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ELECTRO-PHYTOREMEDIATION OF POLLUTED SOIL AT PILOT LEVEL USING MAIZE
Electrofitorremediación de suelo a nivel piloto empleando maíz
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ABSTRACT

This article presents the imposition of a direct current electric field in the presence of 
seeds and plants of Zea mays L., to rehabilitate soils contaminated with hydrocarbons 
at a pilot level, and its influence on some physical and chemical properties of the soil, 
such as pH, electrical conductivity, organic matter content in the soil, enzymatic activity, 
bulk density, apparent density, porosity, cation exchange capacity, and soluble cations 
such as potassium, sodium, and calcium. For this reason, the edaphological character-
ization was carried out before and after an electro-phytoremediation process of soils 
contaminated with hydrocarbons, using an IrO2-Ta2O5|Ti anode and a titanium cathode, 
applying a constant electric field of 0.2 V/cm for 4 h to maize seeds and stimulating 
their germination. After one week, an electric field of 0.1 V/cm for 8 h was applied to 
the maize seeds every day for 42 days to stimulate the growth of maize plants. This 
study demonstrated the removal of hydrocarbons by electro-phytoremediation. The ap-
plied electric field increases seed germination and plant growth of Zea mays L. These 
results were obtained with the different transport phenomena that develop when using 
the electric field in the soil Vertisol pelic understudy at a pilot level.
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RESUMEN

En este artículo se presenta la imposición de un campo eléctrico de corriente continua 
en presencia de semillas y plantas de Zea mays L. para rehabilitar suelos contamina-
dos con hidrocarburos a nivel piloto, y su influencia en algunas propiedades físicas y 
químicas del suelo como pH, conductividad eléctrica, contenido de materia orgánica, 
actividad enzimática, densidad aparente y real, porosidad, capacidad de intercambio 
catiónico y cationes solubles como potasio, sodio y calcio. Por tal motivo se realizó la 
caracterización edafológica antes y después de un proceso de electrofitorremediación 
de suelos contaminados con hidrocarburos, en el cual se empleó un ánodo de IrO2-
Ta2O5|Ti y un cátodo de titanio y se aplicó un campo eléctrico constante de 0.2 V/cm 
por 4 h a semillas de maíz, con el fin de estimular su germinación. Después de una 
semana, se aplicó un campo eléctrico de 0.1 V/cm por 8 h al día durante 42 días para 
estimular el crecimiento de las plantas de maíz. Una vez demostrada la remoción de 
hidrocarburos por electrofitorremediación, se comprobó que, debido al campo eléctrico 
aplicado, se incrementaron la germinación de semillas y el crecimiento de plantas de 
Zea mays L. por los diferentes fenómenos de transporte que se desarrollan al aplicar 
el campo eléctrico en el suelo Vertisol pélico en estudio a nivel piloto.

INTRODUCTION

An ecosystem is a unit of organisms interacting 
with each other and the abiotic components in a given 
space. The system’s flow of material and energy re-
mains in dynamic equilibrium. Soil is a significant 
component of all terrestrial ecosystems, and it is an 
ecosystem by itself since it contains many organisms 
interacting between themselves and with the soil (van 
der Putten et al. 2013). The soil is characterized by 
its chemical, physical, or biological properties. For 
example, the chemical composition and its physical, 
structural properties are determined by the geologi-
cal material from which it developed, the plants that 
exist on the soil, topography, atmospheric factors 
that have influenced the development of the soil, and 
specific changes due to human activity (Delgado and 
Gómez 2016).

These characteristics are intimately related to soil 
quality. Typically, the primary scientific emphasis is 
on those required to satisfy human requirements, in-
cluding agriculture, housing, and industrial activities, 
among many others. Hence, soil degradation refers 
to the decrease in quality values due to poor manage-
ment, which is frequently related to human activities 
or unexpected environmental or weather events that 
lead to a loss of soil productivity. These losses are 
typically caused by changes in nutrient availability 
and soil organic matter, structure properties, and an 
accumulation of toxic electrolytes that damage the 
development of the vegetal cover (Cang et al. 2012).

The formation and evolution of soils lead to dif-
ferent profiles or soil types. Therefore, soils can be 

classified according to various criteria, including: (1) 
the intrinsic characteristics of the soil, which depend 
on the geological processes that formed or altered it; 
(2) its properties such as permeability, salinity, and 
composition, which are closely related to the factors 
of formation; and (3) their suitability for various uses, 
mainly agricultural (FAO 2020, 2022). 

There are many different soil types, including 
Vertisol (from vertex, ‘mixed’ in Latin), with 30% 
or more clay in all horizons to a depth of 50 cm. 
Vertisol exhibits sliding sides that form wedge-
shaped aggregates and usually have cracks that open 
and close periodically related to soil moisture. With 
Vertisol, clay content can reach 90% because this 
soil category originates from pyroclastic deposits. 
In general, Vertisol-type soils are dark in color and 
lack distinct horizons; clays that dominate are the 
smectites, which have a high cation exchange capac-
ity, so these soils tend to have high natural fertility 
(Coulombe et al. 2000). 

Vertisol-type soils are the most productive for 
plant production because of their ability to exchange 
cations and maintain high moisture content. They are 
excellent for producing vegetables such as onion, 
watermelon, tomato, and melon; they even offer 
excellent yields for wheat, sorghum, and maize. 

Due to human activities, it has become impera-
tive to develop alternatives for the physical recovery 
and treatment of contaminated soils and increase 
agricultural production by enhancing soils to pro-
mote their inherent properties (Murr 1964, Heil 
and Sposito 1997). Since soil pollution negatively 
affects plant communities and animals, including 
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humans, many techniques are being developed 
to remove soil contaminants. These technologies 
include various physical, chemical, and biological 
treatments. 

Electro-phytoremediation (EPhyR) is an environ-
mental-friendly, economical, effective, and easy-to-
use alternative that can be employed to remediate 
soils contaminated with metals and non-metals 
(Sharma and Reddy 2004). It is also used to treat 
soils contaminated by hydrocarbons (HC) or those 
exhibiting a mixture of both inorganic and organic 
contaminants (Abioye 2011, Chirakkara et al. 2015). 
For the proper use of EPhyR, it is essential to under-
stand the chemistry of the soil since it contributes 
to different aspects of soil fertility and the health of 
organisms correlated to various biological processes.

Electrokinetic remediation (EKR) is a process 
that requires the application of direct current through 
fine-grained soils using almost an anode and a 
cathode. This process can be performed in situ and 
is effective for fine-grained soils of low hydraulic 
permeability, which otherwise are difficult to treat 
by other methods. EKR removes toxic metals, radio-
nuclides, and organic contaminants from saturated 
or unsaturated soils, sludge, and sediments (Hooda 
2007; Cameselle and Reddy 2012, Hahladakis et 
al. 2013, 2014, 2016, Pérez-Corona et al. 2013a, b, 
Li et al. 2016). 

EPhyR of hydrocarbon-contaminated soils uses 
plants, such as maize (Zea mays L.), a C4 metabolism 
plant as previously reported by Liao et al. (2015). 
Maliszewska-Kordybach and Smreczak (2003) and 
Zhang et al. (2009) studied the growth and bio-
chemical responses of maize plants growing in soil 
contaminated with crude oil. These researchers also 
analyzed the plant tissues and found no hydrocarbon 
accumulation, although there was a decrease in the 
concentration of hydrocarbons in the soil. Besides, 
it has been reported that maize can be employed to 
remediate soils contaminated with pyrene (removing 
21-31%) and cadmium (12-27% removal). In this 
case, maize might be a suitable candidate for reme-
diating toxic metals and hydrocarbon-contaminated 
soil (Zhang et al. 2009).

Since their discovery, modified IrO2-Ta2O5|Ti 
electrodes have been used for the remediation of 
polluted water (Comninellis and Pulgarin 1993). 
Several authors have reported the use of this type 
of anode coupled with titanium (Ti) cathodes for 
the remediation of water and soil (Comninellis and 
Pulgarin 1993, Ihoş et al. 2005, Zhang et al. 2009, 
Lee et al. 2011, Pérez-Corona et al. 2013a, b, Herrada 
et al. 2016, 2018). Also, it is widely known that H+ 

and –OH are generated as the result of an electrolysis 
reaction near the IrO2-Ta2O5|Ti anode following es-
sential responses (1) and (2):

H2O ↔ ½ O2 + 2H+ + 2e–	 (1)

2H2O + 2e– ↔ H2 + 2HO–	 (2)

When these ions are formed, they move towards 
the oppositely charged electrodes, producing an 
acidic or basic environment near the Ti cathode and 
IrO2-Ta2O5|Ti anode, respectively (Herrada et al. 
2016).

This paper aims to show the effect of electro-
chemically imposing a direct current electric field 
to remove hydrocarbons from polluted soils; the 
impact of applying an electric field on some physical 
and chemical properties of soil; the increase of the 
germination seeds and plants growth of Zea mayz L., 
because maize plants have the capacity to bioaccumu-
late and remediate polluted soils (Phillips et al. 2006).

MATERIALS AND METHODS

Plant material
Maize seeds (Zea mays L.) were obtained for the 

EPhyR studies from a local supply house in Santiago 
de Querétaro, Mexico. Before their use, each seed 
was vigorously washed using a 1% commercial 
liquid aqueous surfactant solution (containing alkyl 
ether sulfate ethoxylate), followed by a triple rinse in 
distilled water. Seeds were stored in a dry and cool 
environment until use, as described in the literature 
(García-Rubio and Malda-Barrera 2010).

Soil sampling
A clean agricultural-purpose Vertisol pelic was 

collected near a farm in Sanfandila, Querétaro, Mexi-
co, and a hydrocarbon-polluted Vertisol pelic was 
collected close to a refinery near Salamanca, Gua-
najuato, Mexico. Soil samples were collected from 
the superficial layer of the site (between 0 and 0.2 m 
for the natural ground level). These were transported 
in sterilized glass containers and kept at 4 ºC until 
used. They were dried for at least two weeks at room 
temperature in the dark, according to the US-EPA 
standards from the series SW82 (EPA 1970), before 
experimentation. Subsequently, the soil samples were 
sieved using a 2 mm mesh to remove roots, gravel, 
and non-soil components, considering the clean soil 
(CS) and the hydrocarbon-polluted soil (PS).
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Experimental set-up
Electrodes were deployed in a 1D configuration 

(Fig. 1a) during this pilot-scale experimental set, 
as reported in the literature (Herrada et al. 2016). 
Electrodes used in this research were prepared as 
previously reported by Acosta-Santoyo et al. (2016, 
2017, 2018), and Herrada et al. (2016, 2018), using 
Ti as a cathode and IrO2Ta2O5|Ti as the anode in the 
presence of 0.1 M NaOH as a supporting electrolyte. 
The dimensions of each Ti electrode were 0.5 × 4.0 
× 20 cm (Fig. 1a). A modified IrO2-Ta2O5|Ti anodic 
electrode was placed in front of a Ti cathode. Six 
rows of maize seeds were sown in the cell separated 
by 5 cm, and seven lines of maize seeds were sepa-
rated by 8 cm between them (Fig. 1b). Each cell 
was prepared to a pilot-scale experimental set with 
hydrocarbon-polluted Vertisol pelic and Vertisol 
pelic alone, including electro-phytoremediation 
(EPhyR), electrokinetic remediation (EKR), phyto-
remediation (PhyR), and soil control (A, B, C, and D 
in Fig. 1b), and soil at the beginning of the EPhyR. 
The seed was subjected to electrical stimulation by a 
0.2 V/cm electrical field for 4 h with the electrodes 
connected to a GP-4303UP power supply. Seeds 
were left undisturbed for one week to germinate. 
Finally, they were treated daily by applying a 0.1 
V/cm direct current field for 8 h during 42 days, 
as reported in a previous study, to increase the 
germination of seeds and growth of plants (Acosta-
Santoyo et al. 2016, 2017, 2018). The electric field 
was activated for 4 h in the morning and 4 h in the 
afternoon (Yi et al. 2012). 

An electric field was applied as electrical stimu-
lation, as reported in previous studies (Dannehl et 
al. 2011, Yi et al. 2012), established at 0.2 V/cm. 
This methodology was developed for Vertisol pelic 
and hydrocarbon-polluted Vertisol pelic (Fig. 1ii). 
Electrical stimulation of the maize seeds in CS is 
called electro-farming (EF; Dannehl et al. 2011, Yi 
et al. 2012, Acosta-Santoyo et al. 2016, 2017, 2018). 
Applying electrical stimulation to a PS is called elec-
trokinetic remediation (Pérez-Corona et al. 2013a, b), 
while treating a PS with plants is called electro-
phytoremediation (Acosta-Santoyo et al. 2018).

The agricultural considerations for the develop-
ment of the plants were carried out according to the 
specifications for Zea mays L., as cited in the litera-
ture (Stenz et al. 1998). An analog Vernier caliper 
was used to determine the parameters related to the 
aerial and radical structure of the analyzed plants 
(Wawrecki and Zagórzska-Marek 2007, Pick et al. 
2011, Shao et al. 2017). The germination percent-
age was calculated by counting the total number of 
seeds that broke dormancy, deemed to have occurred 
when the cotyledon emerged. Germinated seeds were 
measured at the end of the first week, after which the 
seeds were counted daily (Pérez-Corona et al. 2013a, 
b, Acosta-Santoyo et al. 2016, 2017, 2018). 

Analytical techniques
Soil samples were taken from the experimen-

tal containers according to the Mexican Standard 
NMX-AA-132-SCFI-2006 (SCFI 2006). Complete 
plants were collected, dried for further analysis, 
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Fig. 1.	 (a) Representation of the layout and size of electrodes used in the 
pilot-scale experiments. (b) Schematic representation of the division 
of the electrochemical cell for sampling aimed to analyze the physical 
and chemical properties of soil between the anode (+) and cathode (–) 
in Vertisol pelic and polluted Vertisol pelic by hydrocarbons, where 
(A) electro-phytoremediation, (B) electrokinetic remediation, (C) 
phyto-remediation, and (D) soil control (D).
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and kept under appropriate and controlled labora-
tory conditions. All analytical procedures were per-
formed according to the Mexican Official Standard 
NOM-021-SEMARNAT-2000 (SEMARNAT 2000), 
with modifications to adjust the soil characteristics 
employed in these experiments. Soil samples were 
evaluated for pH, electrical conductivity, soil organic 
matter content, soluble ions such as potassium, cal-
cium, and sodium, and cation exchange capacity. The 
enzymatic activity was determined using dehydroge-
nase activity, which is the reduction of 2,3,5-triphenyl 
tetrazolium chloride (TTC) to triphenyl formazan 
(TPF; Henríquez et al. 2014). Triplicate soil samples 
were dried in the dark at room temperature and passed 
through a 2 mm mesh screen to homogenize the soil 
particles to 2 mm for all the determinations. For all 
the results obtained, the average and standard devia-
tion are shown over all <in all the graphics?; please 
revise>graphics in this paper.

RESULTS AND DISCUSSION

EPhyR of hydrocarbon-polluted soils
The results show that EPhyR increases the 

germination of maize seeds in 30% in the polluted 
soil (PS), and 80% (the highest germination) in 
the control soil without HC (Fig. 2a). Applying 
the 0.2 V/cm for 4 h to the maize seeds, EF can be 
developed, which showed 85% of the maize seeds’ 
germination.

Furthermore, the results showed improved ger-
mination of 50% in EPhyR of polluted soils after 
treatment was applied compared to PS without it. 
This effect might be due to slight changes in the 
soil’s physical and chemical properties according to 
the Mexican Official Standard NOM-021-SEMAR-
NAT-2000 (SEMARNAT 2000) indicated in the 
analytical techniques section of this paper and the 
seeds’ direct stimulation. After six weeks of electrical 
stimulation of the maize plants, the maize seedlings 
were analyzed. The maize plant showed the highest 
height (Fig. 2b) in the clean soil (CS) with 19 cm, fol-
lowed by the electro-phytoremediation soil (EPhyR) 
with 17 cm, then in the electrokinetic remediated soil 
(EKR) with 15 cm. The lowest height of maize plant 
was shown in polluted soil (PS) with 10 cm. EPhyR 
helps to increase the plant growth, which was evalu-
ated with Soxhlet extraction of HC in different depths 
of the cell used for EPhyR: 5, 15, and 25 cm, close 
to the anode, to the middle cell, or the cathode (CA, 
MC, and CC in Fig. 3, respectively). It was evident 
that the highest HC removal with IrO2-Ta2O5|Ti, 
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Fig. 2.	 (a) Germination percentage (%) of maize seeds applying 
0.2 V/cm by 4 h; and (b) maize plant growth (in cm) ap-
plying 0.1 V/cm by 8 h during 42 days in clean soil (CS), 
polluted soil (PS), electrokinetic remediation (EKR), and 
electro-phytoremediation (EPhyR). Error bars represent 
the standard deviation.
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which promotes hydroxyl radicals, as reported be-
fore (Acosta-Santoyo et al. 2016, 2017, 2018), was 
obtained close to the anode. Additionally, close to the 
anode (CA) at a depth of 25 cm in the cell of EPhyR, 
it showed an HC removal efficiency of 43%, while at 
a depth of 15 and 5 cm, the HC removal efficiency 
was 41%. In contrast, close to the cathode (CC) in the 
cell of EPhyR, the HC removal efficiency was 24% 
at 25 cm, which decreased at a depth of 15 and 5 cm 
(21 and 10%, respectively). In the middle cell (MC) 
of the EPhyR, the HC removal efficiency was 14, 36, 
and 31% at a depth of 25, 15, and 5 cm, respectively.

HC was moved from anode to cathode by electro-
osmosis, for its consequent biodegradation by the 
maize plants included in the cell of EPhyR. This 
behavior has been reported by Pérez et al. (2013), 
Liao et al. (2015), and Acosta-Santoyo et al. (2017, 
2018). EPhyR allows the cotyledon to emerge as the 
pollutant content is reduced. Furthermore, it en-
hances the migration of nutrients and modifies soil 
parameters (porosity, clay, silt, and sand content) 
during the HC removal period. EKR increases the 
bioavailability of HC (Balasubramaniyan 2015) or 
humidification.

Subsequently, the seeds’ germination depends on 
the exposure time to the pollutant. After a one-week 
low-intensity treatment (Fig. 4a), the electric field 
was changed to 1.0 V/cm for 8 h. The plant growth 
became evident in the first 35 days (Fig. 4b). After 
one week of the electric field application during the 
growth period, an increase in the maize size was ob-
served applying the electric field in clean soil. This is 
because in EF, the plant growth was higher (6.5 cm) 
than in CS (5.5 cm), and in the presence of HC, the re-
sults were similar in PS (4.0 cm) and EPhyR (4.2 cm). 
A significant difference in the maize plant growth was 
observed after 35 days (Fig. 4n), when EF increased 
the plant size by more than 10 cm on average (60 cm) 
compared with the CS (45 cm). A similar be-
havior was observed after 42 days (Fig. 4c), 
when the EF showed the highest maize plant growth 
(72.3 cm), followed by the CS (50 cm), PS (20.54 
cm), and EPhyR (21.08 cm). 

However, germination was affected more than the 
plant growth during the experiments, which must be 
related to the presence of pollutants in the soil. The 
plants in the EPhyR area tended to exhibit improved 
development after one month of treatment, compared 
with the contaminated soil. Thus, plants showed a 
good growth after EPhyR, indicating reduced levels 
of contaminants on these sites by the mobilization 
of ions between soil particles (Sidoli et al. 2003, Al-
adjajiyan 2012, Acosta-Santoyo et al. 2016), which 

is increased by the IrO2-Ta2O5|Ti anode and the Ti 
cathode (Méndez et al. 2012).

Edaphological characterization before and after 
the EPhyR of polluted hydrocarbon soil

Before and after 42 days of EPhyR, physical and 
chemical measurements were obtained from the dif-
ferent soil samples to determine changes in the other 
soil properties in this study. A change in the color of 
the PS compared to EPhyR was observed. The Mun-
sell soil color chart changed from 2.5Y 3/2 black to 
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3/2 10YR brownish-black, suggesting some removal 
of pollutants (Sánchez-Marañón et al. 2005). The soil 
texture values showed a slight increase of silt after 
the EPhyR, from 15.62 to 24.80%. Clay increased 
from 4.22 to 4.60%, and sand decreased from 79.53 
to 70.60%, while there was an increase in porosity, 
from 56.43 to 60.97%, which could be due to the 
aggregation of particles by the presence of hydro-
carbon, as reported by Pérez-Corona et al. (2013a, b) 
using zeta potential values and the distribution of 
particle size (Méndez et al. 2019). This occurred 
since the hydrocarbon-soil particle interactions were 
likely broken down after applying the electric field, 
which initiated different transport phenomena such as 
electromigration, electroosmosis, and electrophoresis 
(Pérez-Corona et al. 2013a, b, Méndez et al. 2019) 
to release the hydrocarbon contaminants in the soil 
aggregates, leaving behind silt and/or clays and dis-
tributed organic compounds. Additionally, during 
EPhyR, significant changes were observed in most 
of the values, which can be further attributed to the 
influence of the maize plants on soil. Humidity values 
increased from 46.85 to 64.50% after EPhyR, pos-
sibly due to the addition of the supporting electrolyte 
(NaOH). On the other hand, their levels might have 
increased directly from plant development. These 
higher values benefit the microorganisms present in 

the soil, contributing to the development of plants 
and the removal of pollutants from the soil. 

The soil pH was determined for each sample, 
where the CS had a value of 8.2 (Fig. 5a). In the 
cells where plants were grown (PhyR), this value 
increased to 8.3. For the soil treated with 1.0 V/cm 
direct current electric fields (EPhyR), a pH of 7.9-8.0 
throughout the cell was observed. This value was 
from 8.2 to 8.3 when maize plants grew. The pH 
values in PS exhibited a similar behavior (Fig. 5b); 
however, the pH started near neutral (7.0). When 
this soil was exposed to EPhyR, the pH increased 
slightly to 8.2 with and without plants. The change 
in pH for both soils is somewhat more essential than 
the optimal level, between 6 and 7, for maize plant 
growth, which is suggested by the plant’s nutritional 
requirements (Strable and Scanlon 2009). A soil pH 
between 5.2 and 8.0 provides optimal conditions for 
most germination seeds and crop plants since extreme 
variations in pH ranges affect the soil’s microbial 
activity and other symbiotic relationships necessary 
for the development of plants (Cambrollé et al. 2015). 
Maize plants grow best when pH values range from 
5.5 to 7.0, making them slightly acidic soil-tolerant. 
It has also been proven that most plant-soil nutrients 
are more readily available in this range of pH values 
(N, P, K, S, Ca, Mg, Fe, Mg, Bo, and Zn, among 
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others). An increase or decrease in pH values af-
fects the availability of these nutrients. The results 
show that the low-intensity electric field (0.2 V/
cm) decreases the pH value in polluted soils. Other 
reports suggest that increases in the soil’s pH (over 
8) promote the absorption of ammonium by several 
parts of the plant, while pH reduction encourages the 
absorption of nitrate, suggesting that a decrease in 
soil pH values may favor the development of plants 
(Cao and Tibbits 1994, Gallegos-Vázquez et al. 
2000). Thus, pH directly affects the availability of 
nutrients due to H+ ions present in the soil. H+ ions 
are situated in hostile ground charge areas, involving 
how nutrients move. Nutrient movement, however, 
depends on the size and the nutrient’s ionic charge 
and whether it is or not lost due to a leaching process.

With PS, the EPhyR treatment increased from 
4.0 to 4.8 dS/cm (Fig. 6b). It was evident that the 
EKR using CS increased significantly, from 1.2 to 
2.7 dS/cm (Fig. 6a), compared to EKR using PS, 
where the increase was only from 4.80 to 4.91 dS/cm 
(Fig. 6b). Maize plants are susceptible to saline con-
ditions. Their total yield decreases by 10% in soils 
where electrical conductivity exceeds 2.5 dS/cm. 
The threshold for the reduced product is estimated at 

values close to 1.7 dS/m (Volkov 2000). In the case 
of EPhyR and PhyR, the concentration of salts in the 
soil also decreases, providing better soil conditions 
for the development of maize plants. Soils are con-
ductive due to their physical and chemical properties, 
mainly from the presence of ions (Lund et al. 2000); 
therefore, soil salinity plays an essential role in the 
growth and development of plants, which is crucial 
in the arable areas of arid zones. An increase in soil 
salinity can negatively alter the physical and chemi-
cal properties of the soil (Silva et al. 2005, García 
et al. 2008), which can, in turn, reduce plant growth 
(Baghalian et al. 2008). Every soil has some level of 
tolerance to salinity, but above this tolerable level, 
known as the salinity limit, productivity starts to 
decline linearly. It has been reported that an increase 
in the electrical conductivity to values greater than 
2.2 dS/m reduces the productivity of maize plants in 
arid areas. The values obtained here, before and after 
treatments, are below acceptable limits, especially in 
the electrostimulation of plants (Lacerda et al. 2011). 
These values can be correlated with texture and soil 
moisture, which reflect the capacity to store water and 
are also an essential factor in determining cropland 
productivity (Delgado and Gómez 2016). 
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Fig. 6.	 Electrical conductivity (EC) for electro-phytoremediation (EPhyR), 
electrokinetic remediation (EKR), and phytoremediation (PhyR) with 
(a) clean soil (CS) and (b) polluted soil (PS) by hydrocarbons after 
35 days (five weeks) of treatment. Error bars represent the standard 
deviation.



ELECTRO-PHYTOREMEDIATION OF POLLUTED SOIL 583

Measurements of soil organic matter (SOM) 
content were also performed (Fig. 7). In the case of 
EPhyR and EKR, they showed similar values after 
the electrical stimulation of maize plant growth ap-
plying 0.1 V/cm after five weeks (between 1.8 and 
3.0%) (Fig. 7a). EPhyR showed the highest SOM 
after the second week with 3.0%, while the lowest 
was observed after five weeks with 2.1%. Due to 
the presence of HC, SOM was higher with PS than 
with CS (Fig. 7b). The values for five weeks were 
between 20 and 26%, with the lowest value for PS 
(close to 20%) and the highest for EKR (close to 
25%), which could be due to the electrophoretic pro-
cess developed during the application of an electric 
field, as reported by Acosta-Santoyo et al. (2019). 
These SOM analyses can be correlated with the EC 
(Williams and Hoey 1987, Jaynes et al. 1994), clay 
content, and cation exchange capacity (McBride et al. 
1990), all of which help to maintain the soil moisture, 
assuring a good distribution of nutrients to increase 
plant growth (Lund et al. 2000). These physical and 
chemical variables perform multiple functions in the 
soil, including the retention of nutrients and control of 
soil particle aggregates, which is an indicator of soil 
quality. Unfortunately, these values have decreased 
in many soils due to overgrazing and the conversion 

of grasslands in agricultural areas, reducing soil fer-
tility and forcing increased use of fertilizers, which 
often leads to the erosion of soils. Therefore, the 
results obtained in this research suggest interesting 
soil improvement techniques, such as treatment with 
electric current, especially in plants. 

The enzymatic activity (Fig. 8) with 10 mg TPF/g 
dry soil/day of the dehydrogenase was measured 
in PS, and with 20 mg TPF/g dry soil/day of dehy-
drogenase was measured in CS. Therefore, using 
EPhyR, EKR, and PhyR with CS did not show this 
enzymatic activity. In the first week after applying 
1.0 V/cm for 8 h, PS exhibited the highest enzy-
matic activity using EKR and EPhyR, with 225 and 
251 mg TPF/g dry soil/day, respectively. The enzy-
matic activity shown in EPhyR was similar after five 
weeks to the electrical stimulation of maize plant 
growth, but it decreased to 130 mg TPF/g dry soil/
day in EKR after five weeks. In the case of the PhyR 
using PS, the enzymatic activity was the same during 
the five weeks of measurement, 7 mg TPF/g dry soil/
day. The enzymatic activity increased in PS due to 
the stimulation of soil microorganisms and the move-
ment of organic compounds, as previously reported 
in the literature (Oszust et al. 2013). Dehydrogenase, 
b-glucosidase, phosphatase, and urease enzymes are 
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Fig. 7.	 Soil organic matter (SOM) for electro-phytoremediation (EPhyR), 
electrokinetic remediation (EKR), and phytoremediation (PhyR) with 
(a) clean soil (CS) and (b) polluted soil (PS) by hydrocarbons after 
35 days (five weeks) of treatment. Error bars represent the standard 
deviation.
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indicators to evaluate the effect of agronomic man-
agement on soils’ quality or health. These enzymes 
release C, N, and P, which are critical plant nutritional 
elements. In addition, the dehydrogenase activity af-
fects the microbial processes in the soil, indicating 
an increased rate of oxidation of soil organic matter.

Bulk density refers to the weight of the total solid 
material present in each soil type. This value depends 
on the composition and amount of minerals and weath-

ered rocks during the genesis of soil and the propor-
tion of organic matter contained in the soil (Méndez 
et al. 2011, Lal 2015). Figure 9a shows a bulk density 
value of 0.66 g/cm3 for CS, which remains unchanged 
for five weeks after the electrical stimulation using 
1.0 V/cm for 8 h. In the case of the EKR using CS, 
it increased from 1.8 g/cm3 from the first week to 
2.2 g/cm3 after the five weeks, while in EPhyR 
(Fig. 9b) the value was between 9.5 and 3.9 g/cm3 
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Fig. 8.	 Dehydrogenase activity monitoring triphenylformazan (TPF) for 
electro-phytoremediation (EPhyR), electrokinetic remediation (EKR), 
phytoremediation (PhyR) with clean soil (CS), and polluted soil (PS) by 
hydrocarbons after 35 days (five weeks) of treatment. Error bars represent 
the standard deviation.
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after the first and fifth week, and the bulk density 
value did not change during the five weeks of EPhyR 
(1.8 g/cm3). In the case of PS, its value was similar 
to PhyR (2 g/cm3). Still, in the case of EPhyR, the 
bulk density decreased from the first week (9.5 g/
cm3) to the fifth week (3.9 g/cm3) by the possible 
aggregation of particles of soil in the presence of 
hydrocarbons, as has been published before (Pérez-
Corona et al. 2013a, b, Méndez et al. 2019). EKR 
of PS increased bulk density from the first week 
with 4.5 g/cm3 to 10 g/cm3 after the fifth week. This 
result is due to the different mass transport phenom-
ena associated with removing HCs using modified 
electrodes such as IrO2-Ta2O5|Ti (Pérez-Corona et 
al. 2013a, b, Méndez et al. 2019). Apparent density 
did not show changes before and after the EPhyR 
with values between 0.68 and 0.64, respectively. 
The porosity values obtained by the real density 
and apparent density quotient during the 42 days 
of the experiment slightly increased from 56.43% 
before the EPhyR to 60.97% after the EPhyR. These 
values suggest a dynamic behavior when an electri-
cal treatment is applied to the soil. Apparently, this 
behavior allowed soil particles to release trapped 
ions making them more available to plants and en-
hancing aeration, which is important for developing 
the roots and soil microorganisms associated with 
plants. Furthermore, all the cations adsorbed on the 
clay/humic complex or the change-transfer complex 
can be exchanged for other elements in the soil 
solution, leading to permanent cation equilibrium 
(Barghouthi et al. 2012).

Cation exchange capacity (CEC) values were 
obtained after 42 days of treatment (Fig. 10a). In the 
case of CS, the measured value was 88.94 cmol/kg 
dry soil. Similar readings were observed in EF 
with 88.2 cmol/kg dry soil. In the case of PS, the 
CEC decreased to 78.48 cmol/kg dry soil, but 
this value increased to 83.96 cmol/kg dry soil after 
the EKR, which raised slightly more after the EPhyR 
(87.48 cmol/kg dry soil). This effect in the CEC 
demonstrates that EPhyR rehabilitates the PS by 
HC through the movement of ions and the capture 
of nutrients by plant roots.

The essential ions present in the soil for plant 
development include sodium (Na+), potassium (K+), 
calcium (Ca2+), magnesium (Mg2+), ammonium 
(NH4

+), and hydrogen (H+). The first four cations 
are essential for plant growth. The latter two have 
a marked effect on soil structure’s physical and 
chemical characteristics. Figure 10b shows that 
the highest concentration of Na+ in the maize plant 
growth after 42 days of treatment was achieved with 

EPhyR; EKR showed a similar value, followed by EF 
(19.83, 19.01, and 13.68 cmol[+]/kg, respectively), 
because PS showed the lowest concentration of Na+ 
(6.26 cmol[+]/kg). 

In the case of Ca2+, the highest concentration was 
observed in EKR , followed by EF and EPhyR (17.11, 
15.61, and 15.46 mol[+]/kg dry soil, respectively), 
with the lowest value identified in PS (8.93 mol[+]/kg 
dry soil).

Additionally, the PS showed the lowest value of 
K+ (0.47 mol(+)/kg dry soil), while the EKR showed 
the highest value of K+ (1.42 mol(+)/kg dry soil). 

These values vary only slightly in most soils and 
usually stay within the values reported for minerals’ 
weathering or after targeted fertilization. Very little of 
this element is lost by leaching, even when it moves 
more freely in sandy soils than in clay (Li and Wang 
2004), as in the case of the Vertisol pelic. Erosion and 
elemental uptake by crops are the primary forms of 
loss from the soil (Smita and Ingole 2015). Addition-
ally, a significant growth of plants was observed in 
the middle area of the electrochemical cell due to the 
average concentration of anions and cations, which 
promotes the development of primary and secondary 
roots as a result of increased translocation of ions 
inside the root cells. 

Fig. 10.	 (a) Cationic exchange capacity (CEC) and (b) soluble 
cations for clean soil (CS), electro-farming (EF), pol-
luted soil (PS) by hydrocarbons, electrokinetic reme-
diation (EKR), and electro-phytoremediation (EPhyR) 
after 42 days of treatment. Error bars represent the 
standard deviation.
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CONCLUSIONS

The EPhyR process promoted slight changes in 
the soil’s physical and chemical properties, includ-
ing pH, electrical conductivity, soil organic matter 
content, enzyme activity, apparent and bulk density, 
porosity, and cation exchange capacity. 

On the other hand, significant enzyme activity 
was detected in contaminated soil samples treated 
with EPhyR. HCs could be a carbon source for the 
growth of microorganisms in the soil. Tests of soil 
organic matter do not show substantial differences 
among soils treated with 0.2 V/cm for 4 h in the be-
ginning and soils not treated during the germination 
of maize seeds.

Electrical stimulation of soil promotes ions’ 
electro-migration, electro-osmosis, and electrolysis 
of the solution close to the electrodes. These phenom-
ena encourage the bioavailability of nutrients to be 
taken by the maize plants during the application of 
0.1 V/cm for 8 h daily for 42 days. Ion-hydrocarbon 
dissociation promotes the availability of nutrients for 
plant growth through the development of primary and 
secondary roots by the absorption of free nutrients, 
which was validated with the EF of CS. 

The electric field favors the removal of pollutants 
such as hydrocarbons from Vertisol soils, as the EKR 
demonstrated in the presence of PS, which favors the 
uptake of nutrients by maize plants. Therefore, EPhyR 
is adequate and can be used to remediate soils polluted 
by hydrocarbons and growing plants such as Zea mays 
L. to accomplish the biological rehabilitation of soil.
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