

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

https://doi.org/10.23913/ride.v10i19.549

Artículos Científicos

Comparison of Pair and Solo Programming through software

metrics in University Students’ Projects

Comparación de la programación por pares e individual a través de las métricas

de software de proyectos de estudiantes universitarios

Comparação da programação entre pares e individual através de métricas de

software para projetos de estudantes universitários

Ramón Ventura Roque Hernández

Universidad Autónoma de Tamaulipas, México

rvHernandez@uat.edu.mx

https://orcid.org/0000-0001-9727-2608

Jesús Cárdenas Domínguez

Universidad Autónoma de Tamaulipas, México

jesus.cardenas.d@gmail.com

https://orcid.org/0000-0001-9962-796X

Adán López Mendoza

Universidad Autónoma de Tamaulipas, México

aLopez@uat.edu.mx

https://orcid.org/0000-0003-4801-640X

Juan Antonio Herrera Izaguirre

Universidad Autónoma de Tamaulipas, México

jaHerrera@uat.edu.mx

https://orcid.org/0000-0002-4088-7772

Carlos Manuel Juárez Ibarra

Universidad Autónoma de Tamaulipas, México

cJuarez@docentes.uat.edu.mx

https://orcid.org/0000-0003-4310-8938

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Abstract

Introduction: Pair Programming is an agile practice that can be used both in software development

for business and in the teaching of programming in university courses. Objective: This paper

presents a research that was conducted to compare pair programming and solo programming in

university courses from the perspective of the metrics of the programs created by freshmen enrolled

in the Bachelor Degree in Information Technologies. Method: The participants were divided into

two groups: those who applied pair programming and those who programmed individually. Both

developed the same program under the same conditions. The following metrics were analyzed in

their programs: Number of Statements, Percentage of Comments, Maximum Depth, Average

Depth, Maximum Complexity, Number of methods per class, Number of calls per method and

Number of sentences per method. The values of the metrics were obtained by the Source Monitor

software. Then, Mann-Whitney tests were performed in SPSS. Results: Results showed that

students that worked in pairs wrote code with more statements (p=0.038, U=17.00) and a higher

level of depth (p=0.032, U=18.00) compared to solo programmers. Conclusions: This paper

contributes to the field of software development teaching by providing quantitative empirical

evidence on the effectiveness of pair programming. It is concluded that pair programming can be

an appropriate educational approach for the beginner’s software development university courses.

Keywords: Computer Programming, Software, Higher Education, Measurement.

Resumen

Introducción: La programación por pares es una práctica ágil que puede ser utilizada tanto en el

desarrollo de software en los negocios como en la enseñanza universitaria de la programación.

Objetivo: Este artículo presenta una investigación que se realizó para comparar la programación

por pares y en solitario en cursos universitarios considerando las métricas de los programas creados

por estudiantes de reciente ingreso a una carrera universitaria en tecnologías de la información.

Método: Se dividió a los participantes en dos grupos: uno aplicó la programación por pares y otro

programó individualmente. Ambos desarrollaron el mismo programa bajo las mismas condiciones.

Las siguientes métricas fueron analizadas en sus programas: número de sentencias, porcentaje de

comentarios, profundidad máxima, profundidad promedio, complejidad máxima, número de

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

métodos por clase, número de llamadas por método y número de sentencias por método. Los

valores de las métricas fueron obtenidos con el software Source Monitor. Posteriormente se

realizaron pruebas Mann-Whitney en SPSS. Resultados: Se observó que quienes trabajaron en

pares escribieron código con más sentencias (p=0.038, U=17.00) y mayor nivel de profundidad

(p=0.032, U=18.00) que quienes programaron individualmente. Conclusiones: Este artículo

contribuye a la enseñanza del desarrollo de software al proveer evidencia empírica cuantitativa de

la efectividad de la programación por pares. Se concluye que la programación por pares puede ser

un enfoque educativo apropiado para los primeros cursos universitarios de desarrollo de software.

Palabras clave: Programación informática, Software, Enseñanza superior, Medición.

Resumo

Introdução: A programação por pares é uma prática ágil que pode ser usada tanto no

desenvolvimento de software nos negócios quanto no ensino universitário de programação.

Objetivo: Este artigo apresenta uma investigação realizada para comparar a programação entre

pares e solo em cursos universitários, considerando as métricas dos programas criados por

estudantes recentes que ingressam em uma carreira universitária em tecnologia da informação.

Método: Os participantes foram divididos em dois grupos: um aplicado por pares e outro

programado individualmente. Ambos desenvolveram o mesmo programa sob as mesmas

condições. As métricas a seguir foram analisadas em seus programas: número de frases,

porcentagem de comentários, profundidade máxima, profundidade média, complexidade máxima,

número de métodos por classe, número de chamadas por método e número de frases por método.

Os valores métricos foram obtidos com o software Source Monitor. Posteriormente, os testes de

Mann-Whitney foram realizados no SPSS. Resultados: Observou-se que aqueles que trabalhavam

em pares escreviam código com mais sentenças (p = 0,038, U = 17,00) e maior nível de

profundidade (p = 0,032, U = 18,00) do que aqueles que programavam individualmente.

Conclusões: Este artigo contribui para o ensino do desenvolvimento de software, fornecendo

evidências empíricas quantitativas da eficácia da programação por pares. Conclui-se que a

programação por pares pode ser uma abordagem educacional apropriada para os primeiros cursos

universitários de desenvolvimento de software.

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Palavras-chave: Programação de computadores, Software, Ensino superior, Medição.

Fecha Recepción: Marzo 2019 Fecha Aceptación: Septiembre 2019

Introduction

In the beginning of software engineering there were methodologies that set order to the developing

process, but they were not flexible nor adaptable to the needs of the users, which were more

demanding every time. They were unsuitable for environments with changing requirements and

high priority for quality and delivery time. The developmental, incremental and agile

methodologies emerged later with simplified visions focused on people with the objective of

quickly obtaining good quality programs to satisfy the users’ requirements.

Extreme programming, or XP is an agile approach to create software that proposes a model guide

of development. XP eliminates the need to spend time in tedious and rigorous tasks, such as

creation and extensive revision of documents and handling of huge volume of requirements lists.

Among the variety of practices of XP, pair programming stands out, which consists of a couple of

programmers that always use the same computer with defined and changing roles.

The opinion about the use of this approach can be controversial. There are authors that have found

positive results and recommend it; on the other hand, other researchers prefer other means to work.

It has been found that the perceptions about the effectiveness of pair programming vary according

to the amount of time that the programmers have worked with it. For example, those who have

more experience working in pairs are convinced that this technique helps to reduce costs, while

those who have used it less, perceive the contrary (Sun, Marakas, & Aguirre-Urreta, 2016). In the

university area, previous research suggests that an agile approach will be useful in university

courses and that working in pairs could be beneficial for students. However, there are no studies

that lead to conclusive results. If pair programming is applied to beginner programming university

courses, in which way will it be useful? How will it affect the programs developed by the students?

The objective of this research was to compare pair programming and solo programming in a

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

beginner programming university course. For this comparison, the metrics of the projects that were

developed by freshmen using both work methods were taken into account.

The paper is organized as follows: the next section shows the software background and its

development; it emphasizes the agility, Extreme Programming and Pair Programming. Then, the

materials and methods used to carry out the investigation are explained. The results and their

discussion are presented afterwards. Finally, the conclusions and the possibilities for future works

are explored.

Background

Software Development

Software is a basic component of computer systems, which includes programs and data that make

the hardware work. According to Forouzan (Forouzan, 2003), software is divided into two

categories: system and application. System software allows the computer to efficiently manage the

resources such as memory, storage and processor. The application software provides features to

perform a concrete task oriented to directly help the final user. Regardless of the type of software

in question, creating it means to develop a program from instructions or statements that are written

using a programming language; its purpose is to tell the hardware what to do (Sánchez-Montoya,

1995). The set of instructions written by the programmer is called source code. Software

development means much more than only writing these instructions; it also includes the

participation of the work team in the different activities of the program creation and the

management of the process itself.

Software crisis is known as the phenomenon which main characteristic is the failure in software

development projects due to exceeded budgets, requirements and deadlines that are not met, and

the work team’s lack of skills. Software development is risky and hard to control due to the multiple

factors that intervene in the process. Brook (Brooks, 1987) acknowledges that complexity is part

of the software essence and not product of fate. In recent years, the methodologies to ensure better

process control have evolved with the aim of solving the crisis previously described. Software

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Engineering is the discipline that covers processes, methods and tools that are used to produce

computer programs. Thanks to this field of study, the activities of the work team can be efficiently

organized, and repeatable approaches can be applied to ensure the quality of the development

process and the final software.

Agility in software development

Agility is a combination of philosophy and development guidelines (Pressman, 2014), where

change is accepted and perceived as a regular phenomenon; therefore, it is possible to continuously

provide an adequate response to it. The agile philosophy is specified in the agile manifest for

software development (Agile Alliance, 2018), where fast software development has a higher

priority than documentation and people have greater value than processes. There are different agile

approaches, and each one accentuates the philosophies of the manifest in a larger or smaller scale;

however, all of them offer different ways to achieve the same objective. Some of the agile methods

emphasized by Martin (Martin, 2011) are: Extreme Programming (XP), Adaptive Development,

Scrum, Dynamic Systems Development Method, and Crystal.

Extreme Programming: an agile approach

Extreme programming is an agile approach used to develop software (Fowler, 2018) that includes

twelve practices aimed at obtaining working software in the shortest time. It is focused on people

that produce and use the software (Beck & Andres, 2004). One of its main advantages is that it

reduces the cost of implementing changes during the entire life cycle of the system. Software starts

in a small scale, and then it becomes more functional as a result of the client’s feedback, who is

part of the work team. Efforts are determined to obtain what is needed and not wasted in developing

additional features.

Pair programming: a practice of Extreme Programming

Pair programming is one of the fundamental practices of Extreme Programming. Two programmers

work together in the same space and with the same computer with the purpose of producing

software collaboratively through all the activities involved in this process. One of the programmers

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

takes the keyboard and mouse and plays a guiding role; the other one is the navigator, who is in

charge of observing, make timely revisions, manage tasks, locate faults, and see beyond the source

code (Beck & Andres, 2004). Both of them act as a single intelligent unit that adopts the

responsibility of everything that it does (Williams, Kessler, Cunningham, & Jeffries, 2000). Both

roles are periodically interchangeable.

Pair programming in university

The agile practices to develop software are important nowadays in the business world since they

have been proved to have a positive effect in projects. Experts consider that their use can be

encouraged from within the programming courses (Kropp & Meier, 2013; von Wangenheim, Savi,

& Ferreti Borgatto, 2013), where potential present and future software developers are trained.

Smith, Giugliano y DeOrio (2017) think that encouraging pair programming in university produces

relevant benefits for students. They studied the long term effects of using pair programming in

beginner courses and found its positive effect on academic performance in more advanced courses.

Pair programming promotes confidence, course completion and pass rates; this approach can be

beneficial for all students, especially for women because it overcomes many factors that may

prevent women’s participation in computer science (Werner, Hanks, & McDowell , 2005).

Pair programming has been researched from different perspectives; however, its application within

the classrooms has not been studied enough (Prabu & Duraisamy, 2015) and there are still

discrepancies in the results and opinions about its true effectiveness (Coman, Robillard, Silliti, &

Succi, 2014; Salleh, Mendes, & Grundy, 2014). For this reason, adopting an objective criteria in

the pair programming research against solo programming is relevant. Software metrics have been

used previously for this purpose. For instance, in Hulkko & Abrahamsson (2005) the defects in

projects made in C++ and Java were analyzed. The least amount of defects was found in one of the

projects that was developed in pairs.

On the other hand, the works of Tsompanoudi, Satratzemi, & Xinogalos (2016), Zacharis (2011)

and Mohd Zin, Idris, & Kumar Subramaniam (2006) have studied pair programming in university

courses using online tools; they have found positive results that recommend this approach as an

alternative to solo programming. In the same way, the work of McDowell, Werner, Bullock, &

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Fernald (2006) found favorable results with pair programming in regards to the performance,

confidence, and collaborative learning developed by the students.

Measurement and metric analysis

Measurement is a process through which a value is assigned to a programming feature with the

purpose of obtaining useful references to evaluate the software quality. On the other hand, the

metrics are features of software that can be objectively measured. There are metrics oriented to the

development process for example the average effort to perform a task; there are also metrics

oriented to product, for example, the number of lines of source code and the level of cyclomatic

complexity.

Sommerville (Sommerville, 2015) explains the use of a measurement performed in two different

scenarios to determine the usefulness of a tool. Measurements performed on software are used in

the decision making process oriented to resource optimization; they are also fundamental elements

for empirical software engineering, an area of study that uses experimentation and data gathering

for hypotheses testing in the software development field.

Method

Participants

This study had the participation of 26 freshmen obtaining a bachelor’s degree of Information

Technologies at a Mexican University (Note: This information was removed for confidentiality

reasons). They were taking the course “Fundamentals of Computer Science and Methodology of

Programming”. The students were randomly distributed as follows: 12 students were assigned to

work in 6 pairs and 14 students were assigned to work individually.

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Scenario

The students worked in the programming lab at the University campus, where this study was

conducted. This lab was chosen because the students work there regularly. This lab has 30

computers with the following features: i5 Intel Processor, 8GB of RAM memory, 500 GB of

storage capacity in hard drive and a 21” flat screen monitor. They used Visual Studio 2013 as

Integrated Development Environment (IDE) with Visual Basic. NET and a Console Project.

Instrument

The instrument used to evaluate the differences between the software development through pair

programming and solo programming was defined by the following metrics: number of sentences,

percentage of comment lines, maximum depth, average depth, maximum complexity, number of

methods per class, number of calls per method and number of statements per method, which were

obtained with the SourceMonitor software (Campwood, 2018) for each of the projects developed

by the participants.

Procedure

The research was conducted in a single regular two-hour session of the course “Fundamentals of

Computer Science and Programming Methodology”. Before starting, there was a waiting period of

15 minutes; students who arrived late were not allowed to participate. Details from this experiment

were not disclosed previously; thus, the students did not know they were going to be a part of it.

The participants were not given any compensation or incentive. First, an introductory twenty

minute talk was given. They were explained the way they would be working, and researchers

avoided encouraging trends in the participants’ perception of the studied approaches. Then, the

students were organized to work in one of two modes: pairs or solo. This was done using a list of

the attendees and assigning each student one of the two ways of working with the help of the evenly

distributed random numbers found in the Coss Bu (Coss Bu, 1995) materials. After that, they were

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

informed about the programming problem that they would have to solve (see Table 1). Everyone

was asked to develop the same program under the same conditions.

Table 1. Description of the program developed by students.

Develop a program to request a number from the user and perform the following operations with

it:

1)Add the same number to it.

2)Multiply it by the same number.

3)Divide it between (the same number plus 1).

4)Subtract (the same number minus 1) to it.

The program must also provide the sum of all these results plus the number that the user entered.

If this total sum is less than 30, it must print the message “the sum is too small”. If the total sum

is bigger than 50, it must print the message “the sum is too big”. No other message should be

printed otherwise.

Finally, the total sum must be stored and listed in a log that contains all the operations performed

so far; it must include the date and hour of execution as well.

Source: Own preparation

Those who worked in pairs were assigned only one computer, in which both students had to

program. Those who worked individually were assigned a computer for each one. Due to the design

of the facilities where the experiment was performed, all the students used adjacent computers, but

pairs and individual programmers were alternately distributed. The maximum time to develop the

program was one hour. For those who worked in pairs, the time to switch roles between guide and

navigator was five minutes. Such periods were timed, publicly announced and supervised to be

fulfilled. Copying code from other students was not allowed. Participants had free internet access

for surfing, but chats and social media were not allowed.

It was also presented to them a descriptive illustration of the program’s execution. This way, the

requirements were more evident. Finally, the participants were asked to compress their projects

into a single ZIP format file and upload it to the Blackboard Learning System (UAT, 2018). Then,

the research team downloaded and processed the projects with the Source Monitor software.

Finally, the results were entered in a Microsoft Excel spreadsheet and exported to the SPSS

Software (Wagner, 2014), where the statistical processes were performed.

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Type of study

This study had a “Posttest-only control group design” or “After-only with control design” as

described in the book of Zikmund, Barry, Carr, & Griffin (2013).

Conceptual and operational definition of variables

The studied variables in this research with their conceptual definition are presented in Table 2.

Their operational definition is described by the measurement of the metrics in each one of the

projects according to the Source Monitor Software (Campwood, 2018).

Table 2. Definition of variables in this research.

Variable
Conceptual Definition according to the documentation in Campwood

(2018).

Number of

sentences

Defines the reserved words and sentences of the language such as if, foreach,

do/until, for and while, the operations to assign values to variables, calls to

methods, definition of variables (Dim and Redim), methods, attributes, and

the exception sentences: try, catch, finally.

Percentage of

comments

It is the proportion of the number of lines of the program that are marked as

comments compared to the number of total lines of the program file.

Maximum depth
It refers to the maximum level of nesting in the source code (this is the

deepest level of code blocks within others).

Average depth
It is the weighted average of the depth of the blocks of all the sentences in a

program.

Maximum

complexity

It is the biggest complexity value observed in the methods of the analyzed

project.

Number of

methods per class

This metric is the total number of methods divided by the total number of

classes, interfaces and structures.

Number of calls

per method

It is the result of dividing the total number of calls to other methods by the

number of methods in that project.

Number of

sentences per

method

It is the result of dividing the total number of sentences within all the

methods of the project by the number of methods of that project.

Source: Own preparation

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Data Analysis

The projects developed by the students were analyzed with the Source Monitor software, and the

metrics indicated in Table 2 were obtained for each project. The results were entered in a Microsoft

Excel spreadsheet and then exported to SPSS, where a preliminary analysis of the data was

performed. Then, Mann-Whitney tests were conducted to see if the arithmetic differences observed

between the metrics of the groups were statistically significant with a 95% confidence reference.

Results

As a result of the analysis performed, the descriptive data of the metrics for each group was

obtained first. This information is summarized in Table 3, where the median and inter-quartile

range are presented for Solo and Pair Programming groups.

Table 3. Descriptive data of the analyzed metrics.

Metric

Solo Programming Pair Programming

Median
Inter-quartile

range
Median

Inter-quartile

range

Number of Sentences 17.50 12 28 3

Percentage

of comments
0 1.5 0 1.6

Maximum depth 2.00 2 4.00 0

Average depth 1.86 .30 2.14 .30

Maximum complexity 1.00 3 3.00 4

Number of methods per

class
0 0 0 0

Number of calls per

method
0 0 0 2.25

Number of sentences

per method
0 0 0 6.50

Source: Own preparation

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

The results of the Mann-Whitney test are presented in Table 4. This test was performed to find

significant differences in the metrics of both groups.

Table 4. Results of the Mann-Whitney test.

Metric PValue Mann-Whitney U

Number of Sentences .038 17.00

Percentage of comments .768 39.50

Maximum depth .032 18.00

Average depth .025 15.00

Maximum complexity .198 27.00

Number of methods per class .526 38.00

Number of calls per method .127 35.00

Number of sentences per method .476 37.50

Source: Own preparation

Finally, the mean ranks for the metrics with statistical significant differences (PValue <0.05)

according to the Mann-Whitney tests are shown in Table 5. It can be noted that pair programmers

used more sentences and wrote code with higher level of depth than solo programmers.

Table 5. Mean ranks obtained in Mann-Whitney tests for statistical significant results.

Metric Individual Pairs Conclusion

Number

of

sentences

8.71 14.67

The participants that

worked in pairs used

more instructions in their

programs than those who

worked alone.

Maximum

depth
8.79 14.50

The participants that

worked in pairs wrote

programs with more code

blocks than those who

worked alone.

Average

depth
8.57 15.00

Source: Own preparation

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Discussion

The Mann-Whitney tests revealed that only the number of sentences and the level of depth can be

considered significant. It was noted that the participants that worked in pairs wrote a higher number

of sentences and their code had higher levels of depth. This means that students that applied pair

programming used the reserved words of the programming language more frequently, and they

were also capable of writing source code with more structures of nested blocks. It is true that the

highest levels of nesting produce a more complex code because it can be more difficult to read and

analyze. Nevertheless, it must be considered that the selection and iteration instructions like the

ones needed to solve the exercise presented to the students in this research increase the depth

metrics naturally. We consider the values obtained by pair programmers as positive results of using

pair programming in a beginner university course. When working in pairs, the students produced

more elaborated programs that imply a better use of the programming language and a higher

performance in the participants. These findings suggest that the work in pairs could be more

efficient and give better results than solo programming, such as expressed by the theory of Kent

Beck (Beck & Andres, 2004). This is also consistent with the benefits of pair programming found

by Werner (Werner, Hanks, & McDowell , 2005) and with the opinions in the work of Smith,

Giugliano y DeOrio (2017).

It must be taken into consideration that we did not conduct an additional analysis of the individual

projects to investigate if the code written by the students could be improved to increase the

performance of the programs or the legibility of the source code. On the other hand, it should be

also contemplated that the participants were students without previous experience on collaborative

development; their only experience was on solo programming, since it is the way they usually

work.

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Conclusions

This paper presented a study based on the analysis of software metrics to compare the development

results of solo and pair programming in a university programming course. Statistical significant

differences were found between both groups in the number of sentences written and the level of

depth in the source code. Pair programmers wrote code with a higher number of statements and a

higher level of depth than solo programmers. These findings allow to foresee that the

implementation of pair programming in university courses could be appropriate to motivate

students to write more exhaustive programs with more structural richness. As future work, it is

suggested to increase the number of metrics studied in the projects developed by the participants

and to conduct a further analysis on each of the projects to evaluate the quality of the code. We

recommend that pair programming continue being used and studied in educational settings. This

will continuously generate more specific knowledge and will help to deeply understand how Pair

Programming contributes to learning.

Acknowledgements

Authors would like to express their deep gratitude to the Autonomous University of Tamaulipas

for providing them with valuable support and helpful resources while this research was being

conducted.

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

References

Agile Alliance (2018). Manifiesto por el Desarrollo Ágil de Software. Obtained from

http://agilemanifesto.org/iso/es/

Beck, Kent, & Andres, Cynthia (2004). eXtreme Programming explained. Embrace change. United

States: Addison Wesley.

Brooks, Fred (1987). No Silver Bullet: Essence and Accidents of Software Engineering. Computer,

20(4), 10-19. doi: 10.1109/MC.1987.1663532

Campwood (2018). Source Monitor. Obtained from

http://www.campwoodsw.com/sourcemonitor.html

Coman, I., Robillard, P., Silliti, A. & Succi, G. (2014). Cooperation, collaboration and pair-

programming: Field studies on backup behavior. The Journal of Systems and Software,

91(3), 124-134. doi: 10.1016/j.jss.2013.12.037.

Coss Bu, Raúl (1995). Simulación: Un enfoque práctico. México D.F., México: Limusa Noriega.

Forouzan, Behrouz (2003). Introducción a la ciencia de la computación. México, D.F., México:

Thomson.

Fowler, Martin (2018). Martin Fowler. Obtained from

http://www.martinfowler.com/articles/newMethodology.html

Hulkko, Hanna, & Abrahamsson, Pekka (2005). A multiple case study on the impact of pair

programming on product quality. Proceedings of International Conference on Software

Engineering. Saint Louis, MO, USA. doi: 10.1109/ICSE.2005.1553595

Kropp, Martin & Meier, Andreas (2013). Teaching Agile Software Development at University

Level. IMVS Fokus Report, 7(1), 15-20.

Martin, Robert (2011). Agile Software Development, Principles, Patterns, and Practices.

International Edition. United States: Prentice Hall.

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2006). Pair Programming Improves Student

Retention, Confidence, and Program Quality. Communications of the ACM, 49(8), 90-95.

doi:10.1145/1145287.1145293

Mohd Zin, A., Idris, S. & Kumar Subramaniam, N. (2006). Implementing Virtual Pair

Programming in E-Learning Environment. Journal of Information Systems Education,

17(2), 113-117. Obtained from: http://jise.org/Volume17/n2/JISEv17n2p113.pdf

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Prabu, P. & Duraisamy, S. (2015). Impact of Pair Programming for Effective Software

Development Process. International Journal of Applied Engineering Research, 10(8),

18969-18986.

Pressman, Robert (2014). Ingeniería del Software: un enfoque práctico (8th ed.). México, D.F.:

McGrawHill.

Salleh, N., Mendes, E. & Grundy, J. (2014). Investigating the effects of personality traits on pair

programming in a higher education setting through a family of experiments. Empirical

Software Engineering, 19(3), 714-752. doi: 10.1007/s10664-012-9238-

Sánchez-Montoya, Rafael (1995). Ordenador y discapacidad. Madrid: CEPE.

Smith, M., Giugliano, A., & DeOrio, A. (2018). Long Term Effects of Pair Programming. IEEE

Transactions on Education, 61(3), 1-8. doi:10.1109/TE.2017.277302

Sommerville, Ian (2015). Software Engineering. Estados Unidos: Pearson.

Sun, W., Marakas, G. & Aguirre-Urreta, M. (2016). The effectiveness of pair programming. IEEE

Software, 33(49), 72-79. doi: 10.1109/MS.2015.106

Tsompanoudi, D., Satratzemi, M. & Xinogalos, S. (2016). Evaluating the Effects of Scripted

Distributed Pair Programming on Student Performance and Participation. IEEE

Transactions on Education, 59(1), 24-31. doi:10.1109/TE.2015.2419192

UAT. (2018). Blackboard UAT. Obtained from https://campusenlinea-uat.blackboard.com/

von Wangenheim, C., Savi, R. & Ferreti Borgatto, A. (2013). SCRUMIA - An educational game

for teaching SCRUM in computing courses. The Journal of Systems and Software, 86(10),

2675-2687. doi:10.1016/j.jss.2013.05.030

Wagner, William (2014). Using IBM SPSS Statistics for Research Methods and Social Science

Statistics. United States: SAGE Publications.

Werner, L., Hanks, B. & McDowell, C. (2005). Want to Increase Retention of your Female

Students?. Computing Research News, 17(2).

Williams, L., Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strengthening the Case For Pair

Programming. IEEE Software, 17(4), 19-25. doi:10.1109/52.854064

Zacharis, Nick (2011). Measuring the Effects of Virtual Pair Programming in an Introductory

Programming Java Course. IEEE Transactions on Education, 54(1), 168-170.

doi:10.1109/TE.2010.2048328

 Vol. 10, Núm. 19 Julio - Diciembre 2019, e030

Zikmund, W., Barry, B., Carr, J. & Griffin, M. (2013). Business Research Methods. Mason, Ohio,

United States: Cengage Learning.

