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ABSTRACT

Background: Artificial intelligence (Al) in radiology has improved diagnostic performance and shortened reading times of coro-
navirus disease 2019 (COVID-19) patients’ studies. Objectives: The objectives pf the study were to analyze the performance
of a chest computed tomography (CT) Al quantitative algorithm for determining the risk of mortality/mechanical ventilation
(MV) in hospitalized COVID-19 patients and explore a prognostic multivariate model in a tertiary-care center in Mexico City.
Methods: Chest CT images of 166 COVID-19 patients hospitalized from April 1 to 20, 2020, were retrospectively analyzed
using Al algorithm software. Data were collected from their medical records. We analyzed the diagnostic yield of the relevant
CT variables using the area under the ROC curve (area under the curve [AUC]). Optimal thresholds were obtained using the
Youden index. We proposed a predictive logistic model for each outcome based on CT Al measures and predetermined labora-
tory and clinical characteristics. Results: The highest diagnostic yield of the assessed CT variables for mortality was the percent-
age of total opacity (threshold >51%; AUC = 0.88, sensitivity = 74%, and specificity = 91%). The AUC of the CT severity score
(threshold > 12.5) was 0.88 for MV (sensitivity = 65% and specificity = 92%). The proposed prognostic models include the
percentage of opacity and lactate dehydrogenase level for mortality and troponin | and CT severity score for MV requirement.
Conclusion: The Al-calculated CT severity score and total opacity percentage showed good diagnostic accuracy for mortality
and met MV criteria. The proposed prognostic models using biochemical variables and imaging data measured by Al on chest
CT showed good risk classification in our population of hospitalized COVID-19 patients. (REV INVEST CLIN. 2021;73(2):111-9)
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic
continues to spread, confronting healthcare profes-
sionals worldwide®. Hospital overloading and a scar-
city of mechanical ventilators and intensive care unit
beds are critical concerns. The ultimate diagnosis of
COVID-19 relies on reverse-transcriptase real-time
polymerase chain reaction (RT-PCR)%3; however, the
false-negative rate is high (39-61%)“.

Thin-section chest computed tomography (CT) has a
high sensitivity for the diagnosis of COVID-19%¢. Our
institution follows the Fleischner Society Consensus’
and the European Society of Radiology? guidelines,
which recommend using CT imaging in various clinical
scenarios, including patients presenting moderate-to-
severe symptoms consistent with those of COVID-19.
Several visual assessments using semiquantitative CT
severity scores (CT-SS) with the degree of lung opaci-
fication have been proven significant in identifying
patients with severe disease3.

The importance of radiological findings in COVID-19
patients has increased radiologists’ workload, who
must interpret more images promptly to avoid delays
in diagnosis® and facilitate resource allocation. Fortu-
nately, the rapid development of artificial intelligence
(Al in the field of radiology has improved diagnostic
performance and shortened reading times1©, with very
high sensitivity and specificity!!. For instance, Lin et
al. used 4356 chest CT scans to develop a three-di-
mensional learning model (COVNet) to differentiate
correctly COVID-19 from community-acquired pneu-
monia with a sensitivity and specificity of 90% and
96%, respectively!2.

Some studies have described algorithms capable of
identifying and quantifying abnormal tomographic
patterns in non-contrast chest CT images of patients
with COVID-199 with high sensitivity and specificity
and excellent areas under the receiver operating char-
acteristic (ROC) curve (area under the curve [AUC])!2.
These automated systems perform segmentation of
the lungs, lobes, and compromised lung parenchyma
in 3D. Some measure the percentage of opacity and
high opacity and calculate a CT severity score. This
technology has opened the door for Al to classify risk,
monitor patients’ responses to treatment, and evalu-
ate disease progression. However, few studies have

112

compared the percentage and degree of lung opacifi-
cation related to patient outcomes in selected popu-
lations.

This study aimed to analyze the classification per-
formance of a chest CT Al quantitative algorithm in
a cohort of hospitalized COVID-19 patients, estab-
lishing quick classification thresholds that could con-
tribute to determine the mortality risk and the need
for mechanical ventilation (MV). This study also con-
structed a prognostic multivariate logistic model
testing CT Al measures and predetermined clinical
and laboratory characteristics to validate this Al CT
tool.

METHODS

The protocol of this observational retrospective study
followed the Declaration of Helsinki’s ethical require-
ments and was approved by the Institutional Review
Board. Informed consent was waived because the in-
stitution’s protocol had already acquired the images
for these patients.

Data sources

Demographic, clinical, biochemical, and radiological
data were obtained from electronic medical records
of hospitalized COVID-19 patients from April 1-20,
2020, in a Tertiary Health Care Center of Mexico City.

The inclusion criteria were hospitalized adult (= 18
years old) patients with a positive RT-PCR for SARS-
CoV 2 who had undergone non-contrast chest CT.
Hospitalized patients with incomplete or unavailable
CT images in the Picture Archiving and Communica-
tion System were excluded from the study. The pa-
tients’ demographic data included age, sex, and co-
morbidities and laboratory data included leukocyte
count, creatinine, lactate dehydrogenase, ferritin,
C-reactive protein, high-sensitivity troponin I, and
D-dimer levels.

The primary outcome variables were as follows: pa-
tient requirement for MV (defined as patients with
no improvement in respiratory distress with a non-
rebreathing mask with high flow [10-15 L/min], a
respiratory rate higher than 30/min, PaO, < 60 mm Hg,
and PaO,/FiO, [obtained from noninvasive respiratory
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Figure 1. Quantitative lung computed tomography (CT) analysis. (A) Non-contrast chest CT images in the axial, sagittal, and
coronal planes show automatic lung segmentation and bilateral ground-glass detection by Al software. (B) Al software volume-
rendered images highlight compromised lung areas (mean attenuation > =700 Hounsfield units). (C) Overall total opacity score,
total percentage of opacity, and other CT variables are shown in the results table.
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support] < 150 with respiratory distress, or any pa- on deep learning and deep reinforcement learning.
tient with PaO,/FiO, < 100), and all-cause mortality This Al algorithm was previously trained in controls
during hospitalization. and a large group of patients with diseases (average

report time of 1-3 min per chest CT examination).
Chest CT scan and quantitative

analysis CT-SS, volume and percentage of opacity, and volume
and percentage of high opacity were automatically
All chest CT scans were performed using a 64-detec- processed by the Al software (Fig. 1). All post-pro-
tor CT scanner (Revolution EVO, General Electric) cessing results were reviewed, manually corrected,
with the following parameters: 120 kV, 350 mAs, ro- and approved by a general radiologist with more than
tation time 0.4 s, pitch 1.5, and intersection space 5 10-years’ experience. CT-SS is calculated by dividing
mm. Furthermore, reconstructions using a 1.5-mm the lung parenchyma into five anatomical lobes and
slice thickness and sharp convolution kernel were per- assigning scores (0-20) based on the percentage of
formed. All CT scans were performed with the patient opacity within the lobes (0, 1, 2, 3, and 4 if parenchy-
in a supine position. The field of view included the mal opacification was 0, < 25%, < 50%, < 75%, and
whole chest (from the lung apex to the suprarenal > 75%, respectively). Volumes of opacity and high
glands) and was obtained during forced inspiration. opacity were calculated based on Hounsfield units
The entire dataset was anonymized and exported in (HU; areas with mean densities higher than =700 HU
Digital Imaging and Communication on Medicine for- and -200, respectively)!3, and percentages were cal-
mat for segmentation and quantification. Using CT culated dividing the compromised volume by the total
pneumonia analysis prototype software (Siemens measured pulmonary volume.
Healthcare version 30, Erlangen, Germany), an Al al-
gorithm based on three-dimensional segmentation Statistical analysis
automatically detected and quantified abnormal to-
mographic patterns (ground-glass opacities and con- Continuous variables were expressed as means and
solidations) in each and both lung parenchyma based standard deviations or medians with interquartile
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ranges, and categorical variables were expressed as
percentages and absolute frequencies. Subsequent-
ly, we performed bivariate logistic correlation (each
independent variable vs. the outcomes reporting
crude odds ratio [ORc]) to establish the significance
as a prerequisite for inclusion in the multivariate
model.

We tested the diagnostic yield of the relevant vari-
ables obtained from CT images (CT-SS, the total
volume of opacity and high opacity, and percentage
of opacity and high opacity) using a ROC-based anal-
ysis, with their AUC and 95% confidence intervals
(CI). Optimal thresholds were obtained using the
Youden Index (J) to describe the sensitivity, specific-
ity, positive predictive value, negative predictive val-
ue, positive likelihood ratio, and negative likelihood
ratio. All hypothesis tests considered a significant
two-tailed p < 0.05.

We performed a multivariate analysis with logistic
regression to identify the predictive model for each
outcome (meeting criteria for MV and mortality)
based on CT variables, including predetermined sig-
nificant correlated clinical and laboratory variables
(age, diabetes, hypertension, leukocyte count, and
C-reactive protein, ferritin, D-dimer, high-sensitivity
troponin |, and lactate dehydrogenase levels) that
were previously reported in original research in an
identical population. The final parameter reported
was the adjusted risk ratio: ORa'4. Hosmer—Leme-
show tests were performed to test for the goodness
of fit of the logistic regression models (calibration),
with overall (Brier score) and discrimination (C score)
statistics. The analysis was performed on STATA SE
version 14.1 software and SPSS software package
version 20.

RESULTS
Demographic and clinical variables

The median age of the 166 patients who met the
inclusion criteria was 50 * 14 years and 60.2% were
men. The outcomes, all-cause mortality and meeting
criteria for MV, were observed in 21.08% and 30.72%
of patients, respectively. Patients’ demographic data
are presented in table 1.
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Table 1. Patients’ demographic data* (n = 166)

Variables Result
Age, years mean (SD) 50 (14)
Male (%) 100 (60.2)
Patient meeting criteria 51 (30.72)
for MV (%)
Patient with access to MV** (%) 49 (29.52)
Global mortality (%) 35(21.08)
Length of stay, days mean (SD) 10 (8.6)
Comorbidities (%)
Diabetes 44 (26.51)
Hypertension 39 (23.49)
COPD 1 (0.60)
Smoker 5(3.0D
Asthma 2 (1.20)
Obesity 28 (16.87)
Immunosuppression 4(2.41)
Cardiovascular disease 2 (1.20)
Cancer 2 (1.20)
Organ transplant 6 (3.61)
Laboratory data
Leukocytes cells/mm?3 8.5 (6.8)
mean (SD)
Creatinine, mg/dL mean (SD) 0.95 (0.36)
Lactate dehydrogenase, Ul/dL 375 (142.3)
mean (SD)
Ferritin, mg/dL median (IQR) 627 (577.4)
CRP, mg/dL median (IQR) 12.86 (5.49-19.28)
Troponin |, ng/dL median (IQR) 4.95 (3.3-9.4)

D-Dimer, ng/dL median (IQR) 584 (401-1018)

SD: standard deviation; MV: mechanical ventilation; COPD: chronic
pulmonary obstructive pulmonary disease; CRP: C reactive protein;
IQR: interquartile range.

*Data presented as n (%) unless specified.

**Patients without access to MV due to limited resources were not
included.

Optimal thresholds of CT variables
for the classification of mortality
and MV requirement

The highest diagnostic yield of CT variables for the
outcomes of interest was the percentage of total
opacity with AUC_ .. (threshold > 51%) = 0.88
(95% Cl, 0.81-0.94) and AUC,,, (threshold > 25%)
=0.88 (95% Cl, 0.83-0.93), with sensitivity, specific-
ity, and negative predictive values of 74%, 91%, and
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Table 2. Diagnostic performance of CT Al calculated variables for COVID-19 pneumonia

Outcome Variable AUC (95% CD Threshold Youden SEN SPE PPV NPV LR+ LR-
index
Mechanical ~ Severity score 0.884 (0.83-0.937) >12.5 0.56 65 92 78 85 826 0.38
Ve.rt‘t"?t'on Total opacity 0.843 (0.783-0.903) >793ml  0.55 8 69 55 91 275 0.19
criteria volume
% total opacity  0.886 (0.837-0.936) > 25% 0.593 86 73 58 92 3.2 0.18
High opacity 0.87 (0.814-0.926) > 190 ml 0.56 75 82 64 87 4.08 0.31
volume
% high opacity 0.866 (0.809-0.923) > 8% 0.56 65 91 76 85 7.44 0.38
Mortality Severity score 0.876 (0.805-0.947) > 10.5 0.64 83 82 54 94 452 0.2
Total opacity 0.847 (0.773-0.922) > 1158 ml 0.59 83 76 48 94 3.5 022
volume
% total opacity  0.881 (0.816-0.947) >51% 0.65 74 91 68 93 8.1 0.28
High opacity 0.848 (0.77-0.92) > 165 ml 0.56 86 71 44 94 295 0.2
volume
% high opacity 0.834 (0.762-0.907) > 9% 0.53 63 91 64 90 6.86 0.4

Al: artificial intelligence; AUC: semiquantitative (area under the ROC curve); SEN: sensitivity; SPE: specificity; PPV: positive predictive value;

NPV: negative predictive value; LR: likelihood ratio.

93%, respectively, for mortality and 86%, 73%, and
92%, respectively, for meeting MV criteria. For CT-SS,
AUCmortality (threshold > 10.5) = 0.87 (95% ClI,
0.80-0.94), with sensitivity, specificity, and nega-
tive predictive values of 83%, 82%, and 94%, re-
spectively, and AUC,,, (threshold > 12.5) = 0.88
(95% CI, 0.83-0.93), with sensitivity, specificity,
and negative predictive values of 65%, 92%, and
85%, respectively. Data for the remaining CT vari-
ables and outcomes of interest are detailed in table
2. Figs. 2 and 3 show the ROC curves for mortality
and MV requirement.

Predictive logistic models for mortality
and MV requirement

In the first approximation, we calculated ORc as part
of the previous bivariate analysis for model construc-
tion and found statistical significance in the correla-
tion of CT variables with mortality and MV require-
ment (Table S1). Conversely, there were clinical and
laboratory variables that were not significantly cor-
related with mortality (diabetes [p = 0.24], hyperten-
sion [p = 0.09], leukocyte count [p = 0.18], ferritin
[p = 0.09], and D-dimer [p = 0.0961) or MV require-
ment (age [p = 0.23], diabetes [p = 0.34], hyperten-
sion [p = 0.43], leukocyte count [p = 0.21], ferritin
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[p = 0.11], and D-dimer [p = 0.099]). Hence, we
excluded these variables from the predictive model.

In the first multivariate logistic analysis (Enter Meth-
od), which included clinical characteristics (age, lac-
tate dehydrogenase, C-reactive protein, and troponin
I) and the CT values, the adjusted OR (ORa) lost
significance, except for CT-SS (p = 0.007) and tropo-
ninl (p = 0.017) for MV requirement, and the percent-
age of total opacity (p = 0.02) and lactate dehydro-
genase (p = 0.034) for mortality. A second model for
mortality showed a lack of goodness of fit (p = 0.05);
thus, we transformed the percentage of total opacity
into a dichotomic variable based on the threshold
obtained using the Youden test (>51%), achieving
goodness of fit with a slightly better R? (0.368 vs.
0.386). Table S2 details the proposed prognostic
model and predicting equations for meeting the MV
criteria, and table S3 presents the same for mortality.

DISCUSSION

Quantitative Al analysis of CT images has been used
in prior investigations that explored diverse lung pa-
renchyma pathologies, proving that Al is a suitable
tool for supplementing conventional visual assess-
ment!>. The advantages of quantitative CT Al
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Figure 2. Mortality receiver-operating characteristic curve of computed tomography variables.

» ROC Curve Mortality
0 1
—— |
) =
// ]
0.84
A
0.6 [
=
7
S l
N 0.4 l
If
0.2
)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Source of the Curve

—— Severety_score

— Total_opacity_volume
Total_opacity_percentage

—— High_opacity_volume
High_opacity_percentage

— Reference Line

Figure 3. Need for mechanical ventilation receiver-operating characteristic curves of studied computed tomography variables.
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software under radiologist supervision include a sig-
nificant reduction in interpretation time, fast learning
curve, and increased objectivity of the quantitative
severity assessment of the affected lung parenchyma
which decreases the variability between readers. At
present, CT Al software has been tested in research
and academic centers under radiologic surveillance
with encouraging results. It represents a promising
tool for implementation in the clinical field.

This report is one of the first cohort studies to inves-
tigate the association between mortality and MV re-
quirement with Al thoracic CT measures in a His-
panic (Mexican) population. CT-SS and the percentage
of total opacity had the strongest diagnostic accu-
racy estimators, robust enough to maintain a signifi-
cant association in the logistic models’ multivariate
adjustment, including the predetermined clinical and
laboratory parameters. Thresholds higher than 51%
for the percentage of total opacity and >10.5 points
in the CT-SS had the highest AUC (88% and 87%,
respectively), with the former having a specificity of
91%. Similarly, a threshold of >25% had a negative
likelihood ratio of 0.18. This CT Al measure could
integrate prognostic tools with laboratory and clinical
variables to determine the risks of mortality and MV
requirement in hospitalized COVID-19 patients in the
present cohort. The predictive values might have been
affected by the high mortality in our patients; how-
ever, the prevalence was similar to those stated in
other reports?é.

Recently, Lessmann et al. developed an Al system
that accurately identified COVID-19 patients with
high diagnostic performance and assigned SS in good
agreement with the experienced radiologist!’. Lanza
et al. also used computer-aided quantitative analysis
of CT images to determine compromised lung vol-
umes and predict the need for oxygenation support
and intubation!®. They found that patients with com-
promised lung volumes of > 23% were at risk for in-
tubation. Similarly, in our study, we obtained a thresh-
old of 25% for patients meeting intubation criteria.

Our logistic regression models for meeting MV criteria
and mortality, combining the significant biochemical
and tomographic variables, had two significant vari-
ables each. Most of the CT variables’ adjusted ORs lost
significance, as shown by the strong correlation de-
tected. Notably, prognostic (clinical and biochemical)
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surrogates have shown significant heterogeneity
among reports of different COVID-19 populations,
showing mixed significance and effects, which is ex-
pected in such a new entity!®.

Nevertheless, our models could distinguish patients’
requirements for MV and risk of mortality with an
acceptable R2. The overall performance, discrimina-
tion, and calibration statistics were favorable for both
models and could be used by clinicians for decision-
making during hospitalization to predict high-risk
patients.

LDH is a widely available, affordable, and rapidly mea-
sured biochemical marker that has been associated
with severe pneumonia and mortality. Ortiz-Brizuela
et al. found that lactate dehydrogenase was signifi-
cantly higher in patients admitted to the ICU4. Dong
et al. found a high accuracy for predicting mortality
in critically ill patients2® with a 353 U/L threshold and
a hazard ratio of 5.98. Similarly, in a pooled analysis
including 1,532 COVID-19 patients, elevated lactate
dehydrogenase levels had a 6- and 16-fold increase in
odds for severe disease and mortality, respectively?!.
In addition, it has also been evaluated as a potential
marker to assess treatment response; increased and
decreased levels correlate with radiographic progress
or improvement?2.

Likewise, troponin | is an efficacious, inexpensive, and
rapidly measured cardiac injury biomarker. Several
studies have identified it as an independent risk factor
for the need for mechanical intubation, severe dis-
ease, and transfer to the ICU23-25. Shah et al. reported
OR of 5.18 and 4.95 for MV and admission to the ICU,
respectively?#. In a New York cohort of 2736 hospital-
ized COVID-19 patients, 36% had elevated troponin |
within 24 h of admission. Patients with levels higher
than 0.09 ng/mL had a significant mortality risk (ad-
justed Hazard ratio 3.03)25.

In another study that evaluated Al CT software,
Zhang et al. proposed a prognostic model for a Chi-
nese population-based on radiographic and biochem-
ical criteria to predict mortality, the clinical need for
MV, or the need to be transferred to the ICU, with an
AUC of 0.847 for imaging features alone, and 0.909
combined with clinical data?®. Francone et al. also
found that CT Al scores were positively correlated
with inflammatory biomarkers and associated higher
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scores with mortality?’. In conjunction with our find-
ings, these studies support the use of Al to classify
risk, monitor patients’ response to treatment, and
evaluate disease progression in COVID-19, thereby
opening a door for Al to improve resource allocation.

This study has several limitations. This research used
a retrospective design. All included patients were
from a single tertiary referral center, and only hospi-
talized patients were enrolled. We analyzed only re-
constructions with a slice thickness of 1.5 mm; thin-
ner reconstructions may have a higher diagnostic
yield, as the software company recommends. Aside
from improving the interobserver agreement men-
tioned before, Al's performance requires specialized
software and has been tested by trained radiologists
so far, which might not be widely available.

Further multicenter studies with larger cohorts are
encouraged to establish new scenarios for evaluating
and externally validating risk prediction performance
in similar hospitalized populations. Other quantitative
variables obtained by Al may be studied for their
clinical implications as a tool in the patient follow-up,
quantifying the disease’s possible sequelae. Al can be
beneficial in different scenarios throughout the evolu-
tion of this pandemic and validation of the informa-
tion obtained through this tool in our daily practice is
imperative.

In conclusion, CT-SS and total opacity percentage
had good diagnostic utility for mortality and MV re-
quirement. The proposed prognostic models using
variables measured by the Al software in chest CT
(severity score for meeting MV criteria and percent-
age of total opacity >51% for mortality) and prede-
termined laboratory elements (troponin | for MV and
lactate dehydrogenase for mortality) had good risk
classification performance in hospitalized COVID-19
patients, strengthening the evidence for the use of
this tool as part of the triage process in the CT anal-
ysis of COVID-19 patients.

SUPPLEMENTARY DATA

Supplementary data are available at Revista de Inves-
tigacion Clinica online (www.clinicalandtranslational-
investigation.com). These data are provided by the

corresponding author and published online for the
benefit of the reader. The contents of supplementary
data are the sole responsibility of the authors.
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