_-:_7-/ e
: Revista Ilberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

https://doi.org/10.23913/ride.v10i19.549

Articulos Cientificos

Comparison of Pair and Solo Programming through software
metrics in University Students’ Projects

Comparacion de la programacion por pares e individual a través de las métricas

de software de proyectos de estudiantes universitarios

Comparagdo da programagdo entre pares e individual através de métricas de
software para projetos de estudantes universitarios

Ramoén Ventura Roque Hernandez
Universidad Autonoma de Tamaulipas, México
rvHernandez@uat.edu.mx
https://orcid.org/0000-0001-9727-2608

Jesus Cardenas Dominguez

Universidad Autonoma de Tamaulipas, México
jesus.cardenas.d@gmail.com
https://orcid.org/0000-0001-9962-796X

Adan Lépez Mendoza

Universidad Autonoma de Tamaulipas, México
alopez@uat.edu.mx
https://orcid.org/0000-0003-4801-640X

Juan Antonio Herrera lzaguirre
Universidad Autonoma de Tamaulipas, México
jaHerrera@uat.edu.mx
https://orcid.org/0000-0002-4088-7772

Carlos Manuel Juéarez Ibarra

Universidad Autonoma de Tamaulipas, México
cluarez@docentes.uat.edu.mx
https://orcid.org/0000-0003-4310-8938

intermacional Creative Commons

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Iberoamericana para la

- Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Abstract

Introduction: Pair Programming is an agile practice that can be used both in software development
for business and in the teaching of programming in university courses. Objective: This paper
presents a research that was conducted to compare pair programming and solo programming in
university courses from the perspective of the metrics of the programs created by freshmen enrolled
in the Bachelor Degree in Information Technologies. Method: The participants were divided into
two groups: those who applied pair programming and those who programmed individually. Both
developed the same program under the same conditions. The following metrics were analyzed in
their programs: Number of Statements, Percentage of Comments, Maximum Depth, Average
Depth, Maximum Complexity, Number of methods per class, Number of calls per method and
Number of sentences per method. The values of the metrics were obtained by the Source Monitor
software. Then, Mann-Whitney tests were performed in SPSS. Results: Results showed that
students that worked in pairs wrote code with more statements (p=0.038, U=17.00) and a higher
level of depth (p=0.032, U=18.00) compared to solo programmers. Conclusions: This paper
contributes to the field of software development teaching by providing quantitative empirical
evidence on the effectiveness of pair programming. It is concluded that pair programming can be

an appropriate educational approach for the beginner’s software development university courses.

Keywords: Computer Programming, Software, Higher Education, Measurement.
Resumen

Introduccion: La programacion por pares es una practica agil que puede ser utilizada tanto en el
desarrollo de software en los negocios como en la ensefianza universitaria de la programacion.
Objetivo: Este articulo presenta una investigacion que se realizd para comparar la programacion
por pares Yy en solitario en cursos universitarios considerando las métricas de los programas creados
por estudiantes de reciente ingreso a una carrera universitaria en tecnologias de la informacion.
Meétodo: Se dividié a los participantes en dos grupos: uno aplicé la programacién por pares y otro
programé individualmente. Ambos desarrollaron el mismo programa bajo las mismas condiciones.
Las siguientes métricas fueron analizadas en sus programas: nimero de sentencias, porcentaje de

comentarios, profundidad maxima, profundidad promedio, complejidad maxima, numero de

Esta obra esta bajo licencia
intermacional i O

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Iberoamericana para la

~(

Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

métodos por clase, nimero de Ilamadas por método y nimero de sentencias por método. Los
valores de las métricas fueron obtenidos con el software Source Monitor. Posteriormente se
realizaron pruebas Mann-Whitney en SPSS. Resultados: Se observo que quienes trabajaron en
pares escribieron codigo con mas sentencias (p=0.038, U=17.00) y mayor nivel de profundidad
(p=0.032, U=18.00) que quienes programaron individualmente. Conclusiones: Este articulo
contribuye a la ensefianza del desarrollo de software al proveer evidencia empirica cuantitativa de
la efectividad de la programacién por pares. Se concluye que la programacion por pares puede ser

un enfoque educativo apropiado para los primeros cursos universitarios de desarrollo de software.

Palabras clave: Programacion informatica, Software, Ensefianza superior, Medicion.

Resumo

Introdugdo: A programacdo por pares € uma pratica agil que pode ser usada tanto no
desenvolvimento de software nos negocios quanto no ensino universitario de programagao.
Objetivo: Este artigo apresenta uma investigacao realizada para comparar a programacgao entre
pares e solo em cursos universitarios, considerando as métricas dos programas criados por
estudantes recentes que ingressam em uma carreira universitaria em tecnologia da informacéo.
Método: Os participantes foram divididos em dois grupos: um aplicado por pares e outro
programado individualmente. Ambos desenvolveram 0 mesmo programa sob as mesmas
condicdes. As meétricas a seguir foram analisadas em seus programas: numero de frases,
porcentagem de comentarios, profundidade méxima, profundidade media, complexidade maxima,
numero de métodos por classe, nUmero de chamadas por método e numero de frases por método.
Os valores métricos foram obtidos com o software Source Monitor. Posteriormente, os testes de
Mann-Whitney foram realizados no SPSS. Resultados: Observou-se que aqueles que trabalhavam
em pares escreviam codigo com mais sentencas (p = 0,038, U = 17,00) e maior nivel de
profundidade (p = 0,032, U = 18,00) do que aqueles que programavam individualmente.
Conclusoes: Este artigo contribui para o ensino do desenvolvimento de software, fornecendo
evidéncias empiricas quantitativas da eficacia da programacdo por pares. Conclui-se que a
programacao por pares pode ser uma abordagem educacional apropriada para 0s primeiros cursos

universitarios de desenvolvimento de software.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

- /

: Revista Iberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Palavras-chave: Programacédo de computadores, Software, Ensino superior, Medicéo.

Fecha Recepcion: Marzo 2019 Fecha Aceptacion: Septiembre 2019

Introduction

In the beginning of software engineering there were methodologies that set order to the developing
process, but they were not flexible nor adaptable to the needs of the users, which were more
demanding every time. They were unsuitable for environments with changing requirements and
high priority for quality and delivery time. The developmental, incremental and agile
methodologies emerged later with simplified visions focused on people with the objective of
quickly obtaining good quality programs to satisfy the users’ requirements.

Extreme programming, or XP is an agile approach to create software that proposes a model guide
of development. XP eliminates the need to spend time in tedious and rigorous tasks, such as
creation and extensive revision of documents and handling of huge volume of requirements lists.
Among the variety of practices of XP, pair programming stands out, which consists of a couple of

programmers that always use the same computer with defined and changing roles.

The opinion about the use of this approach can be controversial. There are authors that have found
positive results and recommend it; on the other hand, other researchers prefer other means to work.
It has been found that the perceptions about the effectiveness of pair programming vary according
to the amount of time that the programmers have worked with it. For example, those who have
more experience working in pairs are convinced that this technique helps to reduce costs, while
those who have used it less, perceive the contrary (Sun, Marakas, & Aguirre-Urreta, 2016). In the
university area, previous research suggests that an agile approach will be useful in university
courses and that working in pairs could be beneficial for students. However, there are no studies
that lead to conclusive results. If pair programming is applied to beginner programming university
courses, in which way will it be useful? How will it affect the programs developed by the students?

The objective of this research was to compare pair programming and solo programming in a

Esta obra esta bajo licencia
intermacional i O

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

- /

: Revista Iberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

beginner programming university course. For this comparison, the metrics of the projects that were
developed by freshmen using both work methods were taken into account.

The paper is organized as follows: the next section shows the software background and its
development; it emphasizes the agility, Extreme Programming and Pair Programming. Then, the
materials and methods used to carry out the investigation are explained. The results and their
discussion are presented afterwards. Finally, the conclusions and the possibilities for future works
are explored.

Background

Software Development

Software is a basic component of computer systems, which includes programs and data that make
the hardware work. According to Forouzan (Forouzan, 2003), software is divided into two
categories: system and application. System software allows the computer to efficiently manage the
resources such as memory, storage and processor. The application software provides features to
perform a concrete task oriented to directly help the final user. Regardless of the type of software
in question, creating it means to develop a program from instructions or statements that are written
using a programming language; its purpose is to tell the hardware what to do (Sanchez-Montoya,
1995). The set of instructions written by the programmer is called source code. Software
development means much more than only writing these instructions; it also includes the
participation of the work team in the different activities of the program creation and the

management of the process itself.

Software crisis is known as the phenomenon which main characteristic is the failure in software
development projects due to exceeded budgets, requirements and deadlines that are not met, and
the work team’s lack of skills. Software development is risky and hard to control due to the multiple
factors that intervene in the process. Brook (Brooks, 1987) acknowledges that complexity is part
of the software essence and not product of fate. In recent years, the methodologies to ensure better

process control have evolved with the aim of solving the crisis previously described. Software

Esta obra esta bajo licencia
intermacional i O

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Iberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Engineering is the discipline that covers processes, methods and tools that are used to produce
computer programs. Thanks to this field of study, the activities of the work team can be efficiently
organized, and repeatable approaches can be applied to ensure the quality of the development

process and the final software.

Agility in software development

Agility is a combination of philosophy and development guidelines (Pressman, 2014), where
change is accepted and perceived as a regular phenomenon; therefore, it is possible to continuously
provide an adequate response to it. The agile philosophy is specified in the agile manifest for
software development (Agile Alliance, 2018), where fast software development has a higher
priority than documentation and people have greater value than processes. There are different agile
approaches, and each one accentuates the philosophies of the manifest in a larger or smaller scale;
however, all of them offer different ways to achieve the same objective. Some of the agile methods
emphasized by Martin (Martin, 2011) are: Extreme Programming (XP), Adaptive Development,

Scrum, Dynamic Systems Development Method, and Crystal.

Extreme Programming: an agile approach

Extreme programming is an agile approach used to develop software (Fowler, 2018) that includes
twelve practices aimed at obtaining working software in the shortest time. It is focused on people
that produce and use the software (Beck & Andres, 2004). One of its main advantages is that it
reduces the cost of implementing changes during the entire life cycle of the system. Software starts
in a small scale, and then it becomes more functional as a result of the client’s feedback, who is
part of the work team. Efforts are determined to obtain what is needed and not wasted in developing

additional features.

Pair programming: a practice of Extreme Programming

Pair programming is one of the fundamental practices of Extreme Programming. Two programmers
work together in the same space and with the same computer with the purpose of producing

software collaboratively through all the activities involved in this process. One of the programmers

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Iberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

takes the keyboard and mouse and plays a guiding role; the other one is the navigator, who is in
charge of observing, make timely revisions, manage tasks, locate faults, and see beyond the source
code (Beck & Andres, 2004). Both of them act as a single intelligent unit that adopts the
responsibility of everything that it does (Williams, Kessler, Cunningham, & Jeffries, 2000). Both
roles are periodically interchangeable.

Pair programming in university

The agile practices to develop software are important nowadays in the business world since they
have been proved to have a positive effect in projects. Experts consider that their use can be
encouraged from within the programming courses (Kropp & Meier, 2013; von Wangenheim, Savi,
& Ferreti Borgatto, 2013), where potential present and future software developers are trained.
Smith, Giugliano y DeOrio (2017) think that encouraging pair programming in university produces
relevant benefits for students. They studied the long term effects of using pair programming in
beginner courses and found its positive effect on academic performance in more advanced courses.
Pair programming promotes confidence, course completion and pass rates; this approach can be
beneficial for all students, especially for women because it overcomes many factors that may
prevent women’s participation in computer science (Werner, Hanks, & McDowell , 2005).

Pair programming has been researched from different perspectives; however, its application within
the classrooms has not been studied enough (Prabu & Duraisamy, 2015) and there are still
discrepancies in the results and opinions about its true effectiveness (Coman, Robillard, Silliti, &
Succi, 2014; Salleh, Mendes, & Grundy, 2014). For this reason, adopting an objective criteria in
the pair programming research against solo programming is relevant. Software metrics have been
used previously for this purpose. For instance, in Hulkko & Abrahamsson (2005) the defects in
projects made in C++ and Java were analyzed. The least amount of defects was found in one of the
projects that was developed in pairs.

On the other hand, the works of Tsompanoudi, Satratzemi, & Xinogalos (2016), Zacharis (2011)
and Mohd Zin, Idris, & Kumar Subramaniam (2006) have studied pair programming in university
courses using online tools; they have found positive results that recommend this approach as an

alternative to solo programming. In the same way, the work of McDowell, Werner, Bullock, &

Esta obra esta bajo licencia
intermacional ¢ e

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

- /

: Revista Ilberoamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Fernald (2006) found favorable results with pair programming in regards to the performance,

confidence, and collaborative learning developed by the students.

Measurement and metric analysis
Measurement is a process through which a value is assigned to a programming feature with the
purpose of obtaining useful references to evaluate the software quality. On the other hand, the
metrics are features of software that can be objectively measured. There are metrics oriented to the
development process for example the average effort to perform a task; there are also metrics
oriented to product, for example, the number of lines of source code and the level of cyclomatic

complexity.

Sommerville (Sommerville, 2015) explains the use of a measurement performed in two different
scenarios to determine the usefulness of a tool. Measurements performed on software are used in
the decision making process oriented to resource optimization; they are also fundamental elements
for empirical software engineering, an area of study that uses experimentation and data gathering

for hypotheses testing in the software development field.

Method

Participants

This study had the participation of 26 freshmen obtaining a bachelor’s degree of Information
Technologies at a Mexican University (Note: This information was removed for confidentiality
reasons). They were taking the course “Fundamentals of Computer Science and Methodology of
Programming”. The students were randomly distributed as follows: 12 students were assigned to

work in 6 pairs and 14 students were assigned to work individually.

Esta obra esta bajo licencia
intermacional i O

conocimien

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

~(

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Scenario

The students worked in the programming lab at the University campus, where this study was
conducted. This lab was chosen because the students work there regularly. This lab has 30
computers with the following features: i5 Intel Processor, 8GB of RAM memory, 500 GB of
storage capacity in hard drive and a 21” flat screen monitor. They used Visual Studio 2013 as

Integrated Development Environment (IDE) with Visual Basic. NET and a Console Project.

Instrument

The instrument used to evaluate the differences between the software development through pair
programming and solo programming was defined by the following metrics: number of sentences,
percentage of comment lines, maximum depth, average depth, maximum complexity, number of
methods per class, number of calls per method and number of statements per method, which were
obtained with the SourceMonitor software (Campwood, 2018) for each of the projects developed

by the participants.

Procedure

The research was conducted in a single regular two-hour session of the course “Fundamentals of
Computer Science and Programming Methodology”. Before starting, there was a waiting period of
15 minutes; students who arrived late were not allowed to participate. Details from this experiment
were not disclosed previously; thus, the students did not know they were going to be a part of it.
The participants were not given any compensation or incentive. First, an introductory twenty
minute talk was given. They were explained the way they would be working, and researchers
avoided encouraging trends in the participants’ perception of the studied approaches. Then, the
students were organized to work in one of two modes: pairs or solo. This was done using a list of
the attendees and assigning each student one of the two ways of working with the help of the evenly

distributed random numbers found in the Coss Bu (Coss Bu, 1995) materials. After that, they were

Esta obra esta bajo licencia

intermacional ¢ e Commons

Reconocimient nercial-

SinObrasDerivadas 4.0.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

informed about the programming problem that they would have to solve (see Table 1). Everyone
was asked to develop the same program under the same conditions.

Table 1. Description of the program developed by students.

Develop a program to request a number from the user and perform the following operations with
it:
1)Add the same number to it.
2)Multiply it by the same number.
3)Divide it between (the same number plus 1).
4)Subtract (the same number minus 1) to it.
The program must also provide the sum of all these results plus the number that the user entered.
If this total sum is less than 30, it must print the message “the sum is too small”. If the total sum
is bigger than 50, it must print the message “the sum is too big”. No other message should be
printed otherwise.
Finally, the total sum must be stored and listed in a log that contains all the operations performed
so far; it must include the date and hour of execution as well.

Source: Own preparation

Those who worked in pairs were assigned only one computer, in which both students had to
program. Those who worked individually were assigned a computer for each one. Due to the design
of the facilities where the experiment was performed, all the students used adjacent computers, but
pairs and individual programmers were alternately distributed. The maximum time to develop the
program was one hour. For those who worked in pairs, the time to switch roles between guide and
navigator was five minutes. Such periods were timed, publicly announced and supervised to be
fulfilled. Copying code from other students was not allowed. Participants had free internet access

for surfing, but chats and social media were not allowed.

It was also presented to them a descriptive illustration of the program’s execution. This way, the
requirements were more evident. Finally, the participants were asked to compress their projects
into a single ZIP format file and upload it to the Blackboard Learning System (UAT, 2018). Then,
the research team downloaded and processed the projects with the Source Monitor software.
Finally, the results were entered in a Microsoft Excel spreadsheet and exported to the SPSS

Software (Wagner, 2014), where the statistical processes were performed.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

~J(

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Type of study

This study had a “Posttest-only control group design” or “After-only with control design” as

described in the book of Zikmund, Barry, Carr, & Griffin (2013).

Conceptual and operational definition of variables

The studied variables in this research with their conceptual definition are presented in Table 2.

Their operational definition is described by the measurement of the metrics in each one of the

projects according to the Source Monitor Software (Campwood, 2018).

Table 2. Definition of variables in this research.

Conceptual Definition according to the documentation in Campwood

Variable (2018).

Defines the reserved words and sentences of the language such as if, foreach,
Number of | do/until, for and while, the operations to assign values to variables, calls to
sentences methods, definition of variables (Dim and Redim), methods, attributes, and

the exception sentences: try, catch, finally.

Percentage of
comments

It is the proportion of the number of lines of the program that are marked as
comments compared to the number of total lines of the program file.

Maximum depth

It refers to the maximum level of nesting in the source code (this is the
deepest level of code blocks within others).

It is the weighted average of the depth of the blocks of all the sentences in a

methods per class

Average depth
program.
Maximum It is the biggest complexity value observed in the methods of the analyzed
complexity project.
Number of | This metric is the total number of methods divided by the total number of

classes, interfaces and structures.

Number of calls

It is the result of dividing the total number of calls to other methods by the

per method number of methods in that project.

Number of . - -
sentences or It is the result of dividing the total number of sentences within all the
method PET 1 methods of the project by the number of methods of that project.

Source: Own preparation

Esta obra esta bajo licencia

intermacional ¢

e Commons

Reconocimient

nercial-

ObrasDerivadas 4.0.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la

Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Data Analysis

The projects developed by the students were analyzed with the Source Monitor software, and the
metrics indicated in Table 2 were obtained for each project. The results were entered in a Microsoft
Excel spreadsheet and then exported to SPSS, where a preliminary analysis of the data was
performed. Then, Mann-Whitney tests were conducted to see if the arithmetic differences observed

between the metrics of the groups were statistically significant with a 95% confidence reference.

Results

As a result of the analysis performed, the descriptive data of the metrics for each group was
obtained first. This information is summarized in Table 3, where the median and inter-quartile

range are presented for Solo and Pair Programming groups.

Table 3. Descriptive data of the analyzed metrics.

Solo Programming Pair Programming

Metric Median Inter-quartile Median Inter-quartile
range range

Number of Sentences 17.50 12 28 3
Percentage 0 15 0 16
of comments
Maximum depth 2.00 2 4.00 0
Average depth 1.86 .30 2.14 .30
Maximum complexity | 1.00 3 3.00 4
Number of methods per 0 0 0 0
class
Number of calls per 0 0 0 5 95
method
Number of sentences 0 0 0 6.50
per method

Source: Own preparation

Esta obra esta bajo licencia

intermacional ¢ e Commons

Reconocimient nercial-

SinObrasDerivadas 4.0.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la

Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

The results of the Mann-Whitney test are presented in Table 4. This test was performed to find

significant differences in the metrics of both groups.

Table 4. Results of the Mann-Whitney test.

Metric PValue Mann-Whitney U
Number of Sentences .038 17.00
Percentage of comments .768 39.50
Maximum depth .032 18.00
Average depth .025 15.00
Maximum complexity 198 27.00
Number of methods per class 526 38.00
Number of calls per method 127 35.00
Number of sentences per method 476 37.50

Source: Own preparation

Finally, the mean ranks for the metrics with statistical significant differences (PValue <0.05)
according to the Mann-Whitney tests are shown in Table 5. It can be noted that pair programmers

used more sentences and wrote code with higher level of depth than solo programmers.

Table 5. Mean ranks obtained in Mann-Whitney tests for statistical significant results.

Esta obra esta bajo licencia
intermacional ¢ e

Commons

conocimient nercial-

SinObrasDerivadas 4.0.

Vol. 10, Num. 19

Metric Individual | Pairs | Conclusion

The participants that
Number worked in pairs used
of 8.71 14.67 | more instructions in their
sentences programs than those who

worked alone.
Maximum 8.79 14.50 The pa_rticipa.nts that
depth worked in pairs wrote
Average programs with more code

8.57 15.00 | blocks than those who

depth

worked alone.

Source: Own preparation

Julio - Diciembre 2019, e030

= Revista Ilberocamericana para la
= — Investigacion y el Desarrollo Educativo
= ISSN 2007 - 7467

Discussion

The Mann-Whitney tests revealed that only the number of sentences and the level of depth can be
considered significant. It was noted that the participants that worked in pairs wrote a higher number
of sentences and their code had higher levels of depth. This means that students that applied pair
programming used the reserved words of the programming language more frequently, and they
were also capable of writing source code with more structures of nested blocks. It is true that the
highest levels of nesting produce a more complex code because it can be more difficult to read and
analyze. Nevertheless, it must be considered that the selection and iteration instructions like the
ones needed to solve the exercise presented to the students in this research increase the depth
metrics naturally. We consider the values obtained by pair programmers as positive results of using
pair programming in a beginner university course. When working in pairs, the students produced
more elaborated programs that imply a better use of the programming language and a higher
performance in the participants. These findings suggest that the work in pairs could be more
efficient and give better results than solo programming, such as expressed by the theory of Kent
Beck (Beck & Andres, 2004). This is also consistent with the benefits of pair programming found
by Werner (Werner, Hanks, & McDowell , 2005) and with the opinions in the work of Smith,
Giugliano y DeOrio (2017).

It must be taken into consideration that we did not conduct an additional analysis of the individual
projects to investigate if the code written by the students could be improved to increase the
performance of the programs or the legibility of the source code. On the other hand, it should be
also contemplated that the participants were students without previous experience on collaborative
development; their only experience was on solo programming, since it is the way they usually

work.

Esta obra esta bajo licencia
intermacional ¢ e Commons

Reconocimient nercial-

SinObrasDerivadas 4.0.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Conclusions

This paper presented a study based on the analysis of software metrics to compare the development
results of solo and pair programming in a university programming course. Statistical significant
differences were found between both groups in the number of sentences written and the level of
depth in the source code. Pair programmers wrote code with a higher number of statements and a
higher level of depth than solo programmers. These findings allow to foresee that the
implementation of pair programming in university courses could be appropriate to motivate
students to write more exhaustive programs with more structural richness. As future work, it is
suggested to increase the number of metrics studied in the projects developed by the participants
and to conduct a further analysis on each of the projects to evaluate the quality of the code. We
recommend that pair programming continue being used and studied in educational settings. This
will continuously generate more specific knowledge and will help to deeply understand how Pair

Programming contributes to learning.

Acknowledgements

Authors would like to express their deep gratitude to the Autonomous University of Tamaulipas
for providing them with valuable support and helpful resources while this research was being

conducted.

Esta obra esta bajo licencia
intermacional i O

Reconocimien

SinObrasDeriv

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

References

Agile Alliance (2018). Manifiesto por el Desarrollo Agil de Software. Obtained from
http://agilemanifesto.org/iso/es/

Beck, Kent, & Andres, Cynthia (2004). eXtreme Programming explained. Embrace change. United
States: Addison Wesley.

Brooks, Fred (1987). No Silver Bullet: Essence and Accidents of Software Engineering. Computer,
20(4), 10-19. doi: 10.1109/MC.1987.1663532

Campwood (2018). Source Monitor. Obtained from
http://www.campwoodsw.com/sourcemonitor.htmi

Coman, 1., Robillard, P., Silliti, A. & Succi, G. (2014). Cooperation, collaboration and pair-
programming: Field studies on backup behavior. The Journal of Systems and Software,
91(3), 124-134. doi: 10.1016/j.js5.2013.12.037.

Coss Bu, Raul (1995). Simulacién: Un enfoque practico. México D.F., México: Limusa Noriega.

Forouzan, Behrouz (2003). Introduccion a la ciencia de la computacion. Mexico, D.F., México:
Thomson.

Fowler, Martin (2018). Martin Fowler. Obtained from
http://www.martinfowler.com/articles/newMethodology.html

Hulkko, Hanna, & Abrahamsson, Pekka (2005). A multiple case study on the impact of pair
programming on product quality. Proceedings of International Conference on Software
Engineering. Saint Louis, MO, USA. doi: 10.1109/ICSE.2005.1553595

Kropp, Martin & Meier, Andreas (2013). Teaching Agile Software Development at University
Level. IMVS Fokus Report, 7(1), 15-20.

Martin, Robert (2011). Agile Software Development, Principles, Patterns, and Practices.
International Edition. United States: Prentice Hall.

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2006). Pair Programming Improves Student
Retention, Confidence, and Program Quality. Communications of the ACM, 49(8), 90-95.
d0i:10.1145/1145287.1145293

Mohd Zin, A., Idris, S. & Kumar Subramaniam, N. (2006). Implementing Virtual Pair
Programming in E-Learning Environment. Journal of Information Systems Education,
17(2), 113-117. Obtained from: http://jise.org/\VVolumel7/n2/JISEv17n2p113.pdf

Esta obra esta bajo licencia

intermacional Creative Commons

nercial-

StnObrasperivadas 4.0. Vol. 10, Nim. 19 Julio - Diciembre 2019, e030

Revista Ilberocamericana para la
Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Prabu, P. & Duraisamy, S. (2015). Impact of Pair Programming for Effective Software
Development Process. International Journal of Applied Engineering Research, 10(8),
18969-18986.

Pressman, Robert (2014). Ingenieria del Software: un enfoque practico (8th ed.). México, D.F.:
McGrawHill.

Salleh, N., Mendes, E. & Grundy, J. (2014). Investigating the effects of personality traits on pair
programming in a higher education setting through a family of experiments. Empirical
Software Engineering, 19(3), 714-752. doi: 10.1007/s10664-012-9238-

Sanchez-Montoya, Rafael (1995). Ordenador y discapacidad. Madrid: CEPE.

Smith, M., Giugliano, A., & DeOrio, A. (2018). Long Term Effects of Pair Programming. IEEE
Transactions on Education, 61(3), 1-8. doi:10.1109/TE.2017.277302

Sommerville, lan (2015). Software Engineering. Estados Unidos: Pearson.

Sun, W., Marakas, G. & Aguirre-Urreta, M. (2016). The effectiveness of pair programming. IEEE
Software, 33(49), 72-79. doi: 10.1109/MS.2015.106

Tsompanoudi, D., Satratzemi, M. & Xinogalos, S. (2016). Evaluating the Effects of Scripted
Distributed Pair Programming on Student Performance and Participation. IEEE
Transactions on Education, 59(1), 24-31. doi:10.1109/TE.2015.2419192

UAT. (2018). Blackboard UAT. Obtained from https://campusenlinea-uat.blackboard.com/

von Wangenheim, C., Savi, R. & Ferreti Borgatto, A. (2013). SCRUMIA - An educational game
for teaching SCRUM in computing courses. The Journal of Systems and Software, 86(10),
2675-2687. d0i:10.1016/j.jss.2013.05.030

Wagner, William (2014). Using IBM SPSS Statistics for Research Methods and Social Science
Statistics. United States: SAGE Publications.

Werner, L., Hanks, B. & McDowell, C. (2005). Want to Increase Retention of your Female
Students?. Computing Research News, 17(2).

Williams, L., Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strengthening the Case For Pair
Programming. IEEE Software, 17(4), 19-25. doi:10.1109/52.854064

Zacharis, Nick (2011). Measuring the Effects of Virtual Pair Programming in an Introductory
Programming Java Course. IEEE Transactions on Education, 54(1), 168-170.
d0i:10.1109/TE.2010.2048328

Esta obra esta bajo licencia

intermacional Creative Commons

nercial-

StnObrasperivadas 4.0. Vol. 10, Nim. 19 Julio - Diciembre 2019, e030

Revista Iberoamericana para la

Investigacion y el Desarrollo Educativo
ISSN 2007 - 7467

Zikmund, W., Barry, B., Carr, J. & Griffin, M. (2013). Business Research Methods. Mason, Ohio,
United States: Cengage Learning.

Esta obra esta bajo licencia
intermacional Creative Commons

Reconocimiento-NoComercial-
SinObrasDerivadas 4.0.

Vol. 10, Num. 19 Julio - Diciembre 2019, e030

