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Resumen

Dentro de la teoria de identificacién de sistemas, los
modelos de redes neuronales artificiales (ANN) artificial
neural networks por sus siglas en inglés, han mostrado gran
capacidad para encontrar patrones de relacion entre variables
de procesos altamente no lineales, asi como resolver la
limitante de la regresion no lineal, donde no es posible usar
variables correlacionadas como entradas. El objetivo de la
presente investigacion fue modelar la tasa de fotosintesis
foliar de plantas de jitomate, cultivadas bajo invernadero,
mediante redes neuronales artificiales, empleando como
variables de entrada: temperatura, humedad relativa, déficit
de presion de vapor y concentracion de didxido de carbono
(CO,)del aire, asi como radiacion fotosintéticamente activa.
Elexperimento se desarroll6 durante 2009 en un invernadero
experimental de la Universidad Auténoma de Querétaro,
México. Se usé el equipo de fitomonitoreo PTM-48M
(Daletown Company, Ltd), para registrar el intercambio
de CO, de las hojas, asi como las variables meteorologicas.
Para eliminar ruidos de los sensores en las mediciones se
aplico el filtro Savitzky-Golay. Se evaluaron diferentes
configuraciones para redes de retropropagacion, siendo la
de 4 capas con 10 neuronas en la primera capa oculta, 15 en
la segunda y 10 mas en la tercera, la que generd los mejores
indices estadisticos sobre datos de prueba: coeficiente de
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Abstract

Within the theory of systems identification, the models of
artificial neural networks (ANN) have shown great ability
to find patterns of relationships between variables of highly
nonlinear processes, as well as solving the constraint of
the nonlinear regression, where it is not possible to use
correlated variables as inputs. The objective of this paper
was to model the rate of foliar photosynthesis of tomato
plants, grown under greenhouse conditions using artificial
neural networks, using as input variables: temperature,
relative humidity, vapor pressure deficit and concentration
of carbon dioxide (CO,) of the air, and photosynthetically
active radiation. The experiment was conducted during
2009 in an experimental greenhouse of the Autonomous
University of Querétaro, Mexico. The equipment
used was the PTM-48M phyto-monitoring (Daletown
Company, Ltd), to record CO, exchange on the leaves,
and weather variables. In order to remove the sensor noise
in the measurements, the Savitzky-Golay filter was used.
Different configurations for back-propagation networks
were evaluated, with 4 layers and 10 neurons in the first
hidden layer, 15 in the second one and 10 more in the third
one, which produced the best statistical indices on the
test data: coefficient of determination, R>= 0.9756 and
mean square error, MSE= 0.8532. Taking the best ANN
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determinacion, R*= 0.9756 y cuadrado medio del error,
CME=0.8532. Tomando las predicciones de lamejor ANN,
se realizo una optimizacion estatica, relacionando dos
variables climaticas con la tasa de fotosintesis, mediante
graficas en tercera dimension, a fin de mostrar estrategias
para maximizar la tasa de fotosintesis.

Palabras clave: Solanum lycopersicum L., fitomonitor,
modelos de caja negra.

Introduccion

Laproduccion de cultivos en invernaderos esta en constante
crecimiento en todo el mundo, debido a que, en comparacion
con la produccion en campo abierto, los ambientes
controlados permiten lograr altos rendimientos, mejor
calidad de productos, produccion fuera de temporada asi
como un uso muy eficiente del agua. Tan so6lo en México,
la evolucion de la superficie cubierta con esta tecnologia
paso6 de aproximadamente 721 hectareas (ha) en el afio
2000,a3 214 haen 2005 y para 2008 se incrementd a 9 948
ha (SAGARPA, 2008).

Los invernaderos varian desde construcciones simples
cubiertas con plastico, hasta modernas instalaciones
de vidrio con muy alta tecnologia (Heuvelink, 2008).
Independientemente del tipo de invernadero, el control
climatico al interior del mismo esta enfocado a mantener
las variables climaticas temperatura, humedad relativa,
cantidad de radiacion, déficit de presion de vapor y nivel de
didxido de carbono (CO,) tan cerca como sea posible de las
condiciones optimas para el desarrollo del cultivo.

El mejoramiento del control ambiental dentro del
invernadero, también requiere identificar la influencia de
factores climaticos en la fisiologia y desarrollo de las plantas
cultivadas, puesto que la respuesta de la planta es la parte
del proceso mas importante en los sistemas de produccion
(Tantau, 1992; Roh et al., 2007). Dentro de los aspectos
fisioldgicos mas relevantes que deben ser considerados en
un sistema de produccion en invernadero, se encuentra el
entendimiento del proceso de fotosintesis y los elementos que
influyen en ella positiva o negativamente (Evans y Loreto,
2000). El proceso de fotosintesis esta relacionado con la
transformacion del CO, y agua en asimilados que la planta
empleapara sumantenimiento, crecimiento y desarrollo. La
tasa de fotosintesis es condicionada principalmente por la
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predictions, we performed a static optimization, linking
two climatic variables with the rate of photosynthesis,
using three-dimensional graphics, to show strategies for
maximizing the rate of photosynthesis.

Key words: Solanum lycopersicum L., black box models,
phyto-monitor.

Introduction

Crop production in greenhouses is constantly growing
worldwide, because, compared with production in the
open, the controlled environments allow to achieve higher
yields, better product quality, off-season production,
using water quite efficiently. In Mexico alone, the
evolution of the surface covered with this technology
increased from approximately 721 hectares (ha) in 2000
to 3 214 ha in 2005 and for 2008, increased to 9 948 ha
(SAGARPA, 2008).

The greenhouses range from simple constructions
covered with plastic to modern glass facilities with
very high technology (Heuvelink, 2008). Whatever the
type of greenhouse, climate control is thereof focused
on maintaining the climate variables of temperature,
relative humidity, quantity of radiation, vapor pressure
deficit and level of carbon dioxide (CO,) as close as
possible to the optimal conditions for the development
of the crop.

Improved environmental control inside the greenhouse
also requires to identifying the influence of the climatic
factors on the physiology and development of the crop,
since the response of the plant is the most important
process in the production systems (Tantau, 1992; Roh et
al.,2007). Among the most relevant physiological aspects
that must be considered in a greenhouse production
system, is to understand the process of photosynthesis
and the elements that influence it positively or negatively
(Evans and Loreto, 2000). The process of photosynthesis
is related to the transformation of CO, and water in the
plant, assimilated used for maintenance, growth and
development. The rate of photosynthesis is mainly
conditioned by the intensity of light, CO, concentration
and temperature as well (van Ooteghem, 2007), although,
other climatic variables have significant influence in this
process.
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intensidad de luz, concentracion de CO, y por latemperatura
(van Ooteghem, 2007), aunque otras variables climaticas
tienen bastante influencia en este proceso.

Lamayoriade las acciones de control climatico afectan mas
variables de las que debieran y por lo tanto pueden alterar
las resistencias internas y externas de la hoja al intercambio
gaseoso; por con esto, las acciones de control y efectividad de
estos procedimientos deben ser cuidadosamente propuestos
cuando el objetivo sea un buen control de temperatura y
transpiracion del dosel (Wilkinson, 2000). Por ejemplo,
la sola manipulacion de la humedad relativa dentro de un
invernadero, no es por si misma un sustituto del manejo
que se debe hacer para modificar la tasa de transferencia
del follaje; sin embargo, juega un papel muy importante
en las tasas de intercambio gaseoso (vapor de agua y CO,)
(Stanghellini, 1988).

El monitoreo en tiempo real y continuo de la respuesta
fisiologicadelaplantaalos cambios del ambiente, proporciona
informacion muy importante para controlar el microclima
del invernadero de forma precisa; asi mismo, el uso de esta
tecnologia es muy acertado como una herramienta para
hacer investigacion (Ton et al., 2001). Sin embargo, adaptar
una tecnologia de fitomonitoreo a sistemas de produccion
convencional bajo invernadero resulta casi imposible por los
elevados costos de los equipos (Roh et al., 2007).

Afortunadamente, la modelacion de procesos fisiologicos
como la fotosintesis, es una herramienta que permite
conocer el comportamiento de los cultivos bajo ciertas
condiciones ambientales de forma muy econémica, solo
es necesario contar con modelos que lleven a cabo la
prediccion de manera precisa del comportamiento del
proceso. Los modelos de fotosintesis y de cultivos pueden
ser usados para identificar las condiciones deseadas
de crecimiento, explorar efectos de las condiciones de
desarrollo relacionadas a la introducciéon de nuevas
tecnologias, asi como a la identificacion de tratamientos
que son particularmente importantes en un ambiente
especifico (Marcelis et al., 2009).

Hasta la fecha se han reportado tanto modelos empiricos
simples como modelos tedricos complejos para la fotosintesis
foliar (Pachepsky y Acock, 1996). Asimismo, una gran
variedad de técnicas matematicas han sido usadas en esos
modelos, basicamente formulas algebraicas combinadas
con métodos de integracion especiales. Esta variedad de
técnicas se debe a que muchos modelos fueron creados

Most of the climatic control actions affect more variable
than they should and therefore may alter the internal
resistance and external leaf gas exchange; for this
reason, the control actions and effectiveness of these
procedures must be carefully proposed when the target
is a good temperature control and canopy transpiration
(Wilkinson, 2000). For example, the mere manipulation
of the relative humidity inside a greenhouse it’s not a
substitute for management itself, it should be done to
change the transfer rate of the foliage, but it plays an
important role in exchange rates of gas (water vapor and
CO,) (Stanghellini, 1988).

Thereal-time monitoring and continuous plant physiological
response to changes in the environment, provides important
information to control the greenhouse microclimate more
accurately, likewise the use of this technology is very
successful as a tool to research (Ton et al.,2001). However,
adapting a phyto-monitoring technology to conventional
systems in greenhouse production is almost impossible due
to the high equipment costs (Roh et al., 2007).

Fortunately, modeling of physiological processes such
as photosynthesis is a tool to understand the behavior of
crops under certain environmental conditions, it is only
necessary to have models to predict the behavior of the
process. Models of photosynthesis and crops can be used to
identify appropriate conditions of growth, exploring effects
of developmental conditions related to the introduction of
new technologies and to identify the treatments that are
particularly important in a specific environment (Marcelis
etal.,2009).

Up to this day, empirical models have reported both
simple and complex theoretical models for foliar
photosynthesis (Pachepsky and Acock, 1996). Also, a
variety of mathematical techniques have been used in these
models, essentially algebraic formulas combined with
special integration methods. This variety of techniques
were created to solve different problems, from the need to
provide asub-model to a general model of photosynthetic
productivity of the crops (Gijzen et al., 1990), up to the
need for specialized models to investigate the nature of
one or more components in the process of photosynthesis
(Pachepsky and Acock, 1996).

Most of the mechanistic models of photosynthesis require
a large number of parameters as inputs and, they must
be basically determined by direct measurement. Such



1292 Rev. Mex. Cienc. Agric. Vol.3 Num.7 1 de septiembre - 31 de octubre, 2012

para resolver diferentes problemas, desde la necesidad
de proveer de un sub-modelo de fotosintesis a un modelo
general de productividad de cultivos (Gijzen et al., 1990),
hastalanecesidad demodelos especializados parainvestigar
la naturaleza de uno o mas componentes en el proceso de la
fotosintesis (Pachepsky y Acock, 1996).

La mayoria de los modelos mecanicistas de fotosintesis
requieren un gran nimero de parametros como entradas
y éstos deben ser determinados basicamente por medio
de mediciones directas. Tales mediciones son usualmente
costosas, consumen demasiado tiempo y son destructivas
(Anten, 1997). No obstante la exhaustiva determinacion de
los parametros de los modelos, para suuso en otros ambitos,
muchas veces es necesario reajustar los valores de estos
parametros, haciendo a los modelos poco confiables para
su uso (Nederhoff'y Vegter, 1994).

Debido a lo anterior, en los ultimos afios, los modelos
llamados de caja negra han sido exitosamente usados en el
area agricola; por ejemplo, para modelar la temperatura del
aireal interior del invernadero se han empleado los modelos
auto-regresivos (ARX) con variables externas (Lopez et al.,
2007), asi como lasredes neuronales artificiales (Ferreira et
al,2002; Fraustoy Pieters, 2004; Tantau e al., 2008; Salazar
etal.,2008). Otros modelos de caja negra bastante exitosos
en la prediccion de latemperatura y humedad al interior del
invernadero son los modelos neuro-difusos, que combinan
las ventajas de lasredes neuronales y de los sistemas difusos
(Lopez y Hernandez, 2010).

Salazaret al. (2010), encontraron que con el uso de modelos
de redes neuronales es posible hacer predicciones precisas
(hasta con 5 y 10 minutos de anticipacion) tanto de la
temperatura dentro del invernadero, como de la fotosintesis
foliar de plantas de jitomate.

El objetivo de esta investigacion fue predecir la tasa
de fotosintesis foliar de plantas de jitomate (Solanum
lycopersicum L.), mediante redes neuronales artificiales, a
partir de las condiciones climaticas al interior del invernadero:
radiacion fotosintéticamente activa, temperatura, humedad
relativa, concentracion de CO, y déficit de presion de vapor,
sin emplear la variable respuesta, tasa de fotosintesis,
como parte de las variables de entrada del modelo. El
comportamiento de las redes neuronales artificiales se
contrast6 con los valores de intercambio de dioxido de
carbono, medidos en plantas de jitomate usando un sistema
de fitomonitoreo. Usando el mejor modelo de red neuronal
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measurements are usually expensive, consuming much time
and are destructive (Anten, 1997). Despite the exhaustive
determination of the model parameters for use in other
areas, it is often necessary to readjust the values of these
parameters, making the modelsunreliable foruse (Nederhoff
and Vegter, 1994).

Because of this, in the recent years, the so-called black
box models have been successfully used in agriculture,
for example, for modeling the air temperature inside the
greenhouse, auto-regressive models (ARX) with external
variables (Lopez et al.,2007) and artificial neural networks
(Ferreira et al., 2002; Frausto and Pieters, 2004; Tantau et
al.,2008; Salazar et al. 2008) have been used. Other black
box models quite successful in predicting the temperature
and humidity inside the greenhouse are the neuro-diffuse
models, combining the advantages of both, the neural
networks and diffuse systems (Lopezand Hernandez, 2010).

Salazar et al. (2010) found that, the use of neural network
models canmake accurate predictions (up to 5 to 10 minutes
inadvance) for both, the temperature inside the greenhouse,
and foliar photosynthesis on tomato plants.

The objective of this research was to predict the rate
of foliar photosynthesis of tomato plants (Solanum
lycopersicum L.) using artificial neural networks,
from the climatic conditions inside the greenhouse:
photosynthetically active radiation, temperature, relative
humidity, concentration of CO, and vapor pressure
deficit, without using the response variable, rate of
photosynthesis, as part of the input variables of the model.
The behavior of artificial neural networks was compared
with the values of exchange of carbon dioxide, measured
in tomato plants using a system of phyto-monitoring.
Using the best neural network model, surfaces in three
dimensions were generated to more easily explain the
effect of the interaction between the climatic variables
and their effect on the rate of photosynthesis.

Materials and methods

The research was conducted in a greenhouse of the
Experimental Field of the Autonomous University of
Querétaro (20° 42 'north latitude), hooded-type with natural
ventilation through side curtains on all four sides, covered
with polyethylene. The dimensions are: 24 m long x 9 m
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se generaron superficies en tres dimensiones para explicar de
formamas sencillael efecto delainteraccion entre variables
climaticas y su efecto en la tasa de fotosintesis.

Materiales y métodos

La investigacion se desarrolld en un invernadero del
Campus Experimental de la Universidad Autéonoma
de Querétaro (20° 42’ latitud norte), tipo capilla con
ventilacion natural por medio de cortinas laterales en los
cuatro lados, con cubierta de polietileno. Las dimensiones
de éste son: 24 m largo x 9 m de ancho y 6 m de altura al
caballete, con orientacion norte- sur en el sentido de las
canaletas. El sistema para el control de temperatura esta
basado en apertura y cierre de las cortinas cuando las
condiciones climaticas asi lo requieren.

Elexperimento consistio en medir el intercambio de dioxido
de carbono (CO,) de las hojas de plantas de jitomate bien
desarrollada, cultivadas en el invernadero usando el equipo
de fitomonitoreo PTM-48M (Daletown Company Ltd),
automatico de cuatro camaras, con sistema de tipo abierto.
Las variables registradas por el fitomonitor PTM-48M
fueron: concentracion de CO, de referencia (ppm), CO,de
lacamara durante lamedicion (ppm), flujo de aire al sistema
de medicion (ppm), fotosintesis (umolCO,m™s"), humedad
absoluta del aire (gm™), temperatura (T, °C) y humedad
relativa (HR, %) del aire, presion atmosférica (mbar) y
déficit de presion de vapor (VPD, vapor pressure deficit,
kPa), todas a nivel de hoja. Los sensores se colocaron a
media profundidad del dosel, asi como en la parte superior
del mismo, en hojas con ancho mayor a Scm, excluyendo
hojas viejas. Se instaldé también un sensor de radiacion
fotosintéticamente activa (PAR, photosynthetically active
radiation, Watch Dog Model 450 (Spectrum Technologies
Inc.); este sensor reporta las mediciones cada 5 min en
unidades cuanticas, (umol Fotones m™s"). Las mediciones se
realizaron del 3 de noviembre (30 dias después del trasplante)
al 27 de diciembre de 2009.

Pre-procesamiento de datos

Las mediciones se hicieron cada 30 min con el equipo de
fitomonitoreo, mientras que con el sensor de radiacion se
realizaban cada 5 min; por lo tanto, de acuerdo con Salazar
et al. (2010), fue necesario hacer una interpolacion lineal
para los datos del fitomonitor a fin de generar dos puntos

wide and 6 m high to the ridge, facing north-south in the
direction of the gutters. The system for the temperature
control is based on opening and closing curtains when the
weather conditions require it.

The experiment consisted of measuring the exchange of
carbon dioxide (CO,) from the leaves of well-developed
tomato plants grown in the greenhouse using the phyto-
monitoring equipment, PTM-48M (Daletown Company
Ltd), automatic four-chamber system with open type.
The variables recorded by the PTM-48M were: reference
concentration of CO, (ppm), CO, from the chamber during
the measurement (ppm), air flow measurement system
(Ipm), photosynthesis (umolCO,m™2s"), air absolute
humidity (gm), temperature (T, °C) and relative humidity
(RH, %) of the air, atmospheric pressure (mbar) and
vapor pressure deficit (VPD, kPa), all at leaf level. The
sensors were placed at the mid-depth of the canopy, and
on the top, in leaves more width than 5 cm, excluding old
leaves. It was also installed a sensor of photosynthetically
active radiation (PAR, Watch Dog, Model 450 (Spectrum
Technologies Inc.), this sensor reports measurements
every 5 min in quantum units (umol Fotones m?2s™").
Measurements were conducted from November 3% (30
days after transplantation) to December 27%, 2009.

Pre-processing data

Measurements were made every 30 min with the phyto-
monitoring equipment, while with the radiation sensor is
performed every 5 min, and therefore, according to Salazar
etal. (2010) it was necessary to make a linear interpolation
of'the data to the phyto-monitor to generate two extra points,
thus having, data of all the equipment’s variables every 10
min. Additional sensor data is changed from 5 min to 10
min by elimination.

With arrays of information created from the sensor
signals, we proceeded to conduct a data filtering, in
order to remove noise from the sensors, also excluding
unwanted behaviors in the process of finding the best
neural network configuration to estimate the tomato’s
foliar photosynthesis. The first filter applied to the data
matrix was proposed by Savitzky and Golay (1964),
using Matlab (The Mathworks Inc., 1984-2009). The
filter coefficients were as follows: for photosynthesis and
radiation variables used a second-order function and 25
curve trend data, for the variables temperature, relative
humidity, CO, concentration and vapor pressure deficit,
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extras, teniendo asi, datos de todas las variables del equipo
cada 10 min. Los datos del sensor adicional se cambiaron
de 5 min a 10 min por eliminacion.

Con las matrices de informacion creadas a partir de las
sefiales de los sensores, se procedid a llevar a cabo un
filtrado de datos, con la finalidad de eliminar los ruidos
de los sensores, excluyendo también comportamientos
no deseados para el proceso de busqueda de la mejor
configuracion de red neuronal para estimar la fotosintesis
foliar del jitomate. El primer filtro aplicado a las matrices
de datos fue el propuesto por Savitzky y Golay (1964),
por medio de Matlab (The Mathworks INC, 1984-2009).
Los coeficientes del filtro quedaron de la siguiente forma:
para las variables fotosintesis y radiacion se emple6 una
funcion de segundo orden y 25 datos de tendencia de
curva; para las variables temperatura, humedad relativa,
concentracion de CO, y déficit de presion de vapor, se
empleo el mismo ordeny 7 mediciones adelante y atras del
valor estimado. El tiempo de retrasos y adelantos entre las
variables que se filtran dependen del tipo de cada una, asi
como al desfasamiento, hacia la derecha o izquierda, de
los datos nuevos con respecto de los originales por accion
de la tendencia que sigue el filtro.

Se eliminaron también los datos del fitomonitor en
que el intercambio de CO, presenta valores negativos,
correspondiendo éstos al proceso fisioldgico de la
respiracion durante las horas sin radiacion; asimismo, se
convirtieron a ceros los registros en que laradiacion durante
lanoche es diferente de ese valor, debido a la alta precision
delos sensores, que son capaces de captar factores externos.
Finalmente, se eliminaron las colas de las curvas de radiacion
y fotosintesis que seguian una tendencianegativadebidoala
aplicacion del filtro Savitzky. Como ya se explicd, ninguna
de estas variables puede tener valores por debajo de cero.

Para la creacion de las redes neuronales se realizé una
division de la matriz de informacion, a lo largo de los 4 820
puntos de mediciones, de forma aleatoria, quedando los
siguientes subconjuntos: 50% de datos para entrenamiento,
25% para validacion y 25% restante para prueba.

Redes neuronales

Las redes neuronales artificiales son una forma de
inteligencia artificial que “aprenden” al procesar datos
en patrones a través de su arquitectura interna y tienen la
capacidad de modelarrelaciones no lineales entre variables.
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we used the same order and 7 measurements and forth the
estimated value. Time delays and advances between the
variables that are filtered on the type of each, and the phase
shift to the right or left, the new data with respect to the
original per share of trend following the filter.

Data ofthe phyto-monitor that presented negative values for
the exchange of CO, were also eliminated, corresponding
to the physiological process of breathing during hours of
radiation, also converted to zeros records that the radiation
atnightis different from that value, due to the high precision
of the sensors, which are able to pick external factors.
Finally, we removed the tails of the curves of radiation
and photosynthesis following a negative trend due to the
application of the Savitzky filter. As already explained, none
of these variables can have values below zero.

Forthe creation ofneural networks is performed a division of
the matrix information, along the 4820 measurement points,
atrandom, being the following subassemblies: 50% data for
training, validation and 25% for 25% remaining for testing.

Neural networks

Artificial neural networks are a form ofartificial intelligence
to "learn" to process data patterns through its internal
architecture and have the ability to model nonlinear
relationships between the variables.

These networks are composed of information processing
units acting in parallel, called nodes. These receive an
input signal and generate an output transfer functions using
nonlinear and sigmoidal and hyperbolic functions. The nodes
are present in layers. A network of multi-layer perceptron
architecture is used in an ANN. It consists of three layers:
incoming calls, hidden and output. A layer consists of
individual nodes and these are interconnected by directed
arcs by weights associated (Hagan et al., 1996). Each layer
has a weight matrix, a bias vector and a vector of outputs
(Figure 1) shows a 3-layer neural network.

The layers of amultilayer network play different roles. The
layer that produces the outputs of the network is called output
layer. Therest of them are named hidden layers. Amultilayer
network can be a universal approximator of functions. For
example, a network of two layers, where in the first layer is
sigmoid and the second layer is linear, trained to adjust any
function in a manner quite adequate (Hagan et al., 1996;
Demuth et al., 2009).
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Se componen de unidades de procesamiento de informacion
actuando en paralelo, llamadas nodos. Estos reciben una
sefial de entrada y generan una salida usando funciones
de transferencia no lineales como funciones sigmoidales
e hiperbolicas. Los nodos se presentan en capas. Una red
de perceptrones con varias capas es la arquitectura mas
usada en una ANN. Esta consta de tres capas: llamadas de
entrada, ocultay de salida. Una capa esta formada pornodos
individualesy éstos se encuentran interconectados mediante
arcos dirigidos por medio de pesos asociados (Hagan et
al., 1996). Cada capa tiene una matriz de pesos, un vector
de sesgos, asi como un vector de salidas. En la Figura 1 se
muestra una red neuronal de 3 capas.

Las capas de una red multicapa juegan diferentes roles. La
capaque produce las salidas de lared se llama capa de salida
(output layer). Elresto de ellas son nombradas capas ocultas
(hidden layers). Unared multicapa puede serun aproximador
universal de funciones. Por ejemplo, una red de dos capas,
donde la primera capa es sigmoidal y la segunda capa es
lineal, puede ser entrenada para ajustar cualquier funcion de
una manera bastante adecuada (Hagan et al., 1996; Demuth
etal.,2009).

Las Redes deretropropagacion (backpropagation) aprenden
mediante una generalizacion de la regla de aprendizaje
Widrow-Hoff (también conocida como minimos cuadrados
medios del error, LMSE, least mean squares errors, por
sus siglas en inglés) para redes multicapa y funciones de
transferencia no lineales diferenciables. Se usan vectores
de entrada y los correspondientes vectores objetivos para
entrenar lared hasta que ésta pueda aproximar una funcion o
asociarun vector especifico de entrada a un vector especifico
de salida (Hagan et al., 1996).

Unared estandar de retropropagacion emplea el algoritmo
del gradiente descendente, tal como la regla de aprendizaje
Widrow-Hoff, en la cual, los pesos de la red se mueven
a través de la parte negativa del gradiente de la funcion
de desempeifio. El término, retropropagacion, se refiere
a la forma en que el gradiente es calculado para redes
multicapa no lineales, donde el error se calcula para ajustar
los valores de los pesos propagandose hacia atras (de
derecha a izquierda). Hay un gran niimero de variaciones,
en el algoritmo basico, que estan basadas en las técnicas de
optimizacion estandar, tal como gradiente conjugado o el
método de Newton.

Capa de neuronas oculta

Entrada 1

Entrada 2

Entrada 3 Salida

Entrada 4

Entrada 5

Capa de entrada

Capa de neuronas de salida
de nodos fuente

Figura 1. Esquema simplificado de unared neuronal de varias
capas.
Figure 1. Simplified schematic of a multilayer neural network.

The back-propagation networks learn through a
generalization of the learning rule of Widrow-Hoff (also
known as the minimum mean square error (LMSE) for
multilayer networks and functions of transfer linear
differentiable. Input vectors are used and the corresponding
objective vectors to train the network until it can approximate
a function, or associates a specific input vector to a specific
output vector (Hagan et al., 1996).

A standard network back-propagation algorithm uses the
gradient descent, as the learning rule of Widrow-Hoff,
wherein the network weights move through the negative
gradient of the performance function. The term, back-
propagation refers to the way in which the gradient is
calculated for nonlinear multilayer networks, where the error
is calculated to adjust the values of the weights propagating
backward (from right to left). There are a number of
variations on the basic algorithm, which are based on
standard optimization techniques such as conjugate gradient
or Newton's method.

During the investigation we evaluated different
configurations of ANN to predict the rate of photosynthesis
asa function of 5 input climatic variables, measured inside
the greenhouse. The difference between the configurations
of the tested ANN lies in its structure (number of layers
that make up and number of neurons in each of them) and
the origin of the training data directly from the sensors or
filtered.
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Durante la investigacion se evaluaron diferentes
configuraciones de ANN para predecir latasa de fotosintesis
en funcién de 5 variables climaticas de entrada, medidas
al interior del invernadero. La diferencia entre las
configuraciones de laANN probadas, radica en su estructura
(ntimero de capas que las integran y, nlimero de neuronas en
cadacapa),asicomo el origen de los datos de entrenamiento,
directos de los sensores o filtrados.

Se empleo el ambiente de programacion Matlab (Neural
Network Toolbox), para la generacion, prueba y
validacion de las redes. Todas las redes disefiadas fueron
de retropropagacion, usando el algoritmo de Levenberg-
Marquardt para su entrenamiento; funcion de aprendizaje
por gradiente descendente con momento; como funcion
de desempeiio el cuadrado medio del error; una funcion de
transferencia hiperbodlica tangente sigmoidal para las capas
ocultas y funcidn de transferencia lineal para la capa de
salida. Lo anterior se debe a que, si en la capa de salida se
emplean neuronas sigmoidales, lasalida de lared selimitaa
unrango muy pequeiio; por el contrario, al usar una neurona
lineal, la salida puede tomar cualquier valor (Ljung, 2008).

Generacion de las rutas de la fotosintesis

Para entender, de manera general, el comportamiento de
la fotosintesis (de las plantas de jitomate del experimento)
como respuesta a diferentes condiciones de las variables
que definen el microclima al interior del invernadero, se
generaron superficies en 3 dimensiones de las funciones de
respuesta que describen las rutas que toma la fotosintesis
como consecuencia de esta interaccion. Cada funcion
se genero usando dos variables climaticas a la vez como
entradas (con datos filtrados por medio del método
Savitzky Golay) y tomando en todos los casos como
variable respuesta, la tasa de fotosintesis que predice la
mejor red neuronal artificial. Las superficies se crearon
para las siguientes combinaciones en contra de la tasa
de fotosintesis: 1) temperatura-concentracion de Co,; 2)
radiacion-déficit de presion de vapor; y 3) temperatura-
humedad relativa.

Resultados y discusion

Después de varias iteraciones durante el entrenamiento
de las redes, tanto para datos directos de los sensores o
filtrados, se toman como redes validas aquellas con el

José Manuel Vargas Sallago et al.

We used the Matlab programming environment (Neural
Network Toolbox), for generating, testing and validating
the networks. All back-propagation networks were
designed using the Levenberg-Marquardt algorithm for
training and, learning function by gradient of descent
with the momentum; performance as a function of the
mean squared error, a hyperbolic tangent transfer function
sigmoid for hidden layers and linear transfer function
for the output layer. This is because, if the output layer
neurons are used sigmoidal, the output of the network is
limited to a very small range, on the contrary, when using
a linear neuron, the output can assume any value (Ljung,
2008).

Routes of photosynthesis generation

In order to understand, in general, the behavior of
photosynthesis (tomato plants of the experiment) in
response to different conditions of variables defining
the microclimate inside the greenhouse, 3-dimensional
surfaces were generated of the response functions that
describe the routes taken photosynthesis as a result of
this interaction. Each function was generated using two
climatic variables, both as inputs (filtered data using
Savitzky Golay method) and taking in all cases as the
response variable, the rate of photosynthesis that predicts
the best artificial neural network. The surfaces were
created for the following combinations against the rate
of photosynthesis: 1) temperature-concentration Co,;
2) radiation, vapor pressure deficit; and 3) temperature-
relative humidity.

Results and discussion

After several iterations during the training of the networks,
both for direct data or filtered sensors, the networks are
taken as valid, those with the best fit of its predictions on
the test data, but avoiding overestimation, i.e. considered
acceptable the ones in which the degree of adjustment
in both test and validation is lower than in the training
(estimate). The best networks are presented in Tables 1 and
2. For the unfiltered data (Table 1), the best performance
on the dataset it’s the neural network with 3 layers and 15
neurons in two hidden layers. As shown, an adjustment
was achieved 97 248% with a mean square error equal to
1.9802. In the case of the filtered data (Table 2), the best
performance it is the neural network with 4 layers, 10
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mejor ajuste de sus predicciones sobre el conjunto de
datos de prueba, pero evitando sobreestimacion; es decir,
se consideran aceptables aquellas en las que el grado de
ajuste tanto en prueba como en validacion es menor que
en entrenamiento (estimacion). Las mejores redes se
presentan en los Cuadros 1y 2. Para los datos sin filtrar
(Cuadro 1), el mejor desempeiio sobre el conjunto de
datos lo tiene lared neuronal con 3 capasy 15 neuronas en
ambas capas ocultas. Como puede observarse, se logré un
ajuste de 97.248% con un cuadrado medio del error igual
a 1.9802. En el caso de los datos filtrados (Cuadro 2), el
mejor desempefo lo tiene la red neuronal con 4 capas,
10 neuronas en la primera capa oculta, 15 en la segunda
y 10 mas en la tercera. El ajuste llega a 98.821% con un
cuadrado medio del error de 0.9908. Puede notarse que a
partir del nimero de neuronas indicado para cada capa,
un incremento en el nimero de éstas, provoca que el
desempefio de la red comience a decrecer, tomando en
cuenta el cuadrado medio del error.

neurons in the first hidden layer, 15 in the second one and
10 more in the last one. The adjustment comes to 98 821%
with a mean square error of 0.9908. It may be noted that
from the indicated number of neurons for each layer, an
increase in their number causes the network performance
begins to decrease, taking into account the mean squared
error.

Comparing the best neural networks generated (Table
3), both for unfiltered input (network-1) and the filtered
data by Savitzky Golay (network-2), we observed that,
although the network-1 is simpler in structure, the degree
of adjustment is only 1 573% lower than the filtered data
generated network, but taking into account the mean
squared error that the network-2 has only 50.03% of the
generated error direct data network of sensors. Therefore,
the neural network is more efficient than the filtered
data generated, although it has a more complex
architecture.

Cuadro 1. Estadisticos de las mejores configuraciones de red para los datos no filtrados.
Table 1. Statistics of the best network settings for the unfiltered data.

Capas Desempefio seglin arquitectura de la red
2 5 10 15 *
96.08 96.37 96.75 R?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 28634 o 2OPE3eB8SME

3 5,5 10,5 15,5 *
96.412 97.147 97.103 R?

2.522 2.0925 2.4382 CME
5,10 10,10 15,10 *
96.363 97.052 97.182 R?

2.7722 2.3559 2.1714 CME
5,15 10,15 15,15 *
97.034 9%.867 97.248 R?

2.2567 2.1152 1.9802 CME
4 10,10,10 10,15,10 15,10,15 *
96.876 97.08 97.491 R?

2.6573 2.4661 2.4434 CME
15,10,10 15,15,10 15,15,15 *
97.349 97.188 97.576 R?

2.1972 2.4374 2.6369 CME

(*) Numero de neuronas en las capas ocultas.
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Cuadro 2. Estadisticos de las mejores configuraciones de red para los datos filtrados por medio del método Savitzky.
Table 2. Statistics of the best network settings for the filtered data by the method of Savitzky.

Capas Desempeiio segtin arquitectura de la red
2 5 15 *
97.35 97.672 97.816 R?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 18387 18937 15065 CME
3 5,5 15,5 *
97.638 97.813 98.147 R?
1.6749 1.7101 1.4984 CME
5,10 10,10 15,10 *
98.016 98.241 98.369 R?
1.6603 1.3203 1.2688 CME
5,15 10,15 15,15 *
98.019 98.276 98.697 R?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 14319 1308 1181 CME
4 10,10,10 10,15,10 15,10,15 *
98522 98.821 98.879 R?
0.99778 0.99088 1.0115 CME
15,10,10 15,15,10 15,15,15 *
98.692 98.584 98.89 R?
1.1807 1.2792 1.1678 CME

(*) Numero de neuronas en las capas ocultas.

Al comparar las mejores redes neuronales generadas
(Cuadro 3), tanto para datos de entrada sin filtrar (red -1)
como para los datos filtrados por Savitzky Golay (red-2),
se observa que, a pesar de que la red-1 es mas simple en
estructura, su grado de ajuste es solo 1.573% menor que
la red generada con datos filtrados; sin embargo, al tomar
en cuenta el cuadrado medio del error, resulta que la red-2
tiene unicamente 50.03% del error generado por la red de
datos directos de los sensores. Por lo tanto, la red neuronal
mas eficiente es la generada con datos filtrados, a pesar de
ser mas compleja en arquitectura.

Simulation of the rate of photosynthesis with the best
neural network

After selecting the best neural network it is used for the
simulation of all data, both climatic variables inside the
greenhouse, as well as the phyto-monitoring equipment,
and recalculates the degree of fitness (R?) as well as the
square average error (MSE). This is done because R? and
CME reported by the Neural Network Toolbox of MATLAB
Graphical User Interface is the statistical average of these
three subsets of data from 100%.

Cuadro 3. Comparacion entre las mejores redes neuronales para cada tipo de datos de entrada.
Table 3. Comparison between the best neural network for each type of input data.

Estructura de la red
Numero de Neuronas en Estadisticos
Origen de los datos capas capas ocultas R? CME
Sin filtrar 3 15-15 97.248 1.9802
Filtrados 4 10-15-10 98.821 0.9908
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Simulacién de la tasa de fotosintesis con la mejor red
neuronal

Unavezelegidalamejorred neuronal seempleapararealizarla
Simulacion de todos los datos, tanto de las variables climaticas
alinterior delinvernadero, como del equipo de fitomonitoreo,
y se recalcula el grado de ajuste (R?), asi como el cuadrado
medio del error (CME). Esto se hace porque el R> y CME
reportados por el Neural Network Toolbox Graphical User
Interface de MATLAB, es el promedio de esos estadisticos
para tres subconjuntos que provienen 100% de datos.

EnlaFigura2 semuestralasimulacion delared neuronal, para
seis dias del periodo de experimentacion, donde es claralaalta
capacidad de las redes neuronales artificiales para predecir
procesos altamente no lineales, como la fotosintesis foliar de
plantas de jitomate.

Para evaluar el comportamiento general de la red neuronal
elegida(alolargodelos4820puntosdemediciones), se empled
la herramienta de ajuste de curvas, disponible en Matlab
(CurveFitting Toolbox). Los estadisticos de laregresion lineal
aplicada (Figura 3) entre datos medidos y simulados son los
siguientes: R*=0.9756, CME=0.8532 y RCME=0.9237.

Con la regresion lineal se logra 97.56% de ajuste entre los
valores de fotosintesis simulada con la red neuronal y la
fotosintesis medida. Asimismo, se puede observar claramente
como lamayor parte de lanube de datos esta dentrode los limites
deconfianzaa 95% paralaecuacion de ajuste, lo cual sedebe a
que laraiz del cuadrado medio del error (RCME) es pequetio,
0.9237.Alrealizarlas pruebas estadisticasalared neuronal de 4
capasy 10-15-10neuronasen las capasocultas, paralosdatosde
entrada filtrados porel método Savitzky, se observael excelente
desempenio de ésta para todo el conjunto de datos. El valor del
ajuste en la regresion mostrada en la Figura 3, es s6lo 1.261%
menor al reportado por el Neural Network Toolbox Graphical
User Interface de MATLAB (Cuadro 3). El Cuadrado medio
del error entre la tasa de fotosintesis simulada por la ANN para
todas las mediciones resultd ser menor (0.8532) que el valor
generado como promedio de los subconjuntos de datos para
entrenar lared (0.9908). Porlotanto, se encontro unared valida
que no sobreestima el ajuste para todo el conjunto de datos,
ademds de conservar las tendencias estadisticas resultantes
después de ser entrenada.

Salazaretal.(2010) aplicaronunared neuronal para predecir
latasa de fotosintesis en hojas de jitomate, en la que, ademas
de las variables climaticas, se emplea como variable de

The Figure 2 shows the simulation neural network for
six days in the period of experimentation, where it is
clear that the high capacity of artificial neural networks
predict highly nonlinear processes such as foliar
photosynthesis.

Fotosintesis simulada
— Fotosintesis media

16

Fotosintesis [mecmolCO,»/m**s]

850 1000 1150 1300 1450 1600 1750
Mediciones

Figura 2. Simulacion de 1a ANN para los datos de seis dias.
Figure 2. ANN simulation data for six days.

In order to evaluate the overall performance of the chosen
neural network (over 4820 points of measurements), we
used the curve-fitting tool, available in Matlab (Curve
Fitting Toolbox). The linear regression statistics a
pplied (Figure 3) between measured and simulated data
are as follows: R?>= 0.9756, MSE= 0.8532= 0.9237 and
RCME.

[N}
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- Mediciones vs simulacion
| |——Regresion R>=0.9756
- - - - Intervalos de confianza al 95%
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Figura 3. Regresion lineal entre fotosintesis medida y
simulada con la ANN para todo el conjunto de
mediciones.

Figure 3. Linear regression between measured and simulated

photosynthesis with the ANN for the entire set of
measurements.
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entrada el vector de valores de fotosintesis, encontrado que
el desempefio de ésta se encuentra entre 97.49% y 98.77%
para predicciones 5 y 10 min adelante, respectivamente.
En la presente investigacion se logra un coeficiente de
correlacion de 97.56% sin emplear los datos de fotosintesis
como variable de entrada.

Fotosintesis en funcion de su relacion conla temperatura
y la concentracion de CO,

En la Figura 4 se observa, que las mayores tasas de
fotosintesis se obtienen cuando los rangos de temperatura
se encuentran entre 25°C a 30°C. El maximo de la curva de
ajuste para temperatura esta situado en 27°C.

José Manuel Vargas Sallago et al.

With the linear regression is achieved 97.56% of fitness
between the values of photosynthesis simulated by the
neural network and measured photosynthesis. It can also
be seen quite clearly that most of the data cloud is within
the confidence limits 95% for the fitting equation, which
is that the root mean square error (RCME) is small, 0.9237.
In conducting statistical tests to the 4-layer neural network
and 10-15-10 neurons in the hidden layers to the input
data filtered by the Savitzky method, we see the excellent
performance of this method for the entire dataset. The
value of the adjustment in the regression shown in Figure
3 is only 1 261% lower than that reported by the Neural
Network Toolbox of MATLAB Graphical User Interface
(Table 3).
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Figura 4. Fotosintesis en funcién de las variables temperaturay concentracion de CO,. Izquierda, superficie de la funcion polinomial

de orden 3-2, con ajuste de 91.95% para los datos.

Figure 4. Photosynthesis as a function of the variables temperature and concentration of CO,. Left, surface of the polynomial
function on the order 3-2, with 91.95% adjustment for the data.

Porsuparte, paralos datos de entradaalared neuronal, niveles
de 380 ppmenlaconcentracion del CO, generan las mayores
tasas de fotosintesis registradas. No obstante, al observar la
superficie, se puede notar que la concentracion del gas dentro
delinvernadero de estudio no es lo suficientemente alto para
alcanzar el maximo de la funcion (méaxima fotosintesis), que
requiere cerca de 450 ppm.

Fotosintesis en funcion de su relacion con la radiacion y
el déficit de presion de vapor

De la Figura 5 es clara la importancia de la radiacion
fotosintéticamente activa en el incremento de la tasa
de fotosintesis, puesto que a medida que la primera

The mean square error between the rate of photosynthesis
simulated by the ANN for all measurements was lower
(0.8532) than the average value generated as subsets of data
to train the network (0.9908). Therefore, a valid network
is found not overestimating the setting for the entire set
of data, and statistical trends result retained after being
trained.

Salazar et al. (2010) applied a neural network to predict the
rate of photosynthesis in the leaves of tomato, in which,
besides the climatic variables, it’s used as an input variable
for the vector of values of photosynthesis, finding that
the performance is between 97.49% and 98.77% for the
predictions 5 and 10 min later, respectively. In the present
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aumenta, la segunda lo hace también. La tasa maxima de
fotosintesis registrada (de acuerdo a la funcion) se alcanza
aproximadamente con unaradiacion PAR de 230 Wm™2, Sin
embargo, el maximo de la funcion se encuentra mas alla de
250 Wm™.

Por su parte, cuando el déficit de presion de vapor esta
por arriba de 2.5 kPa, la trayectoria de la fotosintesis no
se dirige hacia el maximo de la funcioén, por el contrario,
comienza a decrecer ain para los mismos niveles de
radiacion PAR. Por lo tanto es importante mantener
el VPD por debajo de 2.5 kPa cuando se presentan
elevados niveles de radiacion, para asegurar la apertura
estomatica y con ello, el ingreso del CO, al interior de
las hojas.
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investigation a correlation coefficient of 97.56% without
using the data of photosynthesis as an input variable was
achieved.

Photosynthesis in terms of their relationship with
temperature and concentration of CO,

The Figure 4 shows that, the highest rates of photosynthesis
are obtained when the temperature ranges are between 25
°C and 30 °C. The maximum of the curve for temperature
adjustment is located at 27 °C.

Fordata input to the neural network, levels of 380 ppm CO,
concentration generated higher rates of photosynthesis.
However, by observing the surface, we may notice that the
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Figura 5. Fotosintesis en funcion de las variables PAR y VPD. Izquierda, superficie de la funcion polinomial de orden 3-3, con ajuste

de 97.67% para los datos.

Figure 5. Photosynthesis as a function of the variables PAR and VPD. Left, surface of the polynomial function on the order 3-3, with

adjustment of 97.67% for the data.

Fotosintesis en funcion de su relacion conla temperatura
y la humedad relativa

De las variables climaticas mas facilmente medidas en
los invernaderos, debido al bajo costo de los sensores,
se encuentran la temperatura y la humedad relativa. Por
consiguiente, es muy importante conocer las relaciones entre
estas variables y la fotosintesis.

Como se observa en la Figura 6, la combinacion de una
baja temperatura y humedad relativa altas generan tasas de
fotosintesis bastante bajas, por debajo de 5 umolCOm™s;
caso contrario los niveles mas altos de fotosintesis se generan
cuando latemperatura esta entre los 25-30 °C, mientras que la

concentration of greenhouse gas in the study is not high
enough to reach the maximum of the function (maximum
photosynthesis), which requires about 450 ppm.

Photosynthesis in terms of its relationship with radiation
and vapor pressure deficit

Considering the Figure 5, it is clearly important to the
photosynthetically active radiation in increasing the rate of
photosynthesis, since as the first one increase, so does the
second one. The maximum rate of photosynthesis recorded
(according to the function) is reached about a PAR 0f 230
Wm* However, the maximum of the function is higher than
250 Wm™.
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humedad relativa se ubica entre 30-40%. Se aprecia también
que por arriba de 80% de HR independientemente de la
temperatura, los niveles de fotosintesis son muy bajos, del
orden de Y parte de la tasa maxima registrada. Asimismo, una
temperatura aceptable minimaes 18 °C, pues apartirdeellala
tasa de fotosintesis se encuentra por encima del 50% de la tasa
maxima, siemprey cuando laHR setenga valores de 302 65%.
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When the vapor pressure deficit is above 2.5 kPa, the
trajectory of photosynthesis is not directed towards the
maximum of the function; however, it still starts to decrease
for the same levels of PAR. Therefore, it is important to
maintain the VPD below 2.5 kPa when there are high levels
of radiation, to secure the stomatal opening and thus the
entry of CO,into the leaves.
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Figura 6. Fotosintesis en funcion de las variables Temperatura y humedad relativa. Izquierda, superficie de la funcion polinomial

de orden 2-2, con ajuste de 98.29% para los datos.

Figure 6. Photosynthesis as a function of temperature and relative humidity variables. Left, surface of the polynomial function on

the order 2-2, with adjustment of 98.29% for the data.

Conclusiones

Debido a sus capacidades de aproximador universal de
funciones, las redes neuronales artificiales describen con
un grado de ajuste muy alto, R2=97.56%, larelacion entre
la fotosintesis de un cultivo de jitomate en invernadero y
las variables climaticas: radiacion, temperatura, humedad
relativa, déficit de presion de vapor y concentracion de
CO,. Lamejor configuracion de red neuronal, para simular
la tasa de fotosintesis foliar de plantas de jitomate tuvo
un arquitectura de 4 capas con 10-15-10 neuronas en las
capas ocultas.

A partir de las superficies de respuesta generadas con
los valores de tasa de fotosintesis foliar, predichos
por la mejor red neuronal artificial, es posible tener
una mejor comprension de la interaccion entre las
condiciones climaticas dentro de losinvernaderos y latasade
fotosintesis foliar del cultivo del jitomate. Es decir, con base

Photosynthesis in terms of its relationship with
temperature and relative humidity

Of the climatic variables more easily measured in
greenhouses because of the low cost of sensors include the
temperature and relative humidity too. It is therefore very
important to know the relationships between these variables
and photosynthesis.

Asshownin Figure 6, the combination of alow temperature
and high relative humidity generated photosynthesis rates
quite low, below 5 umolCO,m™s, otherwise the highest
levels of photosynthesis are generated when the temperature
is between 25-30 °C, while the relative humidity is between
30-40%. Itis also noted that above 80% RH regardless of the
temperature, photosynthesis levels are very low, of the order
of /4 of the maximum recorded. Also, aminimum acceptable
temperature is 18 °C, since from it; photosynthesis rate is
above 50% of the maximum rate, as long as the RH has
values of 30 to 65%.
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en las funciones con que se generaron las superficies,
se pueden ver las rutas que deben seguir las variables
climaticas, de tal forma de que el control ambiental de los
invernaderos siempre esté enfocado hacia el maximo de
la funcidn; es decir, a la obtencidon de la tasa maxima de
fotosintesis dependiendo de las condiciones climaticas
prevalecientes.
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