		MD +TG+LT-----I-I-G-AV-L-VAL-FWYL+++-----+SN+LP-VPEPGVPLLG	
Sr	1	MDAVTGLLTVPATAITIGGTAVALAVALIFWYLNKSYTSARRSQSNHLPRVPEPGVPLLG	60
Mt	61	NLLQLKEKKPYMTFTRWAETYGPIYSIKTGATSMVVVSSNEIAKEALVTRFQSISTRNLS	120
		NLLQLKEKKPYMTFTRWA-TYGPIYSIKTGATSMVVVSSNEIAKEALVTRFQSISTRNLS	
Sr	61	NLLQLKEKKPYMTFTRWAATYGPIYSIKTGATSMVVVSSNEIAKEALVTRFQSISTRNLS	120
Mt	121	KALKVLTADKTMVAMSODYNDYHKTVKRHLTSFLGPNAQKKHRIHRTMIENVSNQLYEF	180
		KALKVLTADKTMVAMSODY+DYHKTVKRHLT+-LGPNAQKKHRIHRT-M++N+S-QL+EF	
Sr	121	KALKVLTADKTMVAMSODYDDYHKTVKRHLTAVLGPNAQKKHRIHRTIMMDNISTQLHEF	180
Mt	181	VKNSTEQEEDLRLKIFQSELFGLAMRQALGKDVESLYVEDILNLTMRDEIFQVLVVDPM	240
		VKN+-EQEEVDLRLKIFQSELFGLAMRQALGKDVESLYVEDI+-TMNRDEIFQVLVVDPM	
Sr	181	VKNNEQEEDLRLKIFQSELFGLAMRQALGKDVESLYVEDLKITMRDEIFQVLVVDPM	240
Mt	241	GSIDVDWRDFFPYLKWKVPNKKFENTIQNMHIRREAVMKALIKEHNRIASGEKLN	300
		S+IDVDWRDFFPYLKWKVPNKKFENTIQ-M+IRREAVMK+LIKE+K-RIASGEKLN	
Sr	241	GAIIDVDWRDFFPYLKWKVPNKKFENTIQMYIRREAVMSLKIENKKRIASGEKLN	300
		-----A-----	
Mt	301	LLSDAHTLTDQQLLMSIWEPIIESSDTTMVTEWAIYELAKNPQIQDRLYRDIQSVCSD	360
		LLS+A-TLDQQLLMS+WEPIIIESSDTTMVTEWA+YELAKNPQ+QDRLYRDI+SVCGS+	
Sr	301	LLSEAQTLDQQLLMSLWEPIIIESSDTTMVTEWAMYELAKNPQIQDRLYRDIKSVCGSE	360
		-----B-----	
Mt	361	KITEENLSQLPYITAIFHETLRRHSPVPIIPLRHVHEDTVLGGYHVPAGTELAVNIYGCN	420
		KITEE+LSQLPYITAIFHETLRRHSPVPIIPLRHVHEDTVLGGYHVPAGTELAVNIYGCN	
Sr	361	KITEEHLSQLPYITAIFHETLRRHSPVPIIPLRHVHEDTVLGGYHVPAGTELAVNIYGCN	420
		-----C-----	
Mt	421	MEKNVWEDPEEWNPERFMKEKETIDFQRTMAFGGGKRCVAGSLQALLISCVGIGRMVQE	480
		M+KNVWE+PEEWNPERFMKE-ETIDFQ+TMAFGGGKRCVAGSLQALL-+-+GIGRMVQE	
Sr	421	MDKNVWENPEEWNPERFMKENETIDFQRTMAFGGGKRCVAGSLQALLTASIGIGRMVQE	480
Mt	481	EWKLKDMAQE DVNTIGLTTQMLRPLRAIKPRN	514
		EWKLKDM-QE+VNTIGLTTQMLRPLRA+IKPRN	
Sr	481	EWKLKDMDTQEVNTIGLTTQMLRPLRAIKPRN	514


Figure 1. Amino acid sequence alignment of KO enzymes from *M. tomentosa* (Mt) and *Stevia rebaudiana* (Sr). Middle sequence shows identical, equivalent (+) or different (-) amino acids between both proteins. Important and conserved catalytic domains of P450 enzyme regions are indicated under dotted lines. A domain is associated to substrate binding, B domain includes the EXXR sequence involved in positioning the haem-binding pocket, C domain contains the highly conserved PERF motif and D domain has the FXXGXRVCAG arrangement which is the active site associated to the Fe⁺⁺ haem-binding region.

parison of all reported plant KOs was carried out with Protein BLAST software (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>). ClustalW software from EMBL-EBI was used to search for similarities and the resulted dendrogram is shown in Figure 2 indicating that MtKO is quite similar to *S. rebaudiana* and *Lactuca sativa* enzymes. The high homology of this cDNA with corresponding sequences of *Arabidopsis thaliana* and *Stevia rebaudiana* predicts the same oxidation function to produce KA from *ent*-kaurene (Richman *et al.*, 1999). This MtKO-cDNA, is the second one isolated from an Asteraceae.


MtKO gene expression

Expression analysis of MtKO gene was performed by semi-quantitative RT-PCR assays in different tissues and at several

leaf stages. MtKO gene expression was observed in mesophyll and shoots (Figure 3A) and in new, young, mature and even in old mesophyll tissues (Figure 3B). In trichomes low expression levels were detected, mainly in new and young tissues, but apparently it was no expression in mature and old tissues (Figure 3A and 3B). Interestingly, an inverse relationship among MtKO gene expression and KA concentration was found in new, young, mature and old leaves (Figure 3B and 3C). High levels of MtKO transcript but low KA concentration in new and young leaves, may suggest a quick exchange of this precursor into other tetracyclic diterpenes as gibberellins, which could be required to leaf expansion and stem elongation (Olszewski *et al.*, 2002). So, KA may be

Figure 2. Dendrogram of all KO amino acid sequences currently reported. Position of MtKO is indicated at the bottom with the arrow. MtKO is closely related to the KO of *Stevia rebaudiana* and *Lactuca sativa*.

Figure 3 **(A)** Semi-quantitative PCR of *MtKO* gene expression in: M, leaf mesophyll; S, shoots and T, trichomes. **(B)** *MtKO* gene expression in: N, new; Y, young; Ma, mature and O, old tissues obtained from the aforementioned developmental stages. β -actin is the constitutive gene expressed as control. **(C)** KA abundance in *M. tomentosa* leaves of different developmental stages. Assays were made at least by triplicate. Bars indicate standard deviation.

used to produce GF, which is actively biosynthesized in these tissues (Villa-Ruano *et al.*, 2009) and accumulation of these diterpenes in mature and old tissues could be related to a defense mechanism. It is not yet clear if these results may be due to an active transport of KA from young to old tissues, or to a continuous accumulation of KA in the same tissue. Inactivation or posttranslational modification of the MtKO protein may also be involved. Further experiments are necessary to check these possibilities. Despite the existence of two KO sequences from Asteraceae plants (Richman *et al.*, 1999; Sawada *et al.*, 2008), there is not any information about their compartment expression and *in vitro* activities as reported here.

Initial detection of KA in glandular trichomes (Robles-Zepeda *et al.*, 2009), suggested that this diterpene could be par-

tially biosynthesized in these structures. In our work, most of the MtKO-mRNA was observed in the mesophyll, but it was also found in the trichomes. Although a very specific trichome purification procedure was used and we afforded high purity preparations, which decreases mesophyll contamination; we cannot discard that the trichome signal could be due to contamination with mesophyll cells. The efficiency of this trichome purification method was demonstrated in geranium when ω 5 fatty acids were found exclusively in trichomes and not in the trichome-free supporting tissue, indicating that the most likely site of ω 5 biosynthesis was the trichome (Yerger *et al.*, 1992). However, although the amplification power of PCR procedure is far beyond the finest metabolite analysis, it is not discarded an actively KA transport from mesophyll cells to trichomes.

The present work contributes to the knowledge of pharmacological diterpenes metabolism from *M. tomentosa*, specifically of KA. The proposal of a microsomal KA-C9 (11) desaturase enzyme (Villa-Ruano *et al.*, 2009) and the gene expression of KO in *M. tomentosa* as shown here to produce some of the most bioactive diterpenes in pharmacology and ecology like GF and KA respectively, suggests that these compounds play an important function in the plant physiology.

CONCLUSIONS

This work reports the isolation of a full-length cDNA from *Montanoa tomentosa* that encodes a putative *ent*-kaurene oxidase (MtKO) enzyme involved in kaurenoic acid biosynthesis.

The MtKO gene expression pattern studied in green tissues including shoots

showed that this gene is mainly expressed in young tissues.

Higher levels of KA were observed in old leaves than in young leaves showing an inverse relationship with MtKO gene expression, suggesting that accumulation of this compound in old leaves might be based in its transport from young to old tissues or from accumulation throughout leaf development. Accumulation of KA and the decreased amount of MtKO-mRNA in old tissue seems to be the result of the overall diterpenes metabolism in zoapalte plants.

ACKNOWLEDGEMENTS

We thank to Yesenia Pacheco Hernández from Instituto Tecnológico de Sonora, and Nestor Hernández Silva from Universidad Politécnica de Puebla for their generous participation in this work. We thank to CONACYT México for the postdoctoral fellowship to NVR.

REFERENCES

Bari, R., Jones, J. D. G. (2009) Role of plant hormones in plant defense responses. *Plant Molecular Biology* **69**: 473-488

Campos-Bedolla, P., Campos, G.M., Valencia-Sánchez, A., Ponce-Monter, H. (1997) Effect of kauranes from *Montanoa* spp. on rat uterus. *Phytotherapy Research* **11**: 11-16

Carro-Juárez, M., Cervantes, E., Cervantes-Mendez, M., Rodriguez-Manzo, G. (2004) Aphrodisiac properties of *Montanoa tomentosa* aqueous crude extract in male rats. *Pharmacology Biochemistry and Behavior* **78**: 129-134

Cotoras, T., Folch, C., Mendoza, L.S. (2004) Characterization of the antifungal activity on *Botrytis cinerea* of the natural diterpenoids kaurenoic acid and 3 beta-hydroxy-kaurenoic acid. *Journal of Agricultural and Food Chemistry* **52**: 2821-2826

Davidson, S.E., Smith, J.J., Helliwell, C.A., Poole, A.T., Reid, J.B. (2004) The pea gene *LH* encodes *ent*-kaurene oxidase. *Plant Physiology* **134**: 1123-1134

Enriquez, R.G., Barajas, J., Ortiz, B., Lough, A.J., Reynolds, W.F., Yu, M., León, I., Gnecco, D. (1997) Comparison of crystal and solution structures and ¹H and ¹³C chemical shifts for grandiflorenic acid, kaurenoic acid and monoginoic acid. *Canadian Journal of Chemistry* **75**: 342-347

Helliwell, C.A., Poole, A., Peacock, W.J., Dennis, E.S. (1999) Arabidopsis *ent*-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. *Plant Physiology* **119**: 507-510

Olszewski, N., Sun, T.P., Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. *Plant Cell. Suppl*: S61-S80

Richman, A.S., Gigzen, M., Starrat, A.N., Yang, Z., Brandle, E. (1999) Diterpene synthesis in *Stevia rebaudiana*: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. *The Plant Journal* **19**: 411-421

Robles-Zepeda, R.E., Lozoya-Gloria, E., López, M.G., Villarreal, M.L., Ramírez-Chávez, E., Molina-Torres, J. (2009) *Montanoa tomentosa* glandular trichomes containing kaurenoic acids chemical profile and distribution. *Fitoterapia* **80**: 12-17

Sawada, Y., Katsumata, T., Kitamura, J., Kawaide, H., Nakajima, M., Asami, T., Nakaminami, K., Kurahashi, T., Mitsuhashi, W., Inoue, Y., Toyomasu, T. (2008) Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness. *Journal of Experimental Botany* **59**: 3383-3393

Seo, M., Nambara, E., Choi, G., Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds. *Plant Molecular Biology* **69**: 463-472

Topcu, G., Gören, A.C. (2007) Biological activity of diterpenoids isolated from Anatolian *Lamiaceae* plants. *Records of Natural Products* **1**: 1-16

Vieira, H.S., Takahashi, J.A., Pimenta, L.P.S., Boaventura, D.M.A. (2005) Effects of kaurane diterpene derivatives on germination and growth of *Lactuca sativa* seedlings. *Zeitschrift für Naturforschung* **60**: 72-78

Villa-Ruano, N., Betancourt-Jiménez, M.G., Lozoya-Gloria, E. (2009) Biosynthesis of uterotonic diterpenes from *Montanoa tomentosa* (zoaplatle). *Journal of Plant Physiology* **166**: 1961-1967

Yamaguchi, S. (2008) Gibberellin metabolism and its regulation. *Annual Review of Plant Biology*. **59**: 225-251

Yerguer, E.H., Grazzini, R.A., Hesk, D., Cox-Foster, D.L., Craig, R., Mumma, R.O. (1992) A rapid method for isolating glandular trichomes. *Plant Physiology* **99**: 1-7

Zgoda-Pols, J.R., Freyer, A.J., Killmer, L.B., Porter, J.R. (2002) Antimicrobial diterpenes from the stem bark of *Mitrephora celebica*. *Fitoterapia* **73**: 434-438

Zhu, S., Gao, F., Cao, X., Chjen, M., Ye, G., Wei, Ch., Li, Y. (2005) The rice dwarf virus P2 protein interacts with *ent*-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. *Plant Physiology* **139**: 1935-1945