
Revista Mexicana de Ciencias Agrícolas  Vol.3  Núm.7  1 de septiembre - 31 de octubre, 2012  p. 1289-1304

Estimación de la fotosíntesis foliar en jitomate bajo invernadero 
mediante redes neuronales artificiales*

Foliar photosynthesis estimation in tomato under greenhouse 
conditions through artificial neural networks

José Manuel Vargas Sállago1§, Irineo Lorenzo López Cruz2 y Enrique Rico García3

1Campo Experimental Valle de México- INIFAP. Carretera México-Lechería, km. 18.5. Chapingo, México. C. P.56230. Tel: (595) 95 466 72. 2Posgrado en Ingeniería 
Agrícola y Uso Integral del Agua, Universidad Autónoma Chapingo. Carretera México-Texcoco, km. 38.5. Chapingo, México. C. P. 56230. Tel. (595) 95 215 51. (ilopez@
correo.chapingo.mx). 3División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro. Querétaro, Querétaro. México. C. P. 76010. Tel. 
(442)192-12-00. Ext. 6005. (ricog@uaq.mx). §Autor para correspondencia: sallagojmv@yahoo.com.mx.

* Recibido:  enero de 2012 

  
 Aceptado:  agosto de 2012

Resumen

Dentro de la teoría de identificación de sistemas, los 
modelos de redes neuronales artificiales (ANN) artificial 
neural networks por sus siglas en inglés, han mostrado gran 
capacidad para encontrar patrones de relación entre variables 
de procesos altamente no lineales, así como resolver la 
limitante de la regresión no lineal, donde no es posible usar 
variables correlacionadas como entradas. El objetivo de la 
presente investigación fue modelar la tasa de fotosíntesis 
foliar de plantas de jitomate, cultivadas bajo invernadero, 
mediante redes neuronales artificiales, empleando como 
variables de entrada: temperatura, humedad relativa, déficit 
de presión de vapor y concentración de dióxido de carbono 
(CO2) del aire, así como radiación fotosintéticamente activa. 
El experimento se desarrolló durante 2009 en un invernadero 
experimental de la Universidad Autónoma de Querétaro, 
México. Se usó el equipo de fitomonitoreo PTM-48M 
(Daletown Company, Ltd), para registrar el intercambio 
de CO2 de las hojas, así como las variables meteorológicas. 
Para eliminar ruidos de los sensores en las mediciones se 
aplicó el filtro Savitzky-Golay. Se evaluaron diferentes 
configuraciones para redes de retropropagación, siendo la 
de 4 capas con 10 neuronas en la primera capa oculta, 15 en 
la segunda y 10 más en la tercera, la que generó los mejores 
índices estadísticos sobre datos de prueba: coeficiente de 

Abstract

Within the theory of systems identification, the models of 
artificial neural networks (ANN) have shown great ability 
to find patterns of relationships between variables of highly 
nonlinear processes, as well as solving the constraint of 
the nonlinear regression, where it is not possible to use 
correlated variables as inputs. The objective of this paper 
was to model the rate of foliar photosynthesis of tomato 
plants, grown under greenhouse conditions using artificial 
neural networks, using as input variables: temperature, 
relative humidity, vapor pressure deficit and concentration 
of carbon dioxide (CO2) of the air, and photosynthetically 
active radiation. The experiment was conducted during 
2009 in an experimental greenhouse of the Autonomous 
University of Querétaro, Mexico. The equipment 
used was the PTM-48M phyto-monitoring (Daletown 
Company, Ltd), to record CO2 exchange on the leaves, 
and weather variables. In order to remove the sensor noise 
in the measurements, the Savitzky-Golay filter was used. 
Different configurations for back-propagation networks 
were evaluated, with 4 layers and 10 neurons in the first 
hidden layer, 15 in the second one and 10 more in the third 
one, which produced the best statistical indices on the 
test data: coefficient of determination, R2= 0.9756 and 
mean square error, MSE= 0.8532. Taking the best ANN 
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determinación, R2= 0.9756 y cuadrado medio del error, 
CME= 0.8532. Tomando las predicciones de la mejor ANN, 
se realizó una optimización estática, relacionando dos 
variables climáticas con la tasa de fotosíntesis, mediante 
gráficas en tercera dimensión, a fin de mostrar estrategias 
para maximizar la tasa de fotosíntesis.

Palabras clave: Solanum lycopersicum L., fitomonitor, 
modelos de caja negra.

Introducción

La producción de cultivos en invernaderos está en constante 
crecimiento en todo el mundo, debido a que, en comparación 
con la producción en campo abierto, los ambientes 
controlados permiten lograr altos rendimientos, mejor 
calidad de productos, producción fuera de temporada así 
como un uso muy eficiente del agua. Tan sólo en México, 
la evolución de la superficie cubierta con esta tecnología 
pasó de aproximadamente 721 hectáreas (ha) en el año 
2000, a 3 214 ha en 2005 y para 2008 se incrementó a 9 948 
ha (SAGARPA, 2008).

Los invernaderos varían desde construcciones simples 
cubiertas con plástico, hasta modernas instalaciones 
de vidrio con muy alta tecnología (Heuvelink, 2008). 
Independientemente del tipo de invernadero, el control 
climático al interior del mismo está enfocado a mantener 
las variables climáticas temperatura, humedad relativa, 
cantidad de radiación, déficit de presión de vapor y nivel de 
dióxido de carbono (CO2) tan cerca como sea posible de las 
condiciones óptimas para el desarrollo del cultivo. 

El mejoramiento del control ambiental dentro del 
invernadero, también requiere identificar la influencia de 
factores climáticos en la fisiología y desarrollo de las plantas 
cultivadas, puesto que la respuesta de la planta es la parte 
del proceso más importante en los sistemas de producción 
(Tantau, 1992; Roh et al., 2007). Dentro de los aspectos 
fisiológicos más relevantes que deben ser considerados en 
un sistema de producción en invernadero, se encuentra el 
entendimiento del proceso de fotosíntesis y los elementos que 
influyen en ella positiva o negativamente (Evans y Loreto, 
2000). El proceso de fotosíntesis está relacionado con la 
transformación del CO2 y agua en asimilados que la planta 
emplea para su mantenimiento, crecimiento y desarrollo. La 
tasa de fotosíntesis es condicionada principalmente por la 

predictions, we performed a static optimization, linking 
two climatic variables with the rate of photosynthesis, 
using three-dimensional graphics, to show strategies for 
maximizing the rate of photosynthesis. 

Key words: Solanum lycopersicum L., black box models, 
phyto-monitor. 

Introduction 

Crop production in greenhouses is constantly growing 
worldwide, because, compared with production in the 
open, the controlled environments allow to achieve higher 
yields, better product quality, off-season production, 
using water quite efficiently. In Mexico alone, the 
evolution of the surface covered with this technology 
increased from approximately 721 hectares (ha) in 2000 
to 3 214 ha in 2005 and for 2008, increased to 9 948 ha 
(SAGARPA, 2008). 

The greenhouses range from simple constructions 
covered with plastic to modern glass facilities with 
very high technology (Heuvelink, 2008). Whatever the 
type of greenhouse, climate control is thereof focused 
on maintaining the climate variables of temperature, 
relative humidity, quantity of radiation, vapor pressure 
deficit and level of carbon dioxide (CO2) as close as 
possible to the optimal conditions for the development 
of the crop. 

Improved environmental control inside the greenhouse 
also requires to identifying the influence of the climatic 
factors on the physiology and development of the crop, 
since the response of the plant is the most important 
process in the production systems (Tantau, 1992; Roh et 
al., 2007). Among the most relevant physiological aspects 
that must be considered in a greenhouse production 
system, is to understand the process of photosynthesis 
and the elements that influence it positively or negatively 
(Evans and Loreto, 2000). The process of photosynthesis 
is related to the transformation of CO2 and water in the 
plant, assimilated used for maintenance, growth and 
development. The rate of photosynthesis is mainly 
conditioned by the intensity of light, CO2 concentration 
and temperature as well (van Ooteghem, 2007), although, 
other climatic variables have significant influence in this 
process. 
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Most of the climatic control actions affect more variable 
than they should and therefore may alter the internal 
resistance and external leaf gas exchange; for this 
reason, the control actions and effectiveness of these 
procedures must be carefully proposed when the target 
is a good temperature control and canopy transpiration 
(Wilkinson, 2000). For example, the mere manipulation 
of the relative humidity inside a greenhouse it´s not a 
substitute for management itself, it should be done to 
change the transfer rate of the foliage, but it plays an 
important role in exchange rates of gas (water vapor and 
CO2) (Stanghellini, 1988). 

The real-time monitoring and continuous plant physiological 
response to changes in the environment, provides important 
information to control the greenhouse microclimate more 
accurately, likewise the use of this technology is very 
successful as a tool to research (Ton et al., 2001). However, 
adapting a phyto-monitoring technology to conventional 
systems in greenhouse production is almost impossible due 
to the high equipment costs (Roh et al., 2007). 

Fortunately, modeling of physiological processes such 
as photosynthesis is a tool to understand the behavior of 
crops under certain environmental conditions, it is only 
necessary to have models to predict the behavior of the 
process. Models of photosynthesis and crops can be used to 
identify appropriate conditions of growth, exploring effects 
of developmental conditions related to the introduction of 
new technologies and to identify the treatments that are 
particularly important in a specific environment (Marcelis 
et al., 2009). 

Up to this day, empirical models have reported both 
simple and complex theoretical models for foliar 
photosynthesis (Pachepsky and Acock, 1996). Also, a 
variety of mathematical techniques have been used in these 
models, essentially algebraic formulas combined with 
special integration methods. This variety of techniques 
were created to solve different problems, from the need to 
provide a sub-model to a general model of photosynthetic 
productivity of the crops (Gijzen et al., 1990), up to the 
need for specialized models to investigate the nature of 
one or more components in the process of photosynthesis 
(Pachepsky and Acock, 1996). 

Most of the mechanistic models of photosynthesis require 
a large number of parameters as inputs and, they must 
be basically determined by direct measurement. Such 

intensidad de luz, concentración de CO2 y por la temperatura 
(van Ooteghem, 2007), aunque otras variables climáticas 
tienen bastante influencia en este proceso. 

La mayoría de las acciones de control climático afectan más 
variables de las que debieran y por lo tanto pueden alterar 
las resistencias internas y externas de la hoja al intercambio 
gaseoso; por con esto, las acciones de control y efectividad de 
estos procedimientos deben ser cuidadosamente propuestos 
cuando el objetivo sea un buen control de temperatura y 
transpiración del dosel (Wilkinson, 2000). Por ejemplo, 
la sola manipulación de la humedad relativa dentro de un 
invernadero, no es por sí misma un sustituto del manejo 
que se debe hacer para modificar la tasa de transferencia 
del follaje; sin embargo, juega un papel muy importante 
en las tasas de intercambio gaseoso (vapor de agua y CO2) 
(Stanghellini, 1988). 

El monitoreo en tiempo real y continuo de la respuesta 
fisiológica de la planta a los cambios del ambiente, proporciona 
información muy importante para controlar el microclima 
del invernadero de forma precisa; así mismo, el uso de esta 
tecnología es muy acertado como una herramienta para 
hacer investigación (Ton et al., 2001). Sin embargo, adaptar 
una tecnología de fitomonitoreo a sistemas de producción 
convencional bajo invernadero resulta casi imposible por los 
elevados costos de los equipos (Roh et al., 2007).

Afortunadamente, la modelación de procesos fisiológicos 
como la fotosíntesis, es una herramienta que permite 
conocer el comportamiento de los cultivos bajo ciertas 
condiciones ambientales de forma muy económica, sólo 
es necesario contar con modelos que lleven a cabo la 
predicción de manera precisa del comportamiento del 
proceso. Los modelos de fotosíntesis y de cultivos pueden 
ser usados para identificar las condiciones deseadas 
de crecimiento, explorar efectos de las condiciones de 
desarrollo relacionadas a la introducción de nuevas 
tecnologías, así como a la identificación de tratamientos 
que son particularmente importantes en un ambiente 
específico (Marcelis et al., 2009).

Hasta la fecha se han reportado tanto modelos empíricos 
simples como modelos teóricos complejos para la fotosíntesis 
foliar (Pachepsky y Acock, 1996). Asimismo, una gran 
variedad de técnicas matemáticas han sido usadas en esos 
modelos, básicamente fórmulas algebraicas combinadas 
con métodos de integración especiales. Esta variedad de 
técnicas se debe a que muchos modelos fueron creados 
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para resolver diferentes problemas, desde la necesidad 
de proveer de un sub-modelo de fotosíntesis a un modelo 
general de productividad de cultivos (Gijzen et al., 1990), 
hasta la necesidad de modelos especializados para investigar 
la naturaleza de uno o más componentes en el proceso de la 
fotosíntesis (Pachepsky y Acock, 1996).

La mayoría de los modelos mecanicistas de fotosíntesis 
requieren un gran número de parámetros como entradas 
y éstos deben ser determinados básicamente por medio 
de mediciones directas. Tales mediciones son usualmente 
costosas, consumen demasiado tiempo y son destructivas 
(Anten, 1997). No obstante la exhaustiva determinación de 
los parámetros de los modelos, para su uso en otros ámbitos, 
muchas veces es necesario reajustar los valores de estos 
parámetros, haciendo a los modelos poco confiables para 
su uso (Nederhoff y Vegter, 1994).

Debido a lo anterior, en los últimos años, los modelos 
llamados de caja negra han sido exitosamente usados en el 
área agrícola; por ejemplo, para modelar la temperatura del 
aire al interior del invernadero se han empleado los modelos 
auto-regresivos (ARX) con variables externas (López et al., 
2007), así como las redes neuronales artificiales (Ferreira et 
al, 2002; Frausto y Pieters, 2004; Tantau et al., 2008; Salazar 
et al., 2008). Otros modelos de caja negra bastante exitosos 
en la predicción de la temperatura y humedad al interior del 
invernadero son los modelos neuro-difusos, que combinan 
las ventajas de las redes neuronales y de los sistemas difusos 
(López y Hernández, 2010). 

Salazar et al. (2010), encontraron que con el uso de modelos 
de redes neuronales es posible hacer predicciones precisas 
(hasta con 5 y 10 minutos de anticipación) tanto de la 
temperatura dentro del invernadero, como de la fotosíntesis 
foliar de plantas de jitomate.

El objetivo de esta investigación fue predecir la tasa 
de fotosíntesis foliar de plantas de jitomate (Solanum 
lycopersicum L.), mediante redes neuronales artificiales, a 
partir de las condiciones climáticas al interior del invernadero: 
radiación fotosintéticamente activa, temperatura, humedad 
relativa, concentración de CO2 y déficit de presión de vapor, 
sin emplear la variable respuesta, tasa de fotosíntesis, 
como parte de las variables de entrada del modelo. El 
comportamiento de las redes neuronales artificiales se 
contrastó con los valores de intercambio de dióxido de 
carbono, medidos en plantas de jitomate usando un sistema 
de fitomonitoreo. Usando el mejor modelo de red neuronal 

measurements are usually expensive, consuming much time 
and are destructive (Anten, 1997). Despite the exhaustive 
determination of the model parameters for use in other 
areas, it is often necessary to readjust the values ​​of these 
parameters, making the models unreliable for use (Nederhoff 
and Vegter, 1994). 

Because of this, in the recent years, the so-called black 
box models have been successfully used in agriculture, 
for example, for modeling the air temperature inside the 
greenhouse, auto-regressive models (ARX) with external 
variables (López et al., 2007) and artificial neural networks 
(Ferreira et al., 2002; Frausto and Pieters, 2004; Tantau et 
al., 2008; Salazar et al. 2008) have been used. Other black 
box models quite successful in predicting the temperature 
and humidity inside the greenhouse are the neuro-diffuse 
models, combining the advantages of both, the neural 
networks and diffuse systems (López and Hernández, 2010). 

Salazar et al. (2010) found that, the use of neural network 
models can make accurate predictions (up to 5 to 10 minutes 
in advance) for both, the temperature inside the greenhouse, 
and foliar photosynthesis on tomato plants. 

The objective of this research was to predict the rate 
of foliar photosynthesis of tomato plants (Solanum 
lycopersicum L.) using artificial neural networks, 
from the climatic conditions inside the greenhouse: 
photosynthetically active radiation, temperature, relative 
humidity, concentration of CO2 and vapor pressure 
deficit, without using the response variable, rate of 
photosynthesis, as part of the input variables of the model. 
The behavior of artificial neural networks was compared 
with the values ​​of exchange of carbon dioxide, measured 
in tomato plants using a system of phyto-monitoring. 
Using the best neural network model, surfaces in three 
dimensions were generated to more easily explain the 
effect of the interaction between the climatic variables 
and their effect on the rate of photosynthesis. 

Materials and methods 

The research was conducted in a greenhouse of the 
Experimental Field of the Autonomous University of 
Querétaro (20° 42 'north latitude), hooded-type with natural 
ventilation through side curtains on all four sides, covered 
with polyethylene. The dimensions are: 24 m long x 9 m 
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se generaron superficies en tres dimensiones para explicar de 
forma más sencilla el efecto de la interacción entre variables 
climáticas y su efecto en la tasa de fotosíntesis. 

Materiales y métodos

La investigación se desarrolló en un invernadero del 
Campus Experimental de la Universidad Autónoma 
de Querétaro (20° 42’ latitud norte), tipo capilla con 
ventilación natural por medio de cortinas laterales en los 
cuatro lados, con cubierta de polietileno. Las dimensiones 
de éste son: 24 m largo x 9 m de ancho y 6 m de altura al 
caballete, con orientación norte- sur en el sentido de las 
canaletas. El sistema para el control de temperatura está 
basado en apertura y cierre de las cortinas cuando las 
condiciones climáticas así lo requieren.

El experimento consistió en medir el intercambio de dióxido 
de carbono (CO2) de las hojas de plantas de jitomate bien 
desarrollada, cultivadas en el invernadero usando el equipo 
de fitomonitoreo PTM-48M (Daletown Company Ltd), 
automático de cuatro cámaras, con sistema de tipo abierto. 
Las variables registradas por el fitomonitor PTM-48M 
fueron: concentración de CO2 de referencia (ppm), CO2 de 
la cámara durante la medición (ppm), flujo de aire al sistema 
de medición (ppm), fotosíntesis (µmolCO2m-2s-1), humedad 
absoluta del aire (gm-3), temperatura (T, °C) y humedad 
relativa (HR, %) del aire, presión atmosférica (mbar) y 
déficit de presión de vapor (VPD, vapor pressure deficit, 
kPa), todas a nivel de hoja. Los sensores se colocaron a 
media profundidad del dosel, así como en la parte superior 
del mismo, en hojas con ancho mayor a 5cm, excluyendo 
hojas viejas. Se instaló también un sensor de radiación 
fotosintéticamente activa (PAR, photosynthetically active 
radiation, Watch Dog Model 450 (Spectrum Technologies 
Inc.); este sensor reporta las mediciones cada 5 min en 
unidades cuánticas, (µmol Fotones m-2s-1). Las mediciones se 
realizaron del 3 de noviembre (30 días después del trasplante) 
al 27 de diciembre de 2009.

Pre-procesamiento de datos

Las mediciones se hicieron cada 30 min con el equipo de 
fitomonitoreo, mientras que con el sensor de radiación se 
realizaban cada 5 min; por lo tanto, de acuerdo con Salazar 
et al. (2010), fue necesario hacer una interpolación lineal 
para los datos del fitomonitor a fin de generar dos puntos 

wide and 6 m high to the ridge, facing north-south in the 
direction of the gutters. The system for the temperature 
control is based on opening and closing curtains when the 
weather conditions require it.
 
The experiment consisted of measuring the exchange of 
carbon dioxide (CO2) from the leaves of well-developed 
tomato plants grown in the greenhouse using the phyto-
monitoring equipment, PTM-48M (Daletown Company 
Ltd), automatic four-chamber system with open type. 
The variables recorded by the PTM-48M were: reference 
concentration of CO2 (ppm), CO2 from the chamber during 
the measurement (ppm), air flow measurement system 
(lpm), photosynthesis (µmolCO2m-2s-1), air absolute 
humidity (gm-3), temperature (T, °C) and relative humidity 
(RH, %) of the air, atmospheric pressure (mbar) and 
vapor pressure deficit (VPD, kPa), all at leaf level. The 
sensors were placed at the mid-depth of the canopy, and 
on the top, in leaves more width than 5 cm, excluding old 
leaves. It was also installed a sensor of photosynthetically 
active radiation (PAR, Watch Dog, Model 450 (Spectrum 
Technologies Inc.), this sensor reports measurements 
every 5 min in quantum units (µmol Fotones m-2s-1). 
Measurements were conducted from November 3th (30 
days after transplantation) to December 27th, 2009. 

Pre-processing data 

Measurements were made ​​every 30 min with the phyto-
monitoring equipment, while with the radiation sensor is 
performed every 5 min, and therefore, according to Salazar 
et al. (2010) it was necessary to make a linear interpolation 
of the data to the phyto-monitor to generate two extra points, 
thus having, data of all the equipment’s variables every 10 
min. Additional sensor data is changed from 5 min to 10 
min by elimination. 

With arrays of information created from the sensor 
signals, we proceeded to conduct a data filtering, in 
order to remove noise from the sensors, also excluding 
unwanted behaviors in the process of finding the best 
neural network configuration to estimate the tomato’s 
foliar photosynthesis. The first filter applied to the data 
matrix was proposed by Savitzky and Golay (1964), 
using Matlab (The Mathworks Inc., 1984-2009). The 
filter coefficients were as follows: for photosynthesis and 
radiation variables used a second-order function and 25 
curve trend data, for the variables temperature, relative 
humidity, CO2 concentration and vapor pressure deficit, 
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extras, teniendo así, datos de todas las variables del equipo 
cada 10 min. Los datos del sensor adicional se cambiaron 
de 5 min a 10 min por eliminación. 

Con las matrices de información creadas a partir de las 
señales de los sensores, se procedió a llevar a cabo un 
filtrado de datos, con la finalidad de eliminar los ruidos 
de los sensores, excluyendo también comportamientos 
no deseados para el proceso de búsqueda de la mejor 
configuración de red neuronal para estimar la fotosíntesis 
foliar del jitomate. El primer filtro aplicado a las matrices 
de datos fue el propuesto por Savitzky y Golay (1964), 
por medio de Matlab (The Mathworks INC, 1984-2009). 
Los coeficientes del filtro quedaron de la siguiente forma: 
para las variables fotosíntesis y radiación se empleó una 
función de segundo orden y 25 datos de tendencia de 
curva; para las variables temperatura, humedad relativa, 
concentración de CO2 y déficit de presión de vapor, se 
empleo el mismo orden y 7 mediciones adelante y atrás del 
valor estimado. El tiempo de retrasos y adelantos entre las 
variables que se filtran dependen del tipo de cada una, así 
como al desfasamiento, hacia la derecha o izquierda, de 
los datos nuevos con respecto de los originales por acción 
de la tendencia que sigue el filtro. 

Se eliminaron también los datos del f itomonitor en 
que el intercambio de CO2 presenta valores negativos, 
correspondiendo éstos al proceso fisiológico de la 
respiración durante las horas sin radiación; asimismo, se 
convirtieron a ceros los registros en que la radiación durante 
la noche es diferente de ese valor, debido a la alta precisión 
de los sensores, que son capaces de captar factores externos. 
Finalmente, se eliminaron las colas de las curvas de radiación 
y fotosíntesis que seguían una tendencia negativa debido a la 
aplicación del filtro Savitzky. Como ya se explicó, ninguna 
de estas variables puede tener valores por debajo de cero.

Para la creación de las redes neuronales se realizó una 
división de la matriz de información, a lo largo de los 4 820 
puntos de mediciones, de forma aleatoria, quedando los 
siguientes subconjuntos: 50% de datos para entrenamiento, 
25% para validación y 25% restante para prueba.

Redes neuronales

Las redes neuronales artificiales son una forma de 
inteligencia artificial que “aprenden” al procesar datos 
en patrones a través de su arquitectura interna y tienen la 
capacidad de modelar relaciones no lineales entre variables.

we used the same order and 7 measurements and forth the 
estimated value. Time delays and advances between the 
variables that are filtered on the type of each, and the phase 
shift to the right or left, the new data with respect to the 
original per share of trend following the filter. 

Data of the phyto-monitor that presented negative values for 
the exchange of CO2 were also eliminated, corresponding 
to the physiological process of breathing during hours of 
radiation, also converted to zeros records that the radiation 
at night is different from that value, due to the high precision 
of the sensors, which are able to pick external factors. 
Finally, we removed the tails of the curves of radiation 
and photosynthesis following a negative trend due to the 
application of the Savitzky filter. As already explained, none 
of these variables can have values ​​below zero. 

For the creation of neural networks is performed a division of 
the matrix information, along the 4820 measurement points, 
at random, being the following subassemblies: 50% data for 
training, validation and 25% for 25% remaining for testing. 

Neural networks 

Artificial neural networks are a form of artificial intelligence 
to "learn" to process data patterns through its internal 
architecture and have the ability to model nonlinear 
relationships between the variables. 

These networks are composed of information processing 
units acting in parallel, called nodes. These receive an 
input signal and generate an output transfer functions using 
nonlinear and sigmoidal and hyperbolic functions. The nodes 
are present in layers. A network of multi-layer perceptron 
architecture is used in an ANN. It consists of three layers: 
incoming calls, hidden and output. A layer consists of 
individual nodes and these are interconnected by directed 
arcs by weights associated (Hagan et al., 1996). Each layer 
has a weight matrix, a bias vector and a vector of outputs 
(Figure 1) shows a 3-layer neural network. 

The layers of a multilayer network play different roles. The 
layer that produces the outputs of the network is called output 
layer. The rest of them are named hidden layers. A multilayer 
network can be a universal approximator of functions. For 
example, a network of two layers, where in the first layer is 
sigmoid and the second layer is linear, trained to adjust any 
function in a manner quite adequate (Hagan et al., 1996; 
Demuth et al., 2009). 
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Se componen de unidades de procesamiento de información 
actuando en paralelo, llamadas nodos. Estos reciben una 
señal de entrada y generan una salida usando funciones 
de transferencia no lineales como funciones sigmoidales 
e hiperbólicas. Los nodos se presentan en capas. Una red 
de perceptrones con varias capas es la arquitectura más 
usada en una ANN. Ésta consta de tres capas: llamadas de 
entrada, oculta y de salida. Una capa está formada por nodos 
individuales y éstos se encuentran interconectados mediante 
arcos dirigidos por medio de pesos asociados (Hagan et 
al., 1996). Cada capa tiene una matriz de pesos, un vector 
de sesgos, así como un vector de salidas. En la Figura 1 se 
muestra una red neuronal de 3 capas.

Las capas de una red multicapa juegan diferentes roles. La 
capa que produce las salidas de la red se llama capa de salida 
(output layer). El resto de ellas son nombradas capas ocultas 
(hidden layers). Una red multicapa puede ser un aproximador 
universal de funciones. Por ejemplo, una red de dos capas, 
donde la primera capa es sigmoidal y la segunda capa es 
lineal, puede ser entrenada para ajustar cualquier función de 
una manera bastante adecuada (Hagan et al., 1996; Demuth 
et al., 2009).

Las Redes de retropropagación (backpropagation) aprenden 
mediante una generalización de la regla de aprendizaje 
Widrow-Hoff (también conocida como mínimos cuadrados 
medios del error, LMSE, least mean squares errors, por 
sus siglas en inglés) para redes multicapa y funciones de 
transferencia no lineales diferenciables. Se usan vectores 
de entrada y los correspondientes vectores objetivos para 
entrenar la red hasta que ésta pueda aproximar una función o 
asociar un vector específico de entrada a un vector específico 
de salida (Hagan et al., 1996). 

Una red estándar de retropropagación emplea el algoritmo 
del gradiente descendente, tal como la regla de aprendizaje 
Widrow-Hoff, en la cual, los pesos de la red se mueven 
a través de la parte negativa del gradiente de la función 
de desempeño. El término, retropropagación, se refiere 
a la forma en que el gradiente es calculado para redes 
multicapa no lineales, donde el error se calcula para ajustar 
los valores de los pesos propagándose hacia atrás (de 
derecha a izquierda). Hay un gran número de variaciones, 
en el algoritmo básico, que están basadas en las técnicas de 
optimización estándar, tal como gradiente conjugado o el 
método de Newton.

The back-propagation networks learn through a 
generalization of the learning rule of Widrow-Hoff (also 
known as the minimum mean square error (LMSE) for 
multilayer networks and functions of transfer linear 
differentiable. Input vectors are used and the corresponding 
objective vectors to train the network until it can approximate 
a function, or associates a specific input vector to a specific 
output vector (Hagan et al., 1996). 

A standard network back-propagation algorithm uses the 
gradient descent, as the learning rule of Widrow-Hoff, 
wherein the network weights move through the negative 
gradient of the performance function. The term, back-
propagation refers to the way in which the gradient is 
calculated for nonlinear multilayer networks, where the error 
is calculated to adjust the values ​​of the weights propagating 
backward (from right to left). There are a number of 
variations on the basic algorithm, which are based on 
standard optimization techniques such as conjugate gradient 
or Newton's method. 

During the investigation we evaluated different 
configurations of ANN to predict the rate of photosynthesis 
as a function of 5 input climatic variables, measured inside 
the greenhouse. The difference between the configurations 
of the tested ANN lies in its structure (number of layers 
that make up and number of neurons in each of them) and 
the origin of the training data directly from the sensors or 
filtered. 

Capa de entrada 
de nodos fuente

Capa de neuronas de salida

Salida

Entrada 1

Entrada 2

Entrada 3

Entrada 4

Entrada 5

Capa de neuronas oculta

Figura 1. Esquema simplificado de una red neuronal de varias 
capas.

Figure 1. Simplified schematic of a multilayer neural network. 
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Durante la investigación se evaluaron diferentes 
configuraciones de ANN para predecir la tasa de fotosíntesis 
en función de 5 variables climáticas de entrada, medidas 
al interior del invernadero. La diferencia entre las 
configuraciones de la ANN probadas, radica en su estructura 
(número de capas que las integran y, número de neuronas en 
cada capa), así como el origen de los datos de entrenamiento, 
directos de los sensores o filtrados.

Se empleó el ambiente de programación Matlab (Neural 
Network Toolbox), para la generación, prueba y 
validación de las redes. Todas las redes diseñadas fueron 
de retropropagación, usando el algoritmo de Levenberg-
Marquardt para su entrenamiento; función de aprendizaje 
por gradiente descendente con momento; como función 
de desempeño el cuadrado medio del error; una función de 
transferencia hiperbólica tangente sigmoidal para las capas 
ocultas y función de transferencia lineal para la capa de 
salida. Lo anterior se debe a que, si en la capa de salida se 
emplean neuronas sigmoidales, la salida de la red se limita a 
un rango muy pequeño; por el contrario, al usar una neurona 
lineal, la salida puede tomar cualquier valor (Ljung, 2008). 

Generación de las rutas de la fotosíntesis

Para entender, de manera general, el comportamiento de 
la fotosíntesis (de las plantas de jitomate del experimento) 
como respuesta a diferentes condiciones de las variables 
que definen el microclima al interior del invernadero, se 
generaron superficies en 3 dimensiones de las funciones de 
respuesta que describen las rutas que toma la fotosíntesis 
como consecuencia de esta interacción. Cada función 
se generó usando dos variables climáticas a la vez como 
entradas (con datos filtrados por medio del método 
Savitzky Golay) y tomando en todos los casos como 
variable respuesta, la tasa de fotosíntesis que predice la 
mejor red neuronal artificial. Las superficies se crearon 
para las siguientes combinaciones en contra de la tasa 
de fotosíntesis: 1) temperatura-concentración de Co2; 2) 
radiación-déficit de presión de vapor; y 3) temperatura-
humedad relativa.

Resultados y discusión

Después de varias iteraciones durante el entrenamiento 
de las redes, tanto para datos directos de los sensores o 
filtrados, se toman como redes válidas aquellas con el 

We used the Matlab programming environment (Neural 
Network Toolbox), for generating, testing and validating 
the networks. All back-propagation networks were 
designed using the Levenberg-Marquardt algorithm for 
training and, learning function by gradient of descent 
with the momentum; performance as a function of the 
mean squared error, a hyperbolic tangent transfer function 
sigmoid for hidden layers and linear transfer function 
for the output layer. This is because, if the output layer 
neurons are used sigmoidal, the output of the network is 
limited to a very small range, on the contrary, when using 
a linear neuron, the output can assume any value (Ljung, 
2008). 

Routes of photosynthesis generation

In order to understand, in general, the behavior of 
photosynthesis (tomato plants of the experiment) in 
response to different conditions of variables defining 
the microclimate inside the greenhouse, 3-dimensional 
surfaces were generated of the response functions that 
describe the routes taken photosynthesis as a result of 
this interaction. Each function was generated using two 
climatic variables, both as inputs (filtered data using 
Savitzky Golay method) and taking in all cases as the 
response variable, the rate of photosynthesis that predicts 
the best artificial neural network. The surfaces were 
created for the following combinations against the rate 
of photosynthesis: 1) temperature-concentration Co2; 
2) radiation, vapor pressure deficit; and 3) temperature-
relative humidity. 

Results and discussion 

After several iterations during the training of the networks, 
both for direct data or filtered sensors, the networks are 
taken as valid, those with the best fit of its predictions on 
the test data, but avoiding overestimation, i.e. considered 
acceptable the ones in which the degree of adjustment 
in both test and validation is lower than in the training 
(estimate). The best networks are presented in Tables 1 and 
2. For the unfiltered data (Table 1), the best performance 
on the dataset it´s the neural network with 3 layers and 15 
neurons in two hidden layers. As shown, an adjustment 
was achieved 97 248% with a mean square error equal to 
1.9802. In the case of the filtered data (Table 2), the best 
performance it is the neural network with 4 layers, 10 
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mejor ajuste de sus predicciones sobre el conjunto de 
datos de prueba, pero evitando sobreestimación; es decir, 
se consideran aceptables aquellas en las que el grado de 
ajuste tanto en prueba como en validación es menor que 
en entrenamiento (estimación). Las mejores redes se 
presentan en los Cuadros 1 y 2. Para los datos sin filtrar 
(Cuadro 1), el mejor desempeño sobre el conjunto de 
datos lo tiene la red neuronal con 3 capas y 15 neuronas en 
ambas capas ocultas. Como puede observarse, se logró un 
ajuste de 97.248% con un cuadrado medio del error igual 
a 1.9802. En el caso de los datos filtrados (Cuadro 2), el 
mejor desempeño lo tiene la red neuronal con 4 capas, 
10 neuronas en la primera capa oculta, 15 en la segunda 
y 10 más en la tercera. El ajuste llega a 98.821% con un 
cuadrado medio del error de 0.9908. Puede notarse que a 
partir del número de neuronas indicado para cada capa, 
un incremento en el número de éstas, provoca que el 
desempeño de la red comience a decrecer, tomando en 
cuenta el cuadrado medio del error.

neurons in the first hidden layer, 15 in the second one and 
10 more in the last one. The adjustment comes to 98 821% 
with a mean square error of 0.9908. It may be noted that 
from the indicated number of neurons for each layer, an 
increase in their number causes the network performance 
begins to decrease, taking into account the mean squared 
error. 

Comparing the best neural networks generated (Table 
3), both for unfiltered input (network-1) and the filtered 
data by Savitzky Golay (network-2), we observed that, 
although the network-1 is simpler in structure, the degree 
of adjustment is only 1 573% lower than the filtered data 
generated network, but taking into account the mean 
squared error that the network-2 has only 50.03% of the 
generated error direct data network of sensors. Therefore, 
the neural network is more efficient than the filtered 
data generated, although it has a more complex 
architecture. 

Capas Desempeño según arquitectura de la red  
2 5 10 15 *

96.08 96.37 96.75 R2

  2.8634 2.6591 2.3283 CME
3 5,5 10,5 15,5 *

96.412 97.147 97.103 R2

2.522 2.0925 2.4382 CME
5,10 10,10 15,10 *

96.363 97.052 97.182 R2

2.7722 2.3559 2.1714 CME

5,15 10,15 15,15 *

97.034 96.867 97.248 R2

  2.2567 2.1152 1.9802 CME

4 10,10,10 10,15,10 15,10,15 *

96.876 97.08 97.491 R2

2.6573 2.4661 2.4434 CME
15,10,10 15,15,10 15,15,15 *
97.349 97.188 97.576 R2

  2.1972 2.4374 2.6369 CME

Cuadro 1. Estadísticos de las mejores configuraciones de red para los datos no filtrados.
Table 1. Statistics of the best network settings for the unfiltered data. 

(*) Número de neuronas en las capas ocultas.
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Al comparar las mejores redes neuronales generadas 
(Cuadro 3), tanto para datos de entrada sin filtrar (red -1) 
como para los datos filtrados por Savitzky Golay (red-2), 
se observa que, a pesar de que la red-1 es más simple en 
estructura, su grado de ajuste es sólo 1.573% menor que 
la red generada con datos filtrados; sin embargo, al tomar 
en cuenta el cuadrado medio del error, resulta que la red-2 
tiene únicamente 50.03% del error generado por la red de 
datos directos de los sensores. Por lo tanto, la red neuronal 
más eficiente es la generada con datos filtrados, a pesar de 
ser más compleja en arquitectura.

Simulation of the rate of photosynthesis with the best 
neural network 

After selecting the best neural network it is used for the 
simulation of all data, both climatic variables inside the 
greenhouse, as well as the phyto-monitoring equipment, 
and recalculates the degree of fitness (R2) as well as the 
square average error (MSE). This is done because R2 and 
CME reported by the Neural Network Toolbox of MATLAB 
Graphical User Interface is the statistical average of these 
three subsets of data from 100%. 

  Estructura de la red    
Número de Neuronas en Estadísticos

Origen de los datos capas capas ocultas R2 CME

Sin filtrar 3 15-15 97.248 1.9802

Filtrados 4 10-15-10 98.821 0.9908

Capas Desempeño según arquitectura de la red  
2 5 10 15 *

97.35 97.672 97.816 R2

  1.8387 1.5937 1.5065 CME

3 5,5 10,5 15,5 *
97.638 97.813 98.147 R2

1.6749 1.7101 1.4984 CME
5,10 10,10 15,10 *

98.016 98.241 98.369 R2

1.6603 1.3203 1.2688 CME
5,15 10,15 15,15 *

98.019 98.276 98.697 R2

  1.4319 1.3082 1.1821 CME
4 10,10,10 10,15,10 15,10,15 *

98.522 98.821 98.879 R2

0.99778 0.99088 1.0115 CME
15,10,10 15,15,10 15,15,15 *
98.692 98.584 98.89 R2

  1.1807 1.2792 1.1678 CME

Cuadro 2. Estadísticos de las mejores configuraciones de red para los datos filtrados por medio del método Savitzky.
Table 2. Statistics of the best network settings for the filtered data by the method of Savitzky. 

(*) Número de neuronas en las capas ocultas.

Cuadro 3. Comparación entre las mejores redes neuronales para cada tipo de datos de entrada. 
Table 3. Comparison between the best neural network for each type of input data. 
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Simulación de la tasa de fotosíntesis con la mejor red 
neuronal 

Una vez elegida la mejor red neuronal se emplea para realizar la 
Simulación de todos los datos, tanto de las variables climáticas 
al interior del invernadero, como del equipo de fitomonitoreo, 
y se recalcula el grado de ajuste (R2), así como el cuadrado 
medio del error (CME). Esto se hace porque el R2 y CME 
reportados por el Neural Network Toolbox Graphical User 
Interface de MATLAB, es el promedio de esos estadísticos 
para tres subconjuntos que provienen 100% de datos.

En la Figura 2 se muestra la simulación de la red neuronal, para 
seis días del periodo de experimentación, donde es clara la alta 
capacidad de las redes neuronales artificiales para predecir 
procesos altamente no lineales, como la fotosíntesis foliar de 
plantas de jitomate.

Para evaluar el comportamiento general de la red neuronal 
elegida (a lo largo de los 4820 puntos de mediciones), se empleó 
la herramienta de ajuste de curvas, disponible en Matlab 
(Curve Fitting Toolbox). Los estadísticos de la regresión lineal 
aplicada (Figura 3) entre datos medidos y simulados son los 
siguientes: R2=0.9756, CME=0.8532 y RCME= 0.9237.

Con la regresión lineal se logra 97.56% de ajuste entre los 
valores de fotosíntesis simulada con la red neuronal y la 
fotosíntesis medida. Asimismo, se puede observar claramente 
como la mayor parte de la nube de datos está dentro de los límites 
de confianza a 95% para la ecuación de ajuste, lo cual se debe a 
que la raíz del cuadrado medio del error (RCME) es pequeño, 
0.9237. Al realizar las pruebas estadísticas a la red neuronal de 4 
capas y 10-15-10 neuronas en las capas ocultas, para los datos de 
entrada filtrados por el método Savitzky, se observa el excelente 
desempeño de ésta para todo el conjunto de datos. El valor del 
ajuste en la regresión mostrada en la Figura 3, es sólo 1.261% 
menor al reportado por el Neural Network Toolbox Graphical 
User Interface de MATLAB (Cuadro 3). El Cuadrado medio 
del error entre la tasa de fotosíntesis simulada por la ANN para 
todas las mediciones resultó ser menor (0.8532) que el valor 
generado como promedio de los subconjuntos de datos para 
entrenar la red (0.9908). Por lo tanto, se encontró una red válida 
que no sobreestima el ajuste para todo el conjunto de datos, 
además de conservar las tendencias estadísticas resultantes 
después de ser entrenada.

Salazar et al. (2010) aplicaron una red neuronal para predecir 
la tasa de fotosíntesis en hojas de jitomate, en la que, además 
de las variables climáticas, se emplea como variable de 

The Figure 2 shows the simulation neural network for 
six days in the period of experimentation, where it is 
clear that the high capacity of artificial neural networks 
predict highly nonlinear processes such as foliar 
photosynthesis. 

In order to evaluate the overall performance of the chosen 
neural network (over 4820 points of measurements), we 
used the curve-fitting tool, available in Matlab (Curve 
Fitting Toolbox). The linear regression statistics a
pplied (Figure 3) between measured and simulated data 
are as follows: R2= 0.9756, MSE= 0.8532= 0.9237 and 
RCME. 

Figura 2. Simulación de la ANN para los datos de seis días.
Figure 2. ANN simulation data for six days. 
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entrada el vector de valores de fotosíntesis, encontrado que 
el desempeño de ésta se encuentra entre 97.49% y 98.77% 
para predicciones 5 y 10 min adelante, respectivamente. 
En la presente investigación se logra un coeficiente de 
correlación de 97.56% sin emplear los datos de fotosíntesis 
como variable de entrada. 

Fotosíntesis en función de su relación con la temperatura 
y la concentración de CO2

En la Figura 4 se observa, que las mayores tasas de 
fotosíntesis se obtienen cuando los rangos de temperatura 
se encuentran entre 25°C a 30°C. El máximo de la curva de 
ajuste para temperatura está situado en 27°C.

Por su parte, para los datos de entrada a la red neuronal, niveles 
de 380 ppm en la concentración del CO2 generan las mayores 
tasas de fotosíntesis registradas. No obstante, al observar la 
superficie, se puede notar que la concentración del gas dentro 
del invernadero de estudio no es lo suficientemente alto para 
alcanzar el máximo de la función (máxima fotosíntesis), que 
requiere cerca de 450 ppm.

Fotosíntesis en función de su relación con la radiación y 
el déficit de presión de vapor

De la Figura 5 es clara la importancia de la radiación 
fotosintéticamente activa en el incremento de la tasa 
de fotosíntesis, puesto que a medida que la primera 

With the linear regression is achieved 97.56% of fitness 
between the values ​​of photosynthesis simulated by the 
neural network and measured photosynthesis. It can also 
be seen quite clearly that most of the data cloud is within 
the confidence limits 95% for the fitting equation, which 
is that the root mean square error (RCME) is small, 0.9237. 
In conducting statistical tests to the 4-layer neural network 
and 10-15-10 neurons in the hidden layers to the input 
data filtered by the Savitzky method, we see the excellent 
performance of this method for the entire dataset. The 
value of the adjustment in the regression shown in Figure 
3 is only 1 261% lower than that reported by the Neural 
Network Toolbox of MATLAB Graphical User Interface 
(Table 3). 

The mean square error between the rate of photosynthesis 
simulated by the ANN for all measurements was lower 
(0.8532) than the average value generated as subsets of data 
to train the network (0.9908). Therefore, a valid network 
is found not overestimating the setting for the entire set 
of data, and statistical trends result retained after being 
trained. 

Salazar et al. (2010) applied a neural network to predict the 
rate of photosynthesis in the leaves of tomato, in which, 
besides the climatic variables, it´s used as an input variable 
for the vector of values ​​of photosynthesis, finding that 
the performance is between 97.49% and 98.77% for the 
predictions 5 and 10 min later, respectively. In the present 

Figura 4. Fotosíntesis en función de las variables temperatura y concentración de CO2. Izquierda, superficie de la función polinomial 
de orden 3-2, con ajuste de 91.95% para los datos. 

Figure 4. Photosynthesis as a function of the variables temperature and concentration of CO2. Left, surface of the polynomial 
function on the order 3-2, with 91.95% adjustment for the data. 
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aumenta, la segunda lo hace también. La tasa máxima de 
fotosíntesis registrada (de acuerdo a la función) se alcanza 
aproximadamente con una radiación PAR de 230 Wm-2. Sin 
embargo, el máximo de la función se encuentra más allá de 
250 Wm-2.

Por su parte, cuando el déficit de presión de vapor está 
por arriba de 2.5 kPa, la trayectoria de la fotosíntesis no 
se dirige hacia el máximo de la función, por el contrario, 
comienza a decrecer aún para los mismos niveles de 
radiación PAR. Por lo tanto es importante mantener 
el VPD por debajo de 2.5 kPa cuando se presentan 
elevados niveles de radiación, para asegurar la apertura 
estomática y con ello, el ingreso del CO2 al interior de 
las hojas.

Fotosíntesis en función de su relación con la temperatura 
y la humedad relativa

De las variables climáticas más fácilmente medidas en 
los invernaderos, debido al bajo costo de los sensores, 
se encuentran la temperatura y la humedad relativa. Por 
consiguiente, es muy importante conocer las relaciones entre 
estas variables y la fotosíntesis. 

Como se observa en la Figura 6, la combinación de una 
baja temperatura y humedad relativa altas generan tasas de 
fotosíntesis bastante bajas, por debajo de 5 µmolCO2m-2s-1 ; 
caso contrario los niveles más altos de fotosíntesis se generan 
cuando la temperatura está entre los 25-30 °C, mientras que la 

investigation a correlation coefficient of 97.56% without 
using the data of photosynthesis as an input variable was 
achieved. 

Photosynthesis in terms of their relationship with 
temperature and concentration of CO2 

The Figure 4 shows that, the highest rates of photosynthesis 
are obtained when the temperature ranges are between 25 
°C and 30 °C. The maximum of the curve for temperature 
adjustment is located at 27 °C. 

For data input to the neural network, levels of 380 ppm CO2 
concentration generated higher rates of photosynthesis. 
However, by observing the surface, we may notice that the 

concentration of greenhouse gas in the study is not high 
enough to reach the maximum of the function (maximum 
photosynthesis), which requires about 450 ppm. 

Photosynthesis in terms of its relationship with radiation 
and vapor pressure deficit 

Considering the Figure 5, it is clearly important to the 
photosynthetically active radiation in increasing the rate of 
photosynthesis, since as the first one increase, so does the 
second one. The maximum rate of photosynthesis recorded 
(according to the function) is reached about a PAR of 230 
Wm-2. However, the maximum of the function is higher than 
250 Wm-2. 

Figura 5. Fotosíntesis en función de las variables PAR y VPD. Izquierda, superficie de la función polinomial de orden 3-3, con ajuste 
de 97.67% para los datos. 

Figure 5. Photosynthesis as a function of the variables PAR and VPD. Left, surface of the polynomial function on the order 3-3, with 
adjustment of 97.67% for the data. 
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humedad relativa se ubica entre 30-40%. Se aprecia también 
que por arriba de 80% de HR independientemente de la 
temperatura, los niveles de fotosíntesis son muy bajos, del 
orden de ¼ parte de la tasa máxima registrada. Asimismo, una 
temperatura aceptable mínima es 18 °C, pues a partir de ella la 
tasa de fotosíntesis se encuentra por encima del 50% de la tasa 
máxima, siempre y cuando la HR se tenga valores de 30 a 65%.

Conclusiones

Debido a sus capacidades de aproximador universal de 
funciones, las redes neuronales artificiales describen con 
un grado de ajuste muy alto, R2 = 97.56%, la relación entre 
la fotosíntesis de un cultivo de jitomate en invernadero y 
las variables climáticas: radiación, temperatura, humedad 
relativa, déficit de presión de vapor y concentración de 
CO2. La mejor configuración de red neuronal, para simular 
la tasa de fotosíntesis foliar de plantas de jitomate tuvo 
un arquitectura de 4 capas con 10-15-10 neuronas en las 
capas ocultas. 

A partir de las superficies de respuesta generadas con 
los valores de tasa de fotosíntesis foliar, predichos 
por la mejor red neuronal artificial, es posible tener 
una mejor comprensión de la interacción entre las 
condiciones climáticas dentro de los invernaderos y la tasa de 
fotosíntesis foliar del cultivo del jitomate. Es decir, con base 

When the vapor pressure deficit is above 2.5 kPa, the 
trajectory of photosynthesis is not directed towards the 
maximum of the function; however, it still starts to decrease 
for the same levels of PAR. Therefore, it is important to 
maintain the VPD below 2.5 kPa when there are high levels 
of radiation, to secure the stomatal opening and thus the 
entry of CO2 into the leaves. 

Photosynthesis in terms of its relationship with 
temperature and relative humidity 

Of the climatic variables more easily measured in 
greenhouses because of the low cost of sensors include the 
temperature and relative humidity too. It is therefore very 
important to know the relationships between these variables 
and photosynthesis. 

As shown in Figure 6, the combination of a low temperature 
and high relative humidity generated photosynthesis rates 
quite low, below 5 µmolCO2m-2s-1, otherwise the highest 
levels of photosynthesis are generated when the temperature 
is between 25-30 °C, while the relative humidity is between 
30-40%. It is also noted that above 80% RH regardless of the 
temperature, photosynthesis levels are very low, of the order 
of ¼ of the maximum recorded. Also, a minimum acceptable 
temperature is 18 °C, since from it; photosynthesis rate is 
above 50% of the maximum rate, as long as the RH has 
values of 30 to 65%. 

Figura 6. Fotosíntesis en función de las variables Temperatura y humedad relativa. Izquierda, superficie de la función polinomial 
de orden 2-2, con ajuste de 98.29% para los datos. 

Figure 6. Photosynthesis as a function of temperature and relative humidity variables. Left, surface of the polynomial function on 
the order 2-2, with adjustment of 98.29% for the data. 
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en las funciones con que se generaron las superficies, 
se pueden ver las rutas que deben seguir las variables 
climáticas, de tal forma de que el control ambiental de los 
invernaderos siempre esté enfocado hacia el máximo de 
la función; es decir, a la obtención de la tasa máxima de 
fotosíntesis dependiendo de las condiciones climáticas 
prevalecientes.
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