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ABSTRACT

Background: Schizophrenia (SCZ) and dementia, often related, are two of the most common neuropsychiatric diseases; epide-
miological studies have shown that SCZ patients present a 2-fold increased risk for dementia compared to non-schizophrenic
individuals. We explored the presence of rare and novel damaging gene variants in patients diagnosed with late-onset dementia
of Alzheimer’s type (DAT) or SCZ. Methods: We included 7 DAT and 12 SCZ patients and performed high-depth targeted se-
quencing of 184 genes. Results: We found novel and rare damaging variants in 18 genes in these Mexican patients. Carriers of
these variants showed extreme phenotypes, including, treatment-resistant SCZ or cognitive decline. Furthermore, we found a
variation on ABCC1 as a possible link between psychosis and cognitive impairment. Discussion: As an exploratory analysis, we
report some interesting variations that should be corroborated in larger sample size studies. (REV INVEST CLIN. 2019;71:246-54)
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INTRODUCTION SCZ present a 2-fold increased risk for dementia com-

pared to non-schizophrenic individuals®. Unfortunate-
Neuropsychiatric disorders affect approximately 30% ly, the etiology of these complex diseases remains to
of the population worldwide!-3. Schizophrenia (SCZ) be fully elucidated. Genome-wide association studies
and dementia, often related, are two of the most (GWAS) have contributed to explain approximately
common neuropsychiatric diseases*, and epidemio- 12% of phenotypic variation of these complicated
logical studies indicate that patients diagnosed with disorders, including SCZ and dementia®’, showing an
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apparent missing heritability®. One approach to find
this missing heritability is to investigate rare highly-
damaging (RHdv) and novel variants (Nv) which are
not routinely considered in GWAS analyses. Several
research groups have undertaken this quest using
next-generation sequencing (NGS)°. One limitation
could be that RHdv and Nv are potentially population-
specifict®!l. The collection of genetic variation in
Mexican populations is still an ongoing and incipient
endeavor, particularly for RHdv and Nv12. This study
aimed to explore by NGS the presence of novel and
damaging variants for 184 genes in 19 Mexican pa-
tients diagnosed with dementia or SCZ.

METHODS
Study population

Nineteen individuals from the Geriatric Clinic at the
Psychiatric Hospital “Fray Bernardino Alvarez” and the
Group of Medical and Family Studies Carracci in Mex-
ico City, Mexico, were invited between 2011 and
2013 to participate. Of them, seven were diagnosed
with late-onset dementia of probable Alzheimer’s
type (DAT) and 12 with SCZ. All patients were invited
to participate and signed informed consent. The study
protocol complied with the Helsinki Declaration and
was approved by the Ethics and Research Committee
at the National Institute of Genomic Medicine (No.
IMG/DI/136/2014).

DAT patients filled a demographic questionnaire and
were evaluated by a geriatric psychiatrist at the Psy-
chiatric Hospital “Fray Bernardino Alvarez.” Dementia
was diagnosed based on the DSM-IVR criteria since
our study group found memory impairment and at
least one other cortical function affected!3. All the
patients had a family history of Alzheimer’s disease
in at least one, first, or second degree relative, and
fulfilled the criteria for probable Alzheimer’s diagnosis
according to the National Institute of Neurological
Disorders and Stroke and the Alzheimer’s Disease Re-
lated Disorders Association!4. The patients were eval-
uated using the following scales: mini-mental state
examination (MMSE), NEUROPSI, clock-drawing test,
DIPAD, and the clinical dementia rating!>-2°.

Patients with paranoid SCZ were recruited from the
Group of Medical Studies Carracci; all patients had a
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family history of at least one-, first-, or second-de-
gree relative diagnosed with SCZ. Patients were eval-
uated with a diagnostic interview for genetic stud-
ies?!, which is a structured interview, including the
disorders contained in the Axis | of the DSM-IVR. In
this respect, little changes have been made in the lat-
est version of DSM for SCZ diagnosis?2. Furthermore,
when the medical record of the patient was available,
we included a structured sequence of the response to
the consumed medications. We established criteria
for treatment-resistance, as previously published?3.
Positive and negative symptoms were evaluated with
SAPS and SANS scales, and cognitive function was
evaluated with the MMSE?4. APOE-E4 variant is the
most extensively validated among the genetic mark-
ers associated with cognitive decline. To consider this
variation, all the included individuals (i.e. 7 DAT and
12 SCZ) were negative for the E4 allele of the APOE;
the APOE status was determined by real-time PCR, as
previously described?>.

Targeted NGS

Genomic DNA was extracted from peripheral leuko-
cytes using the Gentra Puregene commercial kit (QIA-
GEN, USA). We designed synthetic probes for NGS,
targeting genes associated with dementia, SCZ, and
several pharmacogenetic targets. The selection of
genes was based on a literature search for published
works reporting an effect of common variations or
rare variants in SCZ, dementia or drug response to
different antipsychotics or antidementia drugs®7:26-36;
a list of the captured genes is reported in Supplemen-
tary Table 1. Gene capture was performed using the
Haloplex target enrichment system (Agilent Tech-
nologies, USA) with 1.51Mb with 40754 amplicons.
Sequencing libraries were generated according to the
manufacturer’s protocol (version D.5, May 2013).
Briefly, all DNA samples (a total of 225 ng for each
sample) were digested with 8-paired restriction en-
zymes; fragmentation pattern was analyzed in a
2100 Bioanalyzer (Agilent Technologies, USA). DNA
fragments were hybridized with Haloplex synthetic
probes for library enrichment, and adapters were li-
gated by PCR. Then, library qualities for fragment size
and concentration were assessed using a 2100 Bio-
analyzer, as previously described3’. Sequencing was
performed using a NextSeq500 system (lllumina,
USA), aiming for 200x depth coverage in paired-end
reads.
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Table 1. Rare or novel damaging variants detected in patients diagnosed with Dementia of the Alzheimer’s type

Variant dbSNP Gene Reference  Mendelian® Complex©
MAFA
Missense variants
NP_004792.1: rs199784029 NRXN1 0.0008 Pitt-Hopkins-like Autism spectrum
p.Pro108Ala syndrome-233:>6 disorder®9-¢4 and
schizophrenia®®
NP_742054.1: rs765679790 KCNH2 0.000008  Long QT Syndrome 25738  Schizophrenia treatment
p.Val33Met response®®67 and lower
intellectual coefficient
in schizophrenia®®
NP_000515.2: rs145641566 HTRIA 0.0005 Periodic fever, menstrual  Alcohol and nicotine
p.Alal55Gly cycle-dependent®® dependencet®70
and Alzheimer’s disease
with alcohol dependence
comorbidity®®
NP_001748.1: rs146758729 CBR1 0.0015 NR Drug toxicity”172
p.Glyl195Arg
Non-coding variants
NT_187607.1: rs28363996  ABCCI 0.0003 NR Drug resistance’3-7¢

g.1782677C>T

AReference MAF: Minor allele frequency reported in the GnomAD or the 1000 Genomes Project. BLoF variant reported to be disease-causing of
Mendelian inheritance disorder. “Common or rare variants reported to be associated to neuropsychiatric disorder. NR: Not reported.

Bioinformatic analyses

First, for quality control, we utilized trimmomatic to
eliminate reads with a quality score Phred-QS <25
and length below 55 bp; indexes, adaptors, and 5 bp
at both read ends were trimmed according to general
practices3®. We then aligned reads to the human ge-
nome using BWA3® and SMALT with GRCh37/hg19 as
reference“C. InDel realignment, base recalibration, and
variant calling were done following the GATK best-
practices recommendations*142, HaplotypeCaller was
used for SNV detection, and copy number variants
(CNV) were detected using the pipeline implemented
by XHMM#43, A total of 1274 variants were called by
both aligners, which were used for the following anal-
yses. Variants were confirmed visually in the integra-
tive genomic viewer IGV, and also, annotated using
dbSNP version 14737:44,

Analysis of rare and novel
damaging variants selection

Variants were registered if detected in at least one
SCZ or DAT patient, as heterozygous or homozygous.
Variants were annotated utilizing different databases
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including: dbSNP, OMIC, ClinVar, GhomAD, rebuild,
and 1000 Genomes, with Variant Effect Predictor4s,
allowing the prediction of the functional impact, with
queries to different algorithms and databases (SIFT,
Polyphen-2, FATHMM, CADD, gene splicer, and splice
region)46-53. As possible pathogenic variants, we se-
lected loss-of-function (LoF) variants (frame shift,
stop gained, splice-site acceptor, and splice-site do-
nor) and missense variants if the three algorithms
predicted the variants to be damaging (i.e., SIFT,
FATHMM, and polyphen-2), and coding synonymous
variants and non-coding variants were selected if the
CADD score was higher than 25 (CADD). After filter-
ing these variants, we included all the Nv, and for
previously reported ones, we only included rare muta-
tions (minor allele frequency <0.1%) using the Ge-
nome Aggregation Consortium (GnomAD) and the
1000 Genomes projects databases as reference for
population allelic frequency. ClinvVar, OMIM (Online
Mendelian Inheritance in Man), and an own search in
PubMed databases were used as reference for the
clinical significance and disease-associated variants.
Furthermore, a novel variation (Nv) was considered
when it had not been reported. We used the Human
Genome Variation Society (HGVS) nomenclature using
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the web-tool mutalyzer>4, and included the “rs” dbSNP
(version 147) identifier for the nonNv.

RESULTS

Summary of the total detected
variants in the sample

Bioinformatic analyses detected 1274 variants on
184 genes, with an average depth of 96x (range:
55X-120X), and 91.2% coverage. Of these, 1148
were SNVs, 126 indels, and only one CNV on RELN
gene. A total of 149 variants (11.7%) were located
in coding regions and 1125 (88.3%) in non-coding
regions. Frequency analyses showed that more than
half of all variants (735 variants) were common (mi-
nor allele frequency >5%). In total, we also identified
86 Nv not previously reported. The genes with the
highest number of Nv were PTGER3 (21 Nv), SLC6A3
(5 Nv), and ADD1 (5 Nv).

Rare and Nv in patients with DAT

In three of seven DAT patients (42.9%), we detected
five damaging variants in five genes (NRXN1, HTR1A,
KCNH2, CBR1, and ABCC1) (Table 1). Novel or LoF
variations were not observed. Four variants were mis-
sense: NRXN1 (p.Pro108Ser), HTR1A (p.Alal55Gly),
KCNH2 (p.Val33Met), and CBR1 (p.Gly195Arg), and
one intronic ABCC1 (g.1782677C>T). LoF variation
in three genes (NRXN1, KCNH2, and HTR1A) has
been reported to be causal of some syndromes with
Mendelian inheritance type (Pitt-Hopkins-like syn-
drome-2, Long QT Syndrome 2, and menstrual cycle-
dependent periodic fever), while CBR1 and ABCCI
have been reported in drug response. Furthermore,
common variation in genes NRXN1 and KCNH2 has
been previously associated to neuropsychiatric disor-
ders (SCZ, autism spectrum disorder, and drug abuse
and dependence), and only common variation on
HTRI1A has been previously associated to DAT. One
single DAT patient, DAT 1, carried three of the seven
damaging variants, on NRXN1, KCNH2, and ABCC1.
This patient obtained the lowest scores in the MMSE
= 7 (i.e., affecting almost all his cognitive areas). A
summary of some sociodemographic and clinical char-
acteristics of patients carrying the variants is shown in
Supplementary Table 2.
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Rare and Nv in patients with SCZ

In schizophrenic patients, we identified 13 variants on
13 genes: ANK2, CYP3A4, RELN, HTR7, DISC1, TYMS,
CYP2B6, MTHFR, NRG1, SLC6A5, BDNF, GRIN2B, and
ABCC1 (Table 2). Of these, four were LoF on ANK2,
CYP3A4, RELN, and HTR7; three were missense on
DISC1, TYMS, and CYP2B6; and six were coding syn-
onymous or non-codng on MTHFR, NRG1, SLC6AS5,
BDNF, GRIN2B, and ABCC1. We identified six Ny,
which represented almost half of all variants detected
for this patient group. In these patients, 10 of the 12
(83.33%) included individuals was a carrier of a dam-
aging variant. Previously, LoF variants in ANK2, RELN,
SLC6AS5, MTHFR, and GRIN2B have been reported to
cause syndromes with Mendelian inheritance (Table
2). Interestingly, the patient carrier of the variants in
DISC1 had the lowest cognitive function (mini-mental
state = 15), and a patient carrier of the LoF in CY-
P3A4 had treatment-resistant SCZ. A summary of
genetic variations and clinical and sociodemographic
data of patients with SCZ are presented in Supple-
mentary Table 3.

DISCUSSION

Here, we present a next-generation genome se-
quencing analysis to explore the existence of rare
and novel damaging variants in patients with SCZ or
DAT. Clearly, one of the main limitations of this study
is the low number of patients included. However, as
an exploratory study, we obtained interesting results
that could prompt future studies with larger sample
sizes. To the best of our knowledge, there are no
reports using NGS to identify rare and novel gene
variation for neuropsychiatric disorders in Mexican
patients.

Our analyses showed that almost 10% of the tar-
geted genes were carriers of one rare or novel damag-
ing variant. For example, genes coding for drug-me-
tabolizing enzymes (DME) (CBR1, CYP3A4, TYMS,
CYP2B6, and MTHFR), and genes involved in neurode-
velopmental processes (ANK2, RELN, DISC1, NRNX1,
NRG1, and BDNF) were the two main pathways ob-
served in this study with relevant variation in these
patients. Variants on genes ANK2, RELN, and NRNX1
have been associated with some syndromes with
Mendelian inheritance affecting neurodevelopmental
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Table 2. Rare or novel damaging variants detected in patients diagnosed with Schizophrenia

Variant dbSNP Gene Reference  Mendelian® Complex©
MAFA
LoF
NP_001139.3: rs750143580 ANK2 0.00006 Long QT syndrome 477 Bipolar disorder with
p.Thr3457Hisfs and Cardiac Arrythmia binge-eating®®
(Ankyrin-B-related)”®
NC_000007.13: NR RELN NR Lissencephaly 27980 Schizophrenia, autism
2.103130984_ and Familial Temporal spectrum disorder®® and
103474463del Lobe Epilepsy 78! Alzheimer’s disease®’2
NP_059488.2:p. rs67666821  CYP3A4 0.0002 NR Treatment response in
Pro488Thrfs schizophrenia?®
NC_000010.10: NR HTR7 NR NR Alzheimer’s disease?®3
2.92617169_
92617170ins
Missense variants
NP_001158010.1: rs144959108  DISC1 0.0007 NR Schizophrenia®4?> and
p.Arg418His Alzheimer’s disease’®
NP_001062.1: NR TYMS NR NR Alzheimer’s disease?®¢
p.Gly246Ala
NP_000758.1: rs12721655 CYP2B6 0.0023 NR Nicotine dependence®’
p.Lys139Glu
Coding synonymous and non-coding variants
NP_001305298.1: rs77029901  SLC6AS5 0.0003 Hyperekplexia 38283 Schizophrenia®®
p.Ala282=
NP_005948.3: rs2066466 MTHFR 0.0032 Homocystinuria due Neural tube defects®°:100
p.Thr139= to MTHFR deficiency® and schizophreniat©%102,
NC_000012.11:g. NR GRIN2B NR Autosomal dominant Schizophrenia and autism
13769306G>A mental retardation®>-87 spectrum disorder03
and early infantile
epileptic
encephalopathy?888
NC_000008.10:g. NR NRG1 NR NR Schizophrenia®61.104-107
32405771T>C
NC_000011.9: rs79141432 BDNF 0.0024 NR Schizophrenial©®
g.27722838A>G
NC_000012.11: NR ABCC1 NR NR Drug resistance’3-7¢

2.16228314T>C

AReference MAF: Minor allele frequency reported in the GnomAD or in the 1000 Genomes Project. 8LoF variant reported to be disease-causing
of Mendelian inheritance disorder. “Common or rare variants reported to be associated to neuropsychiatric disorders. NR: No reported.

LoF: Loss-of-function variants.

mechanisms, which suggests that they may have a
strong influence on the etiology of DAT or SCZ. The
overall effect of these variants on the etiology of
neuropsychiatric disorders is still under study, al-
though some hypotheses have been proposed. For
instance, a recent WES and WGS analysis of neuro-
psychiatric patients has proposed that an increase
of damaging variants on these genes could decrease
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the age of Alzheimer’s onset!%®, and that the age of
onset of SCZ and autism-spectrum disorders could
be influenced by the accumulation of de novo vari-
ants in genes involved in neurodevelopmental pro-
cesses!iOlll

The effect of DME on brain processes has been un-
derstudied. Nevertheless, some, including CYPI1A,
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CYP2B, CYP2C, and CYP3A, have been functionally
linked to brain development!12113, Qur observations
regarding DME include that among schizophrenic pa-
tients, two were carriers of the CYP3A4*20
(rs67666821) allele as homozygous, and this vari-
ant was present in a patient with treatment-resis-
tant SCZ23. CYP3A4*20 is an allele previously identi-
fied in the Brazilian population!!4, and it has been
found at high allele frequency in the Spanish popula-
tion (minor allele frequency = 0.012)115, but at low
frequency in other European populations. This allele
has been reported to affect the metabolism of clo-
zapine, also associated with treatment-resistant
SCZ11e,

In relation to carriage of damaging variants in neuro-
developmental genes that could affect SCZ and cogni-
tive ability, two patients diagnosed with SCZ were
carriers of the DISCI missense rare variant
(p.Arg418His) and clearly manifested a cognitive dis-
ability. DISC1 gene has been involved in the neurode-
velopmental process and the development of normal
cognitive function3!. The product of this gene is
greatly involved in brain cortex development, includ-
ing symmetry and orientation of neurons!t7-120, Fur-
thermore, a common variation in the DISC1 gene has
been associated with Alzheimer’s disease, reinforcing
the notion that this gene could have a strong effect
on cognitive development.

An interesting finding was that ABCC1 (ATP-binding
cassette, subfamily C, and member 1 gene) was the
only gene where two patients in each group shared a
variant. The patient diagnosed with DAT who was a
carrier of the ABCC1 variant had a rapid cognitive
decline, with severe manifestations of cognitive im-
pairment. Likewise, the patient diagnosed with SCZ
and was a carrier of a variant in this gene had a cog-
nitive disability, mainly affecting memory function.
ABCC1 has previously been implicated in the increased
accumulation of amyloid-p, dependent on its expres-
sion in a mouse model of early Alzheimer’s disease!?1.
However, the effect of the observed novel and rare
damaging variants in disease etiology would be under
the scope of future studies. The development of NGS
technologies has enabled the screening of many ge-
netic variants, finding a large number that has not
been previously reported. The substantial number of
Nv found makes impractical to functionally validate
each one; in this sense, computer methods have been
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developed to anticipate the effect of a variant at the
molecular level. Here, we presented a sequencing data
analysis utilizing different algorithms to prioritize the
damaging effect of variants. We focused on those
with a higher impact on disease etiology, based on
distinct algorithms.

Our results may be limited by the small sample size;
however, we explored genetic variation in 184 genes
previously associated with neurodegenerative diseas-
es and drug treatment. We located some rare and
novel damaging variants on 18 genes formerly known
to be involved in neuropsychiatric disorders in a Mex-
ican population, and we discussed their potential role
in these diseases. Future endeavors should focus on
validating these observations.
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