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ABSTRACT

Background: Clinical practice has advanced toward a combined diagnostic approach that involves clinical criteria and biological
markers for Alzheimer’s disease (AD) and other dementias. Objective: To establish the level of diagnostic agreement between
an initial clinical diagnosis and cerebrospinal fluid (CSF) and [18F]-fluorodeoxyglucose (FDG)-positron emission tomography
(PET) biomarkers in a cohort of patients from a memory clinic. Methods: This is a observational, retrospective, cohort study
conducted at an outpatient memory clinic. Between July 2018 and September 2023, data from adults’ = 55 years with a mild
cognitive impairment or dementia diagnosis without etiological diagnosis were obtained, complemented with the evaluation of
biomarkers in CSF and [18F] FDG-PET biomarker assessment were included. Kappa coefficients (k) were used to establish the
level of agreement between CSF and [18F] FDG-PET results. Results: Seventy-seven patients had an available [18F] FDG-PET
scan, and 25 (32.5%) had both biomarkers. We observed a fair-to-moderate diagnostic agreement between patients’ initial
and their final diagnosis in the presence of CSF (x = 0.233, 95% confidence interval [Cl]: -0.099-0.566) and [18F] FDG-PET
(k=0.451,95% Cl: 0.277-0.625, p < 0.001) results. The Kappa value for diagnostic concordance between [18F] FDG-PET and
CSF to differentiate between AD and other dementias was 0.733 (95% Cl: 0.425-1.000, p < 0.005). Conclusion: This
study demonstrates good agreement between the CSF and FDG-PET biomarkers to differentiate AD from other dementias.
(REV INVEST CLIN. 2024;76(5):230-7)
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INTRODUCTION

With an aging population and increased life expectancy,
the onset of neurodegenerative diseases such as Al-
zheimer’s and other dementias is expected to increase
dramatically by 20501. In Mexico, these conditions are
already associated with the highest rates of disability-
adjusted life years2. Clinical practice has evolved toward
a combined diagnostic approach that involves clinical
criteria and biological markers3. International guidelines
recommend the latter as an accurate way of detecting
Alzheimer’s disease (AD) and other dementias at dif-
ferent stages of the disease process*”’.

To detect and quantify the accumulation of protein
fragments such as amyloid-B (AB) and tau in the
brain, biomarkers are also often used in cases of di-
agnostic doubt or atypical presentations32. With the
use of molecular neuroimaging techniques such as
positron emission tomography (PET) and specific ra-
diotracers such as 18F-fluorodeoxyglucose ([18F]
FDG-PET) or a cerebrospinal fluid (CSF) test, it has
been recognized that biomarkers have a role in dis-
criminating between AD and other dementias®11.
Given that authors have reported discrepancies be-
tween these biomarkers in almost 20% of cases, a
need to confirm whether data provided by biomarkers
is complementary to clinical diagnosis or equivalent
still prevails'213,

The objective of this study was to establish concor-
dance between a physician’s initial clinical diagnosis
and the further determination of CSF and brain [18F]
FDG-PET in a cohort of patients from a memory clinic
who, in their diagnostic approach, the criteria for the
appropriate use of biomarkers.

MATERIALS AND METHODS
Participants

This observational, retrospective, and cohort study
was conducted at a university-based outpatient
memory clinic. After reviewing 147 clinical records, in
the period between July 2018 and September 2023,
we included adults 55 years or older with a diagnostic
approach that comprised a mild cognitive impairment
(MCI) or an all-cause dementia diagnosis, and who
also met the criteria for an appropriate use of CSF
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(AB-42/tau proteins) and brain [18F] FDG-PET bio-
marker assessment were included. In this study, pa-
tients with uncontrolled comorbidities and psychiatric
disorders such as delirium, treatment-resistant de-
pression, and neurological diseases such as autoim-
mune encephalitis, rapidly progressive dementia, or
space-occupying lesions of the central nervous sys-
tem were excluded.

This protocol was approved by the local Ethics and
Research Committees and received the following regis-
trationnumber: CONBIOETICA-09-CEI-O11-20160627.
All patients had previously signed an informed con-
sent form.

Clinical diagnosis

A geriatric and neurology specialist performed a cog-
nitive assessment during the patients’ initial clinical
evaluation. Respectively, criteria by Petersen and the
Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition (DSM-V), were used to allocate pa-
tients into three clinical diagnosis groups: MCI, AD,
and other dementias (non-AD) clinical diagnosis
groups!415. Data, standardized by age and education,
obtained from the Montreal Cognitive Assessment
(MoCA)'¢17 and the Mini—-Mental State Examination
(MMSE) were also considered!®. The Katz Index of
Independence in Activities of Daily Living (ADL) and
the Lawton Instrumental ADL Index were used to as-
sess functional status. In the latter scales, lower
scores indicated greater dependence!?®20.

Biomarkers were requested in two scenarios: an atyp-
ical clinical presentation or cases where a diagnostic
doubt persisted despite a conventional clinical and
neuroimaging characteristic (e.g., magnetic resonance
imaging [MRI]) cognition-oriented evaluation. The
maximum time CSF biomarkers and [18F] FDG-PET
were obtained was 6 months from the initial evalua-
tion. In this study, all patients underwent a second
clinical evaluation at a maximum of 18 months be-
tween the first and second evaluations (average time
in months, 9.6), in which the treating specialist estab-
lished the final or probable diagnosis.

CSF biomarkers

Patients’ CSF samples were obtained from patients
through lumbar puncture performed by a neurologist
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and/or geriatric neurology fellow. Samples were col-
lected according to standard CSF analysis?!. The
specimen was sent for processing and enzyme-linked
immunosorbent assay analysis to Labco NoUs labora-
tory?2, to determine pathological (AB-42) and neuro-
degeneration (p-Tau and t-Tau) CSF biomarkers.
According to established cutoff values provided by the
laboratory/manufacturer, a positive result for probable
AD was considered when the values of AB-42 CSF,
t-Tau, and p-Tau were < 550 pg/mL, > 375 pg/mL,
and > 60 pg/mL, respectively, the sensitivity of 83%,
specificity of 71%, positive predictive value (PPV) of
77%, and negative predictive value (NPV) of 79%;
total tau protein has a sensitivity of 71%, specificity
of 79%, PPV of 79%, and NPV of 70%; phosphory-
lated tau has 81%, 76%, 80%, and 78%, respec-
tively?3.

Cerebral [18F] FDG-PET

According to institutional protocol, each patient un-
derwent a brain [18F] FDG-PET procedure?*. Image
reconstruction was performed using Vue Point HD
(VPHD), which is an ordered subset expectation max-
imization algorithm that can be combined with point
spread function (PSF), correction (VPHD-S), and true-
time of flight ability. The images were processed using
three iterative reconstructions and 48 subsets, a 5 mm
full width at half maximum PSF (SharpIR) modeling with
a matrix size of 192 x 192; a field of view = 30 cm,
and a voxel size of 3.3 mm/pixel.

Commercial software CortexID (GE® Healthcare) was
used for brain [18F] FDG-PET analysis. Activity values
were normalized using the pons as a reference region.
Z-score 3D-stereotactic surface projection surface
maps were created for each patient. These maps were
obtained by comparing results with an external nor-
mative FDG-PET database containing data from
healthy individuals.

A nuclear medicine specialist and a medical imaging
specialist examined the images. An AD [18F] FDG-
PET pattern was suggested in the presence of pari-
etal, posterior cingulate, and precuneus cortex hypo-
metabolism was considered a Z value in the ID cortex
of =1 (unilateral or bilateral) with or without frontal
involvement. A non-AD pattern was considered when
observing an anterior or a non-specific distribution of
hypometabolism. The sensitivity of [18F] FDG-PET
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has been reported to be 76% and specificity of 82%,
with a PPV of 4.03 (95% Cl: 2.97-5.47) and NPV of
0.34 (95% Cl: 0.15-0.75)2>.

Statistical analysis

Categorical variables were described as frequencies
and proportions, and the x? test was used for com-
parison. According to distribution, quantitative vari-
ables were expressed as means and standard devia-
tions (SD). The analysis of variance and Kruskal-Wallis
tests were used accordingly for intergroup compari-
son. CSF, [18F] FDG-PET, and clinical test results
were dichotomously categorized according to their
compatibility with an AD or non-AD diagnostic pro-
file. With a 95% confidence interval (CD), diagnostic
concordance analysis among physicians’ initial ver-
sus their final clinical diagnosis when considering a
biomarker AD or non-AD pattern was calculated with
Cohen’s Kappa Index (k). The diagnostic agreement
was considered fair, moderate, good, and excellent
when Kappa scores were 0.21-0.40, 0.41-0.60,
0.61-0.80, and > 0.81, respectively?6. AB-42 and tau
protein quantitative value distributions were repre-
sented in a scatter plot according to [18F] FDG-
PET’s hypometabolism pattern. Finally, the longitu-
dinal change description after biomarker
implementation was illustrated with a Sankey dia-
gram. Associations were considered significant at
the 0.05 level. Analyses were performed using the
Statistical Package for the Social Sciences version 22
for Windows® (Chicago, IL, USA).

RESULTS

Patients’ data were obtained from a total of 77 clini-
cal records. Individuals had a mean age of 71 (SD *
10.1) years, most (53.2%) were men, and the mean
educational level was 11.7 (SD * 5.6) years. All pa-
tients had an available [18F] FDG-PET scan, and 25
(32.5%) had both biomarkers. Table 1 shows pa-
tients’ sociodemographic and clinical characteristics
according to their initial cognitive diagnosis. Twenty-
one patients (28%) were diagnosed with MCI, 33
(42.8%) with AD, and 23 (29.8%) with another de-
mentia diagnosis. Depression was the most prevalent
comorbidity in all groups. Patients diagnosed with AD
or other presented lower MMSE and MoCA scores
when compared to the MCI group.
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Table 1. Patients’ sociodemographic characteristics according to the initial diagnostic group

Variable MCI AD Other dementias p-value
(n=21) (n=33) (n=23)
Age, years mean (SD) 67.6 (11.5) 71.9 (65-79) 74.1 (67-79) 0.140
Male (%) 33.3 48.4 78.2 0.009
Education, years mean (SD) 12.2 (3.6) 11.4 (6.6) 10.7 (5.5) 0.932
Hypertension (%) 333 36.1 30.0 0.570
DM (%) 23.8 27.7 35.0 0.493
Depression (%) 47.6 44.4 35.0 0.835
CVD history (%) 14.2 13.8 20.0 0.974
MMSE, mean (IQR) 25.7 (1.5) 17.6 (6.4) 19.5 (7.5) 0.002
MOCA mean (IQR) 21.7 (3.9) 11.1 (6.8) 14.5 (8.2) 0.001

MCI: mild cognitive impairment, AD: Alzheimer’s disease, DM: type 2 diabetes mellitus, IQR: interquartile range, CVD: cerebrovascular disease,
MMSE: Mini—-Mental State Examination, MoCA: Montreal cognitive assessment.

Table 2. Contingency tables representing the diagnostic concordance between

tabolism pattern, and CSF profile

initial clinical diagnosis, 18FDG-PET hypome-

18-FDG PET (n = 77)

Variable AD pattern Non-AD pattern Subtotal
AD 23 20 43 k =0.451*
K (95% CI: 0.277-0.625)
8 Non-AD 2 32 34
.fg’ Subtotal 25 52 77
g CSF (n = 25)
% Variable AD pattern Non-AD pattern Subtotal
:S AD 6 8 14 k =0.233
£ (95% Cl: ~0.099-0.566)
Non-AD 2 9 11
Subtotal 8 17 25

*p < 0.005. FDG: fluorodeoxyglucose, PET: positron emission tomography, AD: Alzheimer’s disease.

We observed a fair-to-moderate diagnostic agree-
ment between physicians’ initial clinical and their final
diagnosis in the presence of CSF (x = 0.233, 95% Cl:
-0.099-0.566) and [18F] FDG-PET hypometabolism
(k = 0.451, 95% Cl: 0.277-0.625, p < 0.001) results
(Table 2). The Kappa value for diagnostic concor-
dance between [18F] FDG-PET and CSF to differenti-
ate between AD and other dementias was 0.733
(95% CI: 0.425-1.000, p < 0.005), which shows a
good level of agreement (Table 3).

After analyzing CSF quantitative values and their dis-
tribution according to 18[F] FDG-PET metabolism,
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patients with a suggestive initial AD pattern present-
ed lower AB-42 values and higher t-Tau (Fig. 1).

Clinical utility of 18[F] FDG-PET

Almost half (46%) of physicians changed their initial
versus their final diagnosis after 18[F] FDG-PET analy-
ses (Fig. 2). The highest proportion of change was
found in the MCI 11/21 (52%) and the other demen-
tias 13/23 (56%) groups. In the MCI group, the diag-
nosis changed mainly to AD 5/11 (44.4%), followed by
vascular cognitive impairment 2/11 (22.2%). On initial
evaluation, the most frequently established diagnosis
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Table 3. Contingency table representing the diagnostic concordance between CSF and 18 FDG-PET biomarkers (n = 25)

18 FDG-PET
Variable AD pattern Other dementias Subtotal
pattern

w AD pattern 7 1 8 k =0.733*
8 (95% CI: 0.452-1.000)

Other dementias 2 15 17

pattern
Subtotal 9 16 25

*p < 0.005. FDG: fluorodeoxyglucose, PET: positron emission tomography, AD: Alzheimer’s disease, CSF: cerebrospinal fluid.

Figure 1. Scatter plot diagram of CSF AB-42 and t-Tau values according to FDG-PET hypometabolism pattern (n = 25).
AB-42: amyloid-B-42; t-Tau: total Tau; FDG-PET: fluorodeoxyglucose positron emission tomography; AD: Alzheimer’s disease.
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in the other dementias group was frontotemporal de-
mentia (FTD), which was diagnosed in 9/23 (40.7%)
of cases. Changes in the latter group occurred in 4/9

1,00 1,500 2,000

T-tau (pg/ml)

(45.4%) cases, mainly toward an AD diagnosis. The
most prevalent final diagnosis was AD (53.6%), and
the second most frequent was FTD (33.9%).
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Figure 2. Change in diagnosis during follow-up after [18F] FDG-PET biomarker determination (n = 77).

AD: Alzheimer’s disease, [18F] FDG-PET: 18-fluorodeoxyglucose-positron emission tomography; FTD: frontotemporal dementia;
PPA: primary progressive aphasia; CBD: corticobasal degeneration; MSA: multiple system atrophy.

Change in
diagnosis: 46%

Alzheimer's Disease
34%
I Frontotemporal Dementia
56% I Lewy Body Dementia
I Primary Progressive Aphasia
I Other Dementias
Probable Alzheimer's Disease
52% Mild Cognitive Impairment
Probable Frontotemporal Dementia

M Probable Progressive Supranuclear Palsy

M Probable Corticobasal Syndrome

Diagnosis pre 18FDG-PET

DISCUSSION

This study shows a fair-to-moderate agreement be-
tween the initial clinical diagnosis and CSF and [18F]
FDG-PET’s results in a cohort of patients with cogni-
tive impairment. Moreover, a good diagnostic concor-
dance was found between both pathophysiologic bio-
markers to differentiate between AD and other
dementias. An early and accurate diagnosis has ther-
apeutic, ethical, and social implications in this con-
text. A timely differential diagnosis of AD and other
dementias is essential to determine specific disease-
modifying treatments and selecting participants for
relevant clinical trials?’.

Previous studies have reported an improvement in
diagnostic certainty when combining biomarkers?82°,
Shaffer et al. demonstrated that the classification er-
ror in patients who progressed from MCI to AD de-
creased from 27% to 9% when incorporating [18F]
FDG-PET, CSF, and MRI evaluations3°. Ménica Quispi-
alaya et al. demonstrated that [18F] FDG-PET dis-
criminated patients with an AD-positive CSF profile
from patients with an AD-negative profile with a sen-
sitivity and specificity > 80%?!3. Perini et al. reported
a 31% change in diagnosis after FDG-PET determina-
tion among patients with an uncertain diagnosis3*.

18FDG-PET pattern
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Prevalence
Alzheimer's Disease (PET) Alzheimer's Disease 53.6%
|| Atypical Alzheimer's Disease
Frontotemporal Dementia (PET)
Frontotemporal Dementia 33.9%

Corticobasal Syndrome (PET) *| Nonfluent Variant Primary Progressive Aphasia

I Progressive Supranuclear Palsy (PET)

Nondegenerative Cognitive Impairment

Non-specific pattern (PET)

I Progressive Supranuclear Palsy

Corticobasal Syndrome

| Multiple System Atrophy (PET) o| Multiple System Atrophy

Final diagnosis

In this study, as in other previously reported studies,
an agreement of 88% between biomarkers to differ-
entiate between AD and other dementias was
found!33233 In 12% of our study population, we
found a discrepancy between the patients’ FDG-PET
hypometabolism pattern and their CSF profile. In
these patients, a positive biomarker was considered
the reference for the final diagnosis. These cases
could represent atypical presentations in which, even
though a positive CSF-AD profile was present, the
FDG-PET uptake pattern did not correspond to the
involvement of typical areas. Therefore, mixed neuro-
degeneration etiologies could be considered.

Another important finding is that a change in diagnosis
occurred in a high proportion of patients. Various stud-
ies have shown a 30-55% influence of biomarkers on
the definitive diagnosis. To date, the diagnosis of AD
is still based on a complete clinical evaluation, including
neuropsychological testing and brain imaging as diag-
nostic tools. Within a selected clinical population, FDG-
PET has a significant clinical impact, both in the early
and differential diagnosis of uncertain dementia. FDG-
PET provides significant incremental value in detecting
AD and other dementias compared to a clinical diag-
nosis of uncertain dementia. When a physician must
discriminate AD from non-AD dementia based on
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clinical (non-biomarker-based) diagnostic criteria, 16%
are misdiagnosed and 16% of patients have a doubtful
diagnosis of AD versus non-AD31:34.35,

In this study, the fair-moderate agreement between
clinical diagnosis, CSF, and FDG-PET hypometabolism
patterns could be attributed to an insufficient sample,
heterogeneity of FDG-PET reference criteria, or an
unsubstantiated initial diagnosis. In this study, in pa-
tients with an FDG-PET-positive AD pattern, AB val-
ues were lower whereas tau protein was higher.

The average time of clinical course before cognitive
assessment was 3.9 years, which is longer than that
reported in another study3¢. Regarding the severity of
dementia at the time of care initiation, 40% of pa-
tients were diagnosed in a mild stage and 40% in a
moderate stage of the disease. Patients with early-
onset presentation had a longer time to diagnosis
(4.9 years) than those with a late-onset presentation
(3.2 years). The latter phenomenon could be related
to the fact that early-onset cognitive impairment is
usually accompanied by an atypical clinical presenta-
tion, which could delay a timely diagnostic approach.
These findings are similar to those reported in a posi-
tion document by a group of experts on dementia
care in Latin America3’.

This study has some limitations. Time for biomarker
determination took, in some patients, as long as 9
months, which is longer than what is reported in other
studies33:38 The latter could represent a source of
bias when determining the agreement between bio-
marker availability and clinical diagnosis. Furthermore,
the average time for patients to complete the study
protocol and receive a final diagnosis was 7 months
or more. One of the main causes of this delay was the
loss of follow-up during the COVID-19 pandemic,
which decreased the number of patients who under-
went biomarker evaluation.

To our knowledge, this is the first study in Mexico that
describes the agreement between AD and other de-
mentia biomarkers. An agreement between biomarker
determination, which further demonstrates their clini-
cal usefulness, was found. Another of the study’s
strengths is the longitudinal follow-up, which made it
possible to determine diagnostic trajectories and con-
firm the need for biomarker use in dementia’s definitive
diagnosis in cases of low clinical diagnostic certainty.
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