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RESUMEN

Se ha reportado al pez diablo (Pterygoplichthys spp.) como especie invasora en diversos 
ecosistemas del estado de Chiapas, México. El objetivo de este estudio fue evaluar 
el efecto de los tiempos de aplicación de la harina del pez diablo (HPD) como fuente 
de fertilización orgánica en el cultivo de Solanum lycopersicum L. var. Río Grande 
en condiciones de invernadero. En el experimento se utilizó suelo sin harina (SHPD), 
suelo y harina 15 días antes del trasplante (HPD15) y suelo con harina al momento del 
trasplante (HPD0). Se identificó que la HPD presentó un elevado contenido en proteínas, 
cenizas, fósforo y potasio (46.22, 31.13, 3.43 y 2.3 %, respectivamente). La altura de la 
planta mostró un aumento del 13 % a los 126 días después del trasplante con HPD15, 
así como un aumento del 52 % en el grosor del tallo en comparación con SHPD. El 
peso seco del follaje aumentó 5.8 veces en HPD0 y 1.8 veces para la longitud de la 
raíz en HPD15. Además, HPD15 pudo aumentar el contenido de clorofila en las hojas 
de tomate hasta en un 39.8 %. Los frutos de HPD15 fueron los únicos que lograron 
madurez fisiológica y comercial, cumpliendo con los criterios de consumo en el diá-
metro polar y ecuatorial, y contenido de licopeno (5.7 y 5.2 cm, y 0.017 mg/g de peso 
fresco de fruto, respectivamente). Los resultados obtenidos a partir de la harina de pez 
diablo, muestran que se puede utilizar como abono orgánico en la producción agrícola.
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ABSTRACT

The devilfish (Pterygoplichthys spp.) has been reported as an invasive species in several 
ecosystems of the state of Chiapas, Mexico. The objective of this study was to evaluate 
the effect of the application times of devil fish flour (DFF) as a source of organic fertil-
ization on Solanum lycopersicum L. var. Río Grande under greenhouse conditions. Soil 
without flour (SDFF), soil and flour 15 days before transplanting (DFF15), and ground 
with flour at the transplanting time (DFF0), respectively, constituted the experiment. It 
was identified that DFF had high protein, ash, phosphorus, and potassium contents (46.22, 
31.13, 3.43, and 2.3 %, respectively). Plant height showed a 13 % increase at 126 days 
after transplanting with DFF15, and a 52 % increase in stem thickness compared to SDFF. 
Foliage dry weight increased 5.8-fold in DFF0 and 1.8-fold for root length in DFF15. 
Also, DFF15 increased the chlorophyll content in tomato leaves by up to 39.8 %. DFF15 
fruits were the only ones that achieved physiological and commercial maturity, meeting 
consumption criteria for polar and equatorial diameter, and lycopene content (5.7 and 
5.2 cm, and 0.017 mg/g fruit fresh weight, respectively). The results obtained from the 
devilfish meal show its suitability for use as an organic fertilizer in agricultural production.

INTRODUCCIÓN

La agricultura enfrenta el desafío de aumentar su 
producción para satisfacer las necesidades de una 
población en crecimiento, donde el empleo de fer-
tilizantes químicos es la principal fuente común de 
nutrientes para las plantas (Abebe et al. 2022). Aun-
que se considera que los fertilizantes químicos son 
el contribuyente más importante a la productividad 
agrícola mundial en las últimas décadas, los efectos 
negativos en el suelo y el ambiente han limitado su 
uso en los sistemas de agricultura sostenible (Adekiya 
y Agbede 2017).

Los fertilizantes orgánicos pueden mejorar la 
producción de las plantas y aumentar su resistencia. 
Se obtienen normalmente de la descomposición de 
estiércol animal, desperdicios de alimentos y restos 
de cultivos agrícolas (Noh et al. 2015). Adekiya y 
Agbede (2017) observaron que, en suelos con sistemas 
agrícolas orgánicos fertilizados orgánica y química-
mente, la materia orgánica y el nitrógeno del suelo 
se incrementan con el uso de la agricultura orgánica.

A partir del procesamiento de pescado se generan 
desechos. Estos residuos pueden utilizarse alterna-
tivamente en la elaboración de aceite de pescado, 
alimentación directa en acuicultura, colágeno, pép-
tidos bioactivos, obtención de quitina, obtención de 
enzimas (proteasas y peptidasas) y en la agricultura, 
entre otros (Coppola et al. 2021).

Sudharmaidevi et al. (2017) mencionan que, 
si bien este tipo de residuos orgánicos no pueden 
utilizarse como combustibles por su alto contenido 
de humedad y bajo valor calórico, por el contenido 
nutricional que aportan a las plantas son ideales para 
su uso como fertilizantes en la producción agrícola. 

La conversión de residuos sólidos en fertilizantes 
orgánicos es una opción deseable debido al aporte 
de macro y micronutrientes cuando se adicionan al 
suelo, así como al aumento de los rendimientos de 
materia fresca y seca en los cultivos agrícolas resul-
tante del mayor contenido de calcio, fósforo, potasio, 
sodio, magnesio y nitrógeno (Escalera-Gallardo et al. 
2012, Radziemska et al. 2019).

México padece desde hace 30 años el proble-
ma de invasión biológica causada por el género 
Pterygoplichthys, comúnmente conocido como 
“pleco” o “pez diablo”, que habita en 11 estados de 
la república mexicana (Aguilera-Flores et al. 2021). 
Pterygoplichthys es endémico de América del Sur 
y forma parte de la familia Loricariidae, una de las 
más diversas con 716 especies descritas, algunas de 
las cuales se comercializan como peces de acuarios 
y controladores de algas (Lorenzo-Márquez et al. 
2016).

La harina del pez diablo (HPD) es una excelente 
alternativa como fertilizante orgánico, debido a que 
tiene valores elevados de proteínas (47.9 %) y cenizas 
(34.7 %), lo cual aporta un 7.74 % de nitrógeno y 4.65 
% de fósforo. Además, se ha reportado una reducción 
en la producción de gases de efecto invernadero en 
actividades agrícolas como el metano (59.33 %) o el 
dióxido de carbono (15.25 %), lo cual sugiere su uso 
potencial como suplemento en nutrición vegetal al 
reemplazar parcialmente fertilizantes nitrogenados 
inorgánicos que influyen considerable en la calidad 
de la fruta, especialmente en el contenido y el valor de 
las proteínas (Escalera-Gallardo et al. 2012, Aguilar-
García et al. 2019).

El tomate (Solanum lycopersicum L.) forma parte 
de la familia de las Solanáceas y es una de las hortalizas 
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más consumidas en el mundo por su aporte nutricional 
a la dieta humana (López-López et al. 2022). México 
es uno de los principales exportadores de tomate fres-
co, siendo el principal consumidor Estados Unidos, 
que aumentó sus importaciones en un 75 % en 2019, 
incrementando la demanda del cultivo (Li et al. 2022). 
Sin embargo, el uso prolongado de fertilizantes quí-
micos ha generado inconvenientes como la reducción 
de la seguridad alimentaria debido a los costos de 
producción no lineales y la contaminación ambiental 
(gases de efecto invernadero, salinización del suelo y 
eutrofización del sistema acuático) (Ye et al. 2020).

En el presente estudio se evaluó el efecto de los 
tiempos de aplicación de la harina del pez diablo 
(Pterygoplichthys spp.) como fuente de fertilización 
orgánica en el cultivo de Solanum lycopersicum L. 
var. Río Grande tipo saladette en condiciones de 
invernadero.

MATERIALES Y MÉTODOS

Área de estudio
El estudio se llevó a cabo en el invernadero y el 

laboratorio de biotecnología del Tecnológico Na-
cional de México, Campus Instituto Tecnológico de 
Tuxtla Gutiérrez, México.

Sustrato
Se utilizó el suelo de los campos experimentales 

del Tecnológico Nacional de México, del Campus del 
Instituto Tecnológico de Tuxtla Gutiérrez; se recolectó 
según el muestreo cinco de oros, seleccionando cinco 
puntos al azar formados de 10 m2 y 30 cm de profun-
didad (González-Baca et al. 2019). Posteriormente, se 
tamizaron 1000 g de muestra de suelo con un tamiz 
de 2 mm para remover piedras, terrones y desechos 
inorgánicos; con la finalidad de obtener un material 
homogéneo para un análisis físico y químico.

Análisis físico y químico del suelo
El pH y la conductividad eléctrica del suelo se 

determinaron con un potenciómetro HI 9811-5N 
(Hanna Instruments, Italia). La capacidad de reten-
ción de agua (CRA) se estableció por medio de la 
técnica de filtración descrita por Gandullo (1985). 
El contenido de humedad se evaluó por el método 
gravimétrico descrito por Radulovich (2009). La 
textura se determinó de acuerdo con el método de 
Bouyoucus (Day 1965).

El nitrógeno total se obtuvo mediante la técnica 
Micro-Kjeldahl NOM-F-68-S-1980 (SEPAFIN 
1980). Por otro lado, el fósforo se determinó con el 

procedimiento de Olsen et al. (1954) y el carbono 
orgánico se determinó según la técnica de Walkley 
y Black (1934).

Sitio de muestreo y producción de harina de resi-
duos de Pterygoplichthys spp.

La recolección se llevó a cabo en la laguna de 
la localidad Paraíso, en el municipio Playas de Ca-
tazajá, Chiapas, México (17º 79’ 08” N y 92º 04’ 
19” O). Los peces se recolectaron de acuerdo con 
las características morfológicas descritas por Nico 
et al. (2012): superficie lateral del pez cubierta con 
una placa ósea cartilaginosa espinosa; aleta dorsal 
grande rayada, con manchas oscuras y espinas; patrón 
ventral con manchado vermiculado; aletas pectorales 
con espinas dentadas y gruesas, y boca ubicada en la 
parte inferior de la cabeza en posición ventral con los 
labios formando un disco succionador. Los especí-
menes fueron transportados en hielo al laboratorio de 
biotecnología del campus del Instituto Tecnológico 
de Tuxtla Gutiérrez, para su posterior procesamiento.

Para el ensayo se utilizaron el esqueleto, la placa 
ósea cartilaginosa con espinas que cubre los laterales 
del pez, las aletas pectorales y la aleta dorsal. Dichos 
residuos se lavaron con agua destilada para remover 
todas las impurezas y se secaron a 65 ºC hasta un 
10 % de humedad según la norma NMX-Y-013-
1998-SCFI (SECOFI 1998). Después, se molieron 
y tamizaron a 25 µm para obtener una consistencia 
de harina y se almacenaron en refrigeración a 4 ºC 
para su posterior análisis.

Los análisis físicos y químicos se realizaron sobre 
la HPD. La humedad se determinó según el método 
AOAC (2000). La ceniza se determinó por la técnica 
AOAC (2000). El contenido total de proteína se de-
terminó de acuerdo con el método AOAC (2005). Los 
lípidos se determinaron mediante la técnica descrita 
en la NOM-F-089-S-1978 (SEPAFIN 1978). La fibra 
cruda se determinó usando la técnica descrita en la 
NOM-F-90-S-1978 (SEPAFIN 1979).

Preparación del invernadero
Las dimensiones del invernadero fueron 4 m de 

largo y 3 m de ancho. Un mes antes de la instalación 
del experimento se limpió y fumigó con Cupravit 
(oxicloruro de cobre) y Arrivo 200 CE (cipermetri-
na). La humedad ambiental estuvo en el rango de 
60-80 %, con temperatura de 28 a 35 ºC e iluminación 
solar al 50 %. La aireación ambiental no fue controlada.

Preparación de plántulas y trasplante
La semilla de tomate utilizada fue de la variedad 

Río Grande tipo saladette de la compañía de semillas 
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Eterno, germinadas en bandejas de tereftalato de po-
lietileno con 200 cavidades y empleando únicamente 
turba. El semillero se mantuvo con riego cada dos 
días hasta los 30 días después de la emergencia. Las 
plántulas se trasplantaron cuatro semanas después de 
la emergencia, colocándose en bolsas de polietileno 
de 25 × 30 cm que contenían dos kilogramos de suelo 
agrícola muestreado.

Tratamientos
Los tratamientos consistieron en un control con 

suelo sin harina de pez diablo (SHPD), tratamiento 
de suelo con harina de pez diablo 15 días antes del 
trasplante (HPD15) y tratamiento de suelo y harina 
de pez diablo al momento del trasplante (HPD0).

La cantidad de HPD utilizada se determinó 
de acuerdo con la dosis recomendada por el INI-
FAP (2012): 233 N, 100 P2O5, 160 K2O, 5 Fe y 
1.3 B kg/ha. Para el trasplante se agregaron 54 g de 
HPD mezclada con 2 kg de suelo (de acuerdo con los 
tratamientos). La planta recibió 5.2 g de nitrógeno 
total por kilogramo de suelo, integrados por 4.3 g 
equivalentes de nitrógeno por kilogramo en la harina 
más 0.9 g de nitrógeno presente en un kilogramo de 
suelo. Durante el desarrollo del cultivo se mantuvo una 
CRA de 40 a 60 %, lo cual se logró regando cada 48 h.

Evaluación de variables morfométricas del cultivo 
de tomate

La biomasa aérea se consideró como parte de la 
planta que está por encima del sustrato, incluyendo 
tallos, hojas, flores y frutos. Se midieron las siguien-
tes variables: longitud del follaje en centímetros 
(longitud desde la base del suelo hasta el ápice de 
la planta) y diámetro del tallo en milímetros medido 
con un Vernier a un centímetro del suelo (Pérez-Luna 
et al. 2012). Los parámetros se midieron cada siete 
días hasta finalizar el estudio a los 126 días después 
del trasplante (DDT).

El peso fresco y seco de la planta, incluyendo la 
raíz, se obtuvo con una balanza analítica de precisión 
marca Sartorius; el peso seco se determinó después del 
secado de una planta y raíz a 60 ºC hasta peso constante 
(Ayala 2012). Inmediatamente después de concluir las 
mediciones morfométricas a los 126 DDT, se contaron 
y cosecharon los frutos de cada tratamiento.

Medición del contenido de clorofila en plantas 
de tomate

El porcentaje de clorofila se determinó con un 
medidor de clorofila de la marca Konica Minolta, 
modelo SPAD-502. El contenido de clorofila de cada 
planta se midió por triplicado. La primera medición 

se realizó en una de las hojas de la parte superior de 
la planta, la segunda en una de las secciones medias 
y finalmente en las hojas de la parte inferior; después, 
se promedió el contenido de clorofila (Sánchez-
Roque et al. 2016). Este proceso se repitió cada siete 
días, hasta los 126 DDT.

Concentración del contenido de carotenos, lico-
penos y clorofila en el fruto del tomate

La determinación del contenido de carotenos, 
licopenos y clorofila en los frutos de tomate se realizó 
de acuerdo con lo descrito por Wang et al. (2005). 
Los frutos se cortaron en seis piezas a lo largo del eje 
vertical. Tres se cortaron en trozos muy pequeños y 
se mezclaron bien. Se molieron dos gramos de fruta 
fresca en un mortero previamente enfriado con 5 mL 
de hexano y acetona (60:40) y una pequeña propor-
ción de arena lavada con ácido. La capa orgánica 
superior se transfirió a un tubo previamente colocado 
sobre hielo. La capa acuosa se extrajo con 5 mL del 
disolvente inicial, hasta que se tornó incolora. Se 
tomó 1 mL del volumen total del extracto orgánico 
para determinar la absorbancia en un espectrofotóme-
tro a 450 nm (carotenos), 502 nm (licopenos), y 645 y 
663 nm (clorofila), mediante las siguientes fórmulas:

Clorofila (µg/mL) = (20.2 × DO645) + (8.2 × DO663)

Carotenoides (µg/mL) = 4 × DO450

Licopenos (µg/mL) = 3.12 × DO502

Diseño experimental
Se utilizó un diseño de bloques completos al azar, 

con tres tratamientos y 10 repeticiones (30 unidades 
experimentales en total). El análisis estadístico se 
efectuó con análisis de varianza unidireccional a 
un nivel de confianza del 95 %. La comparación de 
medias se realizó con la prueba de rango múltiple 
de Tukey (p ≤ 0.05). Los análisis estadísticos se 
procesaron con el paquete informático Statgraphics 
Centurión Versión 16 (SGP 1999).

RESULTADOS Y DISCUSIÓN

Parámetros físicos y químicos de la harina de pez 
diablo

La HPD mostró un alto contenido de proteínas, 
elevado contenido de cenizas y un pH ligeramente 
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alcalino (Cuadro I). Los valores de extracto etéreo 
(16.1 %), humedad (6.1 %) y presencia de macronu-
trientes (P y K), se muestran también en el cuadro I.

Se dispone de poca información acerca del pez 
diablo, pero en el orden de los Siluriformes se en-
contraron datos similares del pez Pangasianodon 
hypophthalmus en cuanto a contenido de grasa, ma-
yor contenido de proteínas y cenizas (Begum et al. 
2012). Oliveira et al. (2003) obtuvieron un contenido 
de extracto etéreo del 17.24 %, proteína del 14.27 % 
y cenizas del 1.11 % a partir de tejido muscular dorsal 
de Hypophthalmus edentatus. Nuestros resultados 
fueron muy similares en términos de extracto etéreo 
y más altos para proteínas y cenizas. De igual forma, 
Murillo-Pacheco et al. (2012) reportaron el conte-
nido de proteínas, lípidos y cenizas para Leiarius 
marmoratus, los cuales fueron inferiores a nuestros 
resultados.

Respecto al género Pterygoplichthys, Guillén et 
al. (2015) hicieron una caracterización parcial de 
huevos de P. disjunctivus con contenidos de proteínas, 
lípidos y cenizas de 23.7, 8.05 y 1.9 %, respectiva-
mente. Ariyarathne et al. (2014) informaron que la 
carne de P. multiradiatus presentó un contenido de 
proteínas, lípidos y cenizas de 17.79, 0.58 y 1.2 %, 
respectivamente. En este estudio, encontramos casi 
tres veces más contenido de proteínas que en los 
mencionados anteriormente. Además, Mohanty et al. 
(2017) obtuvieron fósforo y potasio (222 y 178 mg/kg, 
respectivamente) de P. disjunctivus, mostrando con-
centraciones bajas en comparación con las reportadas 
en HPD (Cuadro I).

Zachry et al. (2015) estudiaron el uso del hidroli-
zado de pescado como única fuente de nitrógeno en 
el cultivo de calabaza y col, demostrando que tienen 
la posibilidad de ser empleados como suplemento 

orgánico. Se puede inferir que la planta podría ab-
sorber la proteína de la HPD en forma de nitratos, 
después de la degradación a través de las bacterias 
nitrificantes en el suelo (Yavarian et al. 2021), ya 
que el suelo utilizado no fue esterilizado en este 
experimento, lo que indica la posible existencia de 
este tipo de bacterias.

Choi (2020) demostró que el fertilizante líquido de 
harina de residuos de pescado presenta un alto conte-
nido de minerales debido al contenido de cenizas. Esto 
a su vez pudo influir positivamente en la planta de S. 
lycopersicum var. cerasiforme y en la calidad del fruto, 
debido al contenido de micronutrientes como calcio, 
cobre, hierro, magnesio, manganeso, zinc y boro.

Caracterización física y química del suelo
Las características físicas y químicas del sue-

lo indicaron que la proporción del contenido de 
macronutrientes (nitrógeno, fósforo y potasio) no 
eran los óptimos (Cuadro II); sin embargo, con la 
incorporación de la harina se adicionaron 4.3 g de 
nitrógeno por kg de suelo, mejorando así las propie-
dades nutrimentales del suelo (que originalmente 
contenía 0.9 g de nitrógeno por kg de suelo) para el 
cultivo de tomate.

Una alternativa para abordar la necesidad de 
macronutrientes (N, P y K) para un cultivo vegetal 
es el uso de fuentes naturales como el hidrolizado 
de pez, debido a que el N y K son los nutrientes que 
se requieren en mayor medida para que la planta se 
desarrolle y produzca (Bangarwa et al. 2012).

Es fundamental que el uso de estas fuentes orgáni-
cas se ajuste a la disponibilidad, el costo y aprobación 
del Instituto de Revisión de Materiales Orgánicos 
(OMRI, por su sigla en inglés). Se ha demostrado 
que la harina de pescado (10 a 14 %) es una fuente 

CUADRO I. PARÁMETROS FÍSICOS Y QUÍMICOS DE LA HARINA DE PEZ DIABLO.

pH Humedad
(%)

Cenizas
(%)

Extracto etéreo
(%)

Fibra cruda
(%)

Fósforo total
(%)

Potasio total
(%)

Proteína total
(%)

7.26 ± 0.1 6.14 ± 0.72 31.13 ± 0.36 16.14 ± 0.14 0.37 ± 0.03 3.43 ± 0.30 2.3 ± 0.20 46.22 ± 0.49

Nota: el primer valor indica la media de tres muestras con tres réplicas (n = 9) y el segundo valor el error estándar.

CUADRO II. CARACTERIZACIÓN FÍSICA Y QUÍMICA DEL SUELO.

pH Humedad
( %)

Conductividad eléc-
trica (Ds/m)

Capacidad de retención de 
agua (g H2O/kg1)

Carbono
(g/kg SS)

Fósforo
(mg/kg)

Nitrógeno
(g/kg)

Textura

8.4 ± 0.1 4.76 ± 0.3 0.6 ± 0.002 246.4 6.07 ± 0.4 11.49 ± 0.5 0.9 ± 0.2 Franco arenoso

Nota: el primer valor indica la media de tres muestras con tres réplicas (n = 9) y el segundo valor el error estándar.
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de nitrógeno (ya que muestra mineralización aproxi-
madamente dos semanas después de la aplicación) y 
también actúa como fuente alternativa de fósforo. El 
empleo de harina de hueso ha sido una de las primeras 
fuentes utilizadas en la agricultura, con un contenido 
de 7 a 12 % de fósforo (INTAGRI 2017).

Alameda y Villar (2009) determinaron que la 
compactación del suelo (generalmente arcilloso) pue-
de mejorarse mediante la aplicación de fertilizantes 
orgánicos debido a la disponibilidad de nutrientes, 
la capacidad de retención de agua y la aireación del 
suelo, lo cual beneficia de manera positiva a la bio-
masa total de la planta.

Evaluación de variables morfométricas del cultivo 
de tomate

Para la variable altura de la planta hubo diferencia 
estadísticamente significativa entre HPD15 y HPD0 
en comparación con el testigo (SHPD). Sin embargo, 

no se observaron diferencias entre ellos, destacándose 
únicamente que HPD15 aumentó en altura un 13 % 
al final del experimento (Fig. 1a). Debido a que el 
suelo utilizado tenía niveles bajos del N, P y K reque-
ridos para el crecimiento de las plantas (Cuadro II), 
la adición de HPD en los diferentes tratamientos 
mostró un aumento de 78.6 % en la altura a lo largo 
del ciclo de cultivo.

Los nutrientes involucrados en la producción 
de reguladores del crecimiento vegetal son N, P y 
K, los cuales pudieron incrementarse con el uso de 
compostaje de desechos de pescado en el cultivo de 
lechuga, logrando un incremento de hasta el 4 % 
(López-Mosquera et al. 2011). Además, el N aumenta 
la mayor superficie de las células del parénquima en 
empalizada, lo que estimula el crecimiento de las 
plantas (Moriwaki et al. 2019).

Dichos nutrientes también estimulan la produc-
ción de hormonas vegetales que pueden actuar como 
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Fig 1.	 (a) Efecto de la harina del pez diablo en la altura 
de plantas de tomate. b) Efecto de la harina del 
pez diablo en el diámetro del tallo de plantas 
de tomate; (c) efecto de la harina de pez diablo 
sobre el contenido de clorofila en las plantas 
de tomate. Tratamientos: SHPD: testigo (♦); 
HPD15: aplicación de harina 15 días antes del 
trasplante (■), y HPD0: aplicación de harina al 
momento del trasplante (▲). Tukey: p ≤ 0.05; 
n =10.



HARINA DE PEZ DIABLO COMO FERTILIZANTE ORGÁNICO 165

reguladores del crecimiento, como giberelinas y 
brasinoesteroides (BR), desarrollando la cantidad de 
biomasa vegetal aérea (de Freitas et al. 2017). En el 
caso de los BR, éstos estimulan la elongación y divi-
sión celular, la inclinación de la lámina y cambios en 
el potencial de membrana con relación al crecimiento 
de la planta (Terry y Ruiz 2008).

En la variable diámetro del tallo (Fig. 1b), el 
análisis de varianza mostró una diferencia significa-
tiva en el tratamiento HPD15 a los 126 DDT, con un 
grosor del 29 % más que en plantas de HPD0 y 52 % 
más que en plantas de SHPD. En cuanto al aumento 
del diámetro del tallo, éste se debe a la inducción 
de fitohormonas, principalmente auxina, la cual 
está implicada en la formación de diversos tejidos y 
procesos morfogenéticos; es decir, se presenta con 
diferentes gradientes, polaridades y formas de síntesis 
(Garay-Arroyo et al. 2014).

Nieminen et al. (2015) mencionan que el engrosa-
miento del tallo se debe a la acumulación de tejidos 
secundarios de floema y xilema producidos por el 
cambium vascular, debido a que el cambium es el 
responsable del crecimiento lateral de las plantas 
junto con los meristemos, los cuales se dividen y 
la expansión celular es impulsada por la turgencia, 
ocasionando una diferenciación celular especiali-
zada. Esto produce tres órganos importantes: un 
xilema secundario prominente que consiste de vasos 
conductores de agua, fibras de xilema y células de 
parénquima.

Las células vasculares en el meristemo apical de la 
raíz generan xilema y floema primarios, que pueden 
aumentar la función de absorción de la raíz, generan-
do tallos más vigorosos y el aumento de su diámetro. 
Este intercambio está regulado por fitohormonas que 
afectan directamente factores como el fotoperíodo, 

la temperatura, y la disponibilidad de nutrientes y 
agua (Matsumoto-Kitano et al. 2008, Nieminen et al. 
2015). De igual manera, las citoquininas y las gibe-
relinas influyen en la absorción de agua, provocando 
un efecto sobre la elasticidad de la pared celular, lo 
que resulta en mayor masa fresca (Ortega et al. 2013).

En el cuadro III se observa que los tratamientos 
HPD0 y HPD15 no presentaron diferencia estadís-
ticamente significativa entre ellos, pero sí con el 
testigo (SHPD) en cuanto a PF de raíz, PS de raíz, 
PF de follaje, número de flores y número de frutos 
(8.6, 9.6, 4.5, 21.7 y 10 veces más, respectivamente). 
Sin embargo, el tratamiento HPD0 mostró la mejor 
respuesta en PS de follaje aumentando 5.8 veces y 
HPD15 fue el mejor en la longitud de raíz con 1.8 
veces.

La disponibilidad de macronutrientes como el N 
incrementa el rendimiento de peso seco de las plantas, 
debido a la baja inversión de recursos en la formación 
de nuevas células y la respiración oscura de las plan-
tas (Moriwaki et al. 2019). Igualmente, contribuye a 
la producción de fitohormonas como la citoquinina 
y los BR, que promueven el crecimiento de hojas 
y órganos florales a través de la activación de las 
enzimas de los citocromos P450, KLUH/CYP78A5 
y CP78A7 (Powell y Lenhard 2012).

Contenido de clorofila en plantas de tomate
La figura 1c muestra que el tratamiento HPD15 

tiene un contenido de clorofila mayor que el resto a 
los 49, 56, 70 y 91 DDT, logrando un incremento de 
hasta el 39.8 %; en cambio, HPD0 sólo mostró un 
incremento del 32.1 % a los 84 DDT. No obstante, 
se observó que SHPD tuvo un bajo contenido de 
clorofila durante todo el experimento. Kalaji et al. 
(2014) encontraron que, en plantas de tomate y maíz, 

CUADRO III.	 EFECTO DE LA HARINA DE PEZ DIABLO SOBRE EL CRECIMIENTO Y LA CALIDAD DE LAS PLANTAS 
DE TOMATE VARIEDAD SALADETTE.

Tratamiento PF
raíz (g)

PS
raíz (g)

PF
follaje (g)

PS
follaje (g)

Longitud
raíz (cm)

Número de 
flores

Número de 
frutos

SHPD 1.5 ± 0.5b 0.3 ± 0.3b 18.0 ± 3.5b 2.1 ± 0.3c 11.7 ± 2.5b 1.0 ± 1.73b 0.3 ± 0.6b

HPD15 13.0 ±2.0a 2.7 ± 0.2ª 78.3 ± 3.1a 8.7 ± 0.5b 21.3 ± 1.5a 21.7 ± 3.2a 3.0 ± 1.0a

HPD0 11.7 ± 1.5ª 2.9 ± 2.9ª 81.0 ± 2.6a 12.3 ± 1.3a 15.0 ± 1.0b 21.3 ± 1.5a 2.7 ± 0.6a

dms 3.7 0.3 7.7 2.0 4.5 5.7 1.9

Nota: el primer valor indica la media de los datos obtenidos en las repeticiones, el segundo valor indica el error estándar entre los 
valores de un mismo tratamiento (entre repeticiones) y el exponente (a) la diferencia significativa al comparar las medias entre 
los tratamientos. Tukey: p ≤ 0.05 (letras iguales en cada columna significan que no hay diferencia estadísticamente significativa).
dms: diferencia mínima significativa (SGP 1999); SHPD: testigo (suelo sin harina); HPD15: aplicación de harina 15 días antes del 
trasplante; HPD0: aplicación de harina al momento del trasplante; PF: peso fresco; PS: peso seco.
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la ausencia o bajo contenido de nutrientes como Mg, 
Ca y S afecta la fotosíntesis al reducir la donación 
de electrones, resultando en bajas concentraciones de 
clorofila.

Başak (2020) detectó en plantas de tomate varie-
dad Kahraman que la producción de clorofila también 
se debía a N y Mg, lo que aumentaba la clorofila total 
(5.82 mg/g de peso de hoja fresca) y estimulaba en las 
plantas tanto la capacidad de resistir el estrés hídrico 
como la absorción de nutrientes en el suelo.

A su vez, la disponibilidad de N en las plantas de 
tomate inducía la formación de pigmentos fotosin-
téticos debido a la presencia de una gran cantidad 
de gránulos en el cloroplasto y mayor apilamiento 
de tilacoides; esto se debe a que la clorofila en las 
hojas optimiza la absorción de luz verde (Moriwaki 
et al. 2019). En nuestro ensayo pudimos demostrar 
que el alto contenido de proteínas en la HPD puede 
hacer que el nitrógeno esté disponible para las plantas 
de tomate.

Concentración del contenido de carotenos, lico-
penos y clorofila en el fruto del tomate

Los frutos del tratamiento HPD15 (cuadro IV) 
fueron los únicos que llegaron a la madurez fisioló-
gica y comercial al final del experimento (126 DDT). 

El tamaño y diámetro del fruto se pueden atribuir 
al contenido de K que garantiza el desarrollo de éste. 
Cuando se encuentra en proporciones adecuadas, se 
obtendrá un producto de mayor diámetro (Luna et al. 
2015). Fernández-Salvador y Strik (2015) utilizaron 
un fertilizante líquido obtenido a partir de la digestión 
de los desechos de pescado (con pequeñas cantidades 
de macro y micronutrientes) para producir mora, el 
cual proporcionó suficientes nutrientes para lograr un 
mayor rendimiento sobre el peso del fruto.

Además, Salas-Pérez et al. (2016) demostraron 
que el uso de compost y arena (25:75) en tomates 
produce rendimientos de 82 g y 4.8 y 6.2 cm en 
términos de peso y diámetros ecuatorial y polar del 
fruto, respectivamente, en comparación con el control 
(solución nutritiva Steiner). Estos resultados son muy 
similares a los obtenidos en esta investigación. Se ha 

determinado que el contenido de licopeno en tomates 
varía de 0.03 a 0.12 mg/g de peso fresco. El licope-
no puede ser una característica química intrínseca 
del fruto debido a su composición de carotenoides 
(Martínez-Valverde et al. 2002).

CONCLUSIONES

Añadir HPD en suelos pobres en nutrientes pro-
mueve el crecimiento del cultivo de tomate por su 
alto contenido proteico, generando un efecto positivo 
en variables agronómicas como altura, grosor del 
tallo, peso seco del follaje y longitud de la raíz, así 
como mayor presencia de clorofila en las hojas. El 
tratamiento HPD15 fue el único que logró fructifica-
ción fisiológica y comercial, obteniendo variables de 
calidad acordes con los criterios de consumo (grados 
Brix, contenido de licopeno, carotenoides, y diámetro 
polar y ecuatorial del fruto). Por lo tanto, el uso de 
HPD podría ser una alternativa de la que se obtiene 
doble beneficio: primero, la reducción del uso de 
fertilizantes comerciales que causan efectos nega-
tivos a largo plazo y, segundo, el aprovechamiento 
de especies invasoras que se consideran un signo de 
contaminación en comparación con otras especies 
comestibles, algunas de las cuales se encuentran en 
peligro de extinción debido a la presencia del pez 
diablo en diversos ecosistemas.
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