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Resumen:

El objetivo del trabajo consistid en el desarrollo de ecuaciones alométricas para
estimar la biomasa aérea por fracciones de grosor de la regeneracion de Arbutus
arizonica, Juniperus deppeana, Quercus sideroxyla y Pinus cooperi en la Unidad de
Manejo Forestal (Umafor 1008) en el estado de Durango. Se utilizaron datos
provenientes de 114 individuos (25, 29, 30 y 30, respectivamente), colectados
mediante un muestreo destructivo para ajustar los modelos. La aditividad de las
ecuaciones de estimacion de biomasa se asegurd mediante el ajuste simultaneo de
todas las ecuaciones, con el procedimiento estadistico denominado 3SLS (Three-
Stage Least Squares). Los modelos desarrollados permiten estimar la biomasa en
peso seco de los componentes, peso total, hojas, ramillas (< 0.5 cm), ramas finas
(0.51 - 2.5 cm), ramas gruesas y tronco (> 2.51 cm). Las ecuaciones alométricas
con mejor ajuste correspondieron al peso total, con valores de coeficiente de
determinacion ajustado de 0.97, 0.94, 0.95 y 0.97 para Arbutus, Juniperus,
Quercus y Pinus cooperi, respectivamente. En general las ecuaciones mostraron un
ajuste satisfactorio en cada una de las fracciones; con ellas se podran hacer
estimaciones no destructivas de la biomasa por categoria de grosor de la
regeneracion de las cuatro especies estudiadas, lo que mejorara las predicciones de
biomasa y almacén de carbono por fracciones en los bosques con presencia de los

cuatro taxa estudiados.
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Introduccion

Los modelos alométricos son herramientas importantes para estimar, de una
manera adecuada, la biomasa y el carbono de los bosques, ademas son empleados
en los inventarios de combustibles para el calculo de las cargas de distintas

fracciones de arbolado tanto adulto como regenerado.

Los trabajos de alometria, generalmente, consideran las fracciones de biomasa de hojas,
tronco y ramas segun su grosor; las categorias de ramillas (<0.5 cm), ramas finas
(generalmente de 0. 5 a 2.5 cm), asi como ramas medias y gruesas (>2.5 y 7.5 cm,
respectivamente) son las mas frecuentes (Reed y Toméb, 1998; Alvarez et al., 2005;
Antonio et al., 2007; Munoz et al., 2008; Pérez-Cruzado et al., 2011a, 2011b; Gonzalez-
Garcia et al., 2013; Jiménez et al., 2013; Vega-Nieva et al., 2015).

La alocacién de la biomasa en fracciones cambia en relacion al didametro normal
(Fontes et al. 2006; Antonio et al. 2007; Vega-Nieva et al., 2015), lo que hace
necesario evaluarla en diferentes estadios del desarrollo de las masas arbdreas. Por
ejemplo, en el trabajo de Antonio et al. (2007) se registraron diferencias en las
alometrias desarrolladas para Eucalyptus globulus Labill.,, segun el estado de
desarrollo de la masa, y sus modelos especificos para arboles jovenes con pequeias
dimensiones. En México, se ha observado que, en individuos con didmetros menores
a 15 cm, la biomasa de las fracciones de hojas, ramillas y ramas representa hasta 55
%; en cambio con didmetros superiores a 20 cm, la concentracién de la biomasa se
encuentra en mayor proporcién en el fuste (Soriano-Luna at al., 2015; Vargas-
Larreta et al., 2017).

El modelado de la cantidad de biomasa en cada una de estas fracciones a lo largo
de diferentes edades es importante para los sistemas de contabilidad de carbono
(Pérez-Cruzado et al., 2011b; Gonzalez-Garcia et al., 2013). Asimismo, es relevante
conocer la biomasa presente en distintas fracciones, por los diferentes patrones de

acumulacion de nutrientes entre fracciones y edades, lo cual es importante para
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evaluar la sostenibilidad nutricional del manejo de las masas forestales, a partir de
las practicas de manejo, tales como la extraccién de fracciones mas finas o las
edades de rotacién en el balance de nutrientes de las masas arbdreas (Brafas et
al., 2000; Dambrine et al., 2000; Laclau et al., 2000; Merino et al., 2003, 2005).

En México, los modelos alométricos se han desarrollado para diferentes
necesidades (Morfin-Rios et al. 2012; Ruiz-Diaz et al. 2014), y la mayoria de los
estudios disponibles en alometrias de biomasa se enfocan en arbolado adulto
(Acosta-Mireles et al. 2002; Diaz-Franco et al. 2007; Navar-Chaidez, 2009;
Aguirre-Calderén y Jiménez-Pérez, 2011), con pocos trabajos orientados a la
estimacién de biomasa en la etapa de regeneracién (Vargas-Larreta et al. 20017;
Montes de Oca-Cano et al. 2009; Montes de Oca-Cano et al. 2012). Esta
informacién es de especial interés, debido a la necesidad de conocer los montos
de carbono capturado en los bosques durante todas sus etapas de crecimiento y

fracciones del arbolado (Vargas-Larreta et al. 2017).

El objetivo del presente estudio fue desarrollar ecuaciones alométricas para estimar
la biomasa por fracciones de grosor de cuatro especies en etapa de regeneracion en

los ecosistemas mezclados e irregulares de Durango.

Materiales y Métodos

El estudio se llevd a cabo en la Unidad de Manejo Forestal Regional (Umafor) 1008,
ubicada al suroeste del estado de Durango, en las coordenadas geograficas
23°06°59" " y 24°11°38 " latitud norte y 105°55°'56" " y 105°10°31" " longitud
oeste. Comprende parte de los municipios Durango, San Dimas y Pueblo Nuevo;
tiene una extensién superficial de 558 mil hectareas, aproximadamente. En el area
existen siete tipos de clima segun la clasificacién de Koépen modificada por Garcia
(1988), de los cuales predominan el templado subhimedo C(wz), semicalido
subhimedo (A) C(w;) y semifrio subhimedo Cb " (w-); con precipitaciones de 800 a

1 200 mm anuales (SRNyMA-Conafor, 2007). Las comunidades vegetales mas
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importantes de la region estan compuestas por bosque de pino, seguido de
asociaciones pino-encino y en menor proporcidon las selvas bajas caducifolias,

pastizales y el area de agricultura temporal (INEGI, 2012).

Toma de muestras para el analisis destructivo

Se seleccionaron 114 individuos regenerados: 30 de Pinus cooperi C.E.
Blanco, 30 de Quercus sideroxyla Humb. & Bonpl., 29 de Juniperus
deppeana Steud. y 25 de Arbutus arizonica Sarg. Los ejemplares estaban
libres de plagas, enfermedades, de defectos fisicos y mecanicos; fueron
elegidos aleatoriamente para que representaran la categoria de la etapa de
regeneracién y monte bravo, con didmetro de la base no mayor a 10 cm.
Las variables dendrométricas que se midieron en campo, para cada arbol,
fueron: diametro de la base (db), diametro a la altura del pecho (dap) y
diametro de copa (dc), con dos mediciones en cruz. Una vez derribados, se
obtuvo la altura total (h), la altura de copa seca (hcs), la altura de copa
viva (hcv), la longitud de copa seca (/cs) y la longitud de copa viva (/cv),
como recomiendan Gdémez-Garcia et al. (2013). Todas las medidas se

consideraron en centimetros.

Cada individuo fue derribado y guardado en bolsas herméticas de plastico con el fin
de evitar la pérdida de humedad. Cada una se etiquetd con una clave de

identificacion integrada por el nimero del espécimen vy la fecha de recolecta.

Analisis de laboratorio
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Cada arbol fue separado en las siguientes fracciones de grosor: hojas, ramillas (<0.5 cm),
ramas finas (>0.51 - 2.5 cm), tronco y ramas gruesas de > 2.51 cm. El peso total por
fraccion se obtuvo en verde, con una bascula con precisiéon (Ohaus explorer
EX4202) de 0.001 g; para el peso de biomasa de ramillas y de hojas; mientras
que para las fracciones ramas finas, ramas gruesas y tronco la precision fue de
0.01 g. Las fracciones individuales se embolsaron y etiquetaron para,
posteriormente, introducirlas en una estufa de secado (Felisa FE-294A), durante

8 a 10 dias, a una temperatura de 75 °C hasta obtener el peso seco constante.

Ajuste de ecuaciones de biomasa

Se realizd un analisis de regresidon no lineal entre las variables medidas en campo
(db, h, hcs, hcv, dc, dap Ics y Icv) y las mediciones de carga por fraccidon
(ramillas, ramas finas, ramas gruesas y tronco, hojas y total) efectuadas en
laboratorio. Para la estimacion del peso seco se probaron diferentes ecuaciones
no lineales, con distintas combinaciones de variables predictivas, los mejores
resultados se ajustaron por minimos cuadrados, mediante el procedimiento
MODEL del programa SAS/ETS® (SAS, 2009).

Las ecuaciones por fraccidn de grosor y total se ajustaron, simultdneamente, para
garantizar la aditividad (Alvarez-Gonzalez et al., 2007). Esta es unas de las
propiedades mas importantes que deben de cumplir las ecuaciones de biomasa de los
distintos componentes (Cunia, 1986; Parresol, 1999; Antonio et al. 2007); consiste en
que la suma de las estimaciones de los pesos de todos los componentes o fracciones
deben ser iguales a la estimacién del peso total del arbol. Lo anterior se logra a través
del ajuste simultaneo de los diferentes modelos matematicos propuestos para cada
fraccidn. La técnica se basa en el ajuste de un sistema de ecuaciones, aparentemente,
no relacionadas y formado por las funciones de regresién de los k componentes

arbdreos junto con el de biomasa total (Alvarez-Gonzalez et al. 2007).
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wy = f1 (x1)
W, = f (x2)

Wy = }k (k)

Wtotal = ftotal (xl' X2y aeey xk)

Donde:
w, = Biomasa estimada

x, = Conjunto de variables explicativas

En este sistema, no es necesario que las ecuaciones de cada fraccién arbdrea
presenten la misma expresion matematica, ni las mismas variables predictivas. Las
variables independientes del modelo de biomasa total son todas las regresoras que
aparecen en las expresiones matematicas de cada componente. Los parametros de
las ecuaciones se obtuvieron de forma simultanea con la metodologia Three-Stage
Least Squares (3SLS); para ello, se utilizd el procedimiento MODEL del programa
SAS/ETS® (SAS, 2009). En el ajuste de modelos de biomasa es importante verificar
la constancia de la varianza de los residuos (Picard et al., 2012), para descartar
problemas de heterocedasticidad; es decir, que la varianza de los errores no sea

constante (Parresol, 2001).

Para analizar la presencia de heterocedasticidad se realizd el contraste de White (1980). La
heterocedasticidad se corrige durante el ajuste de las ecuaciones, al pesar cada observaciéon por la
inversa de su varianza (¢7). Al desconocerse dicha varianza, se asume que es factible modelaria con
una funcidn potencial ¢? = x¥, donde x; es una funcibn de una o mas de las variables

independientes del modelo El valor k del exponente y las variables a incluir (x;) se determinan con
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los errores del modelo ajustado sin pesos (&), como variable dependiente en el modelo potencial de
varianza del error (Park, 1966; Harvey 1976), y mediante la prueba de diferentes combinaciones de

variables y exponentes, hasta optimizar el resultado del ajuste lineal derivado de tomar logaritmos

en la siguiente expresion:

é7 = xf - logée? =y + k- logx;

Criterios de seleccion de modelos

Los criterios para determinar el mejor modelo fueron el analisis grafico de los
residuos; el coeficiente de determinacién (R?), que refleja la variabilidad total que
es explicada; y la raiz cuadrada del error medio cuadratico (REMC) que analiza la

precision de las estimaciones, cuyas ecuaciones son las siguientes:

Donde:

vi, ¥i;» € y; = Valor observado, estimado y promedio de la variable dependiente

NUmero total de observaciones utilizadas para ajustar el modelo

n

NUmero de parametros del modelo

p
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Ademads de los estadisticos descritos, una de las maneras mas eficientes de evaluar la
capacidad de ajuste de un modelo es la inspeccion visual, por lo que se analizaron los

graficos de residuos frente a valores predichos de la variable dependiente.

Resultados y Discusion

La representacion grafica de los valores de biomasa de fracciones por componente
contra la variable independiente que mayor influencia tuvo en las ecuaciones
alométricas se muestra en la Figura 1 para Arbutus arizonica, Juniperus deppeana,

Quercus sideroxyla y Pinus cooperi.
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Quercus sideroxyla
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db = Diametro de la base; h = Altura total; lcs = Longitud de copa seca; lcv = Longitud de copa
viva; Weo5an= Peso ramas finas; Wo.s:-250n= Peso ramas gruesas; W-;s5:n = Peso tronco, W, =

Peso hojas; Wr.= Peso total.

Figura. 1. Relacién entre la biomasa en gramos de los diferentes componentes con

las variable explicativas con mayor influencia en el modelo por especi

La expresion de los modelos que mejores resultados mostraron en el ajuste
individual por componente para la estimacién de la biomasa por fraccién de grosor y

total para las especies estudiadas, se muestra en el Cuadro 1.

Cuadro 1. Modelos seleccionados para la estimacidon de la biomasa por fraccién y
total para la regeneraciéon de Juniperus deppeana Steud., Arbutus arizonica

Sarg., Quercus sideroxyla Humb. & Bonpl. y Pinus cooperi C.E. Blanco.
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Especie Componente Modelo

Weosem W.os = ay * db% = dc
Wos1-25cm Wosi2.5 = a3 * db% * Icv

J. deppeana  W., . Wepsy = s * h% = dc
Wh W), = a; » db% =lcv
Wr Wr = a, *db* =dc + az *» db® * lcv + ags * h% =dc + a; =db% «lcv
Weosem Weos = ay = lcs®
Wos1-25 em Wosi-25 = az *db® +h

A. arizonica Weasem Wepsy = as * h% = db
Wh W), = a; » h® =db
Wr Wr =a, *db% =lcs +ay »db* * h+ag* h* =db+ a; * h% =db
Weoscm Weos = ay * db® =dc

WO.S 1-25cm

W0.51_2.5 =AQaz* db® = dc

Q. sideroxyla  W., 5 Ways, = ag * db% = dc
Wh W), = a; »db% =dc
Wr Wy = a, * db% = dc + az * db® = dc + ag = db% = dc + a; = db® = dc
W<o5em W_.os = a; * db%: = dc

WO.Sl—Z.S cm
P. cooperi W-35cm

Wh

Wwr

Wos1-25 = a3 * db%
W)Z.Sl = a5 * ha° * db

W), = a; = db% =dc%

Wy = a, *db® * dc + az * db* + ag * h% = db + a; = db% = dc%

W<o5an = Peso seco de ramillas (g); Wosi-25an = Peso seco de ramas finas (g); Ws251an = Peso

seco de ramas gruesas Yy tronco (g); Wh = Peso seco de hojas (g), Wr =Peso total (g); db =

Diametro de la base de cada planta (cm),; h = Altura total de cada planta (cm); dc = Didmetro de

copa de cada planta (cm); lcv = Longitud de copa viva de cada planta (cm); lcs = Longitud de copa

seca de cada planta (cm).
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En el Cuadro 2 se presentan las estimaciones de los parametros obtenidos mediante
el ajuste simultaneo, los errores estandar aproximados y los estadisticos de bondad
del ajuste. Asi como, los pesos utilizados en la ponderacién para corregir la

heterocedasticidad en las fracciones que presentaron este problema.

Cuadro 2. Estimacion de los parametros, y estadisticos de bondad del ajuste
obtenidos para las ecuaciones de biomasa por fraccion de grosor mediante el ajuste

simultaneo por 3SLS.

Especie Componente Param Estimacion E.E REMC (g) Pesos R?
al 0.1957 0.0863
Ramillas 55.64 0.88
a2 1.0708 0.2112
a3 0.1441 0.0778
Ramas finas 123.27 0.86
a4 1.1372 0.2534
a5 3.7E-6 4.8E-6
J. deppeana Ramas gruesas 305.20 1/V(h)?° 0.92
a6 2.5272 0.2181
a7 0.2847 0.1387
Hojas 162.94 1/V(db)?* 0.88
a8 1.2422 0.2522
Peso Total 507.94 0.94
al 0.0073 0.0158 15.19 0.87
Ramillas
a2 1.6580 0.3734
a3 0.2060 0.0556 120.63
Ramas finas 1/V(db)3?t 0.90
a4 1.1329 0.1420
a5 0.0032 0.0040 268.43 0.95
A. arizonica Ramas gruesas
a6 1.9222 0.2058
a7 0.3732 0.4947 69.95 0.78
HOjaS 1/\/(}1)2.4
a8 0.7810 0.2361
322.40 0.97
Peso Total
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al 0.0396 0.0174

Ramillas 80.93 1/V(db)**° 0.93
a2 1.9577 0.2044
a3 0.3768 0.0827

Ramas finas 237.06 1/V(db)3® 0.88
a4 1.2930 0.1181
a5 0.0683 0.0291

Q. sideroxyla Ramas gruesas 598.09 1/V(db)37 0.94
a6 2.6210 0.2022
a7 0.1640 0.0901

Hojas 132.58 0.79
a8 1.3279 0.2562

Peso Total 905.08 1/V(db)?®° 0.95
al 0.1024 0.0652

Ramillas 35.75 1/V(db)*1? 0.69
a2 0.8569 0.2690
a3 8.2417 1.6303

Ramas finas 129.95 1/V(db)37 0.79
a4 2.0242 0.1038
a5 0.0817 0.0394

Rama gruesas 397.83 0.96
P. cooperi a6 1.3391 0.0731
a7 0.0255 0.0439

Hojas as 1.1890 0.3194 82.21 1/V(db)7 0.84
a9 1.3917 0.3716

Peso Total 354.47 0.97

Param = Parametros del modelo por componente; E.E = Error estandar aproximado; REMC =

Raiz del error medio cuadratico; R? = Coeficiente de determinacion.

El ajuste simultdneo con la técnica 3SLS proporcioné una estimacion de los

estadisticos de bondad del ajuste muy similar al ajuste individual. La mayoria de las

especies evidenciaron heterocedasticidad en la mayor parte de sus fracciones de

biomasa. Problema que se corrigid mediante regresion ponderada, como en otros
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trabajos de estimacién de biomasa arbdrea (Parresol, 2001; Alvarez-Gonzalez et al.
2007). En algunas fracciones no se observd heterocedasticidad segun la prueba de
White; posiblemente, por el intervalo relativamente reducido de didmetros y pesos

muestreados, ya que eran arboles jovenes.

En la Figura 2 se presentan los valores observados frente a los predichos para las
distintas fracciones de grosor, para las hojas y el peso total. La distribucién de la
nube de puntos sobre la diagonal indica que los modelos proporcionan estimaciones

con bajo sesgo.

En general, las ecuaciones tuvieron un ajuste satisfactorio y explican como minimo
69 % de la variabilidad observada. La biomasa de las fracciones de hojas y ramillas
presentaron ajustes de buenos a regulares, lo que posiblemente se deba a la
variabilidad de las estructuras de la copa y del numero de ramas (Pardé, 1980).
Para las fracciones de hojas y ramillas, los coeficientes de determinacién fueron
0.84-0.69, 0.78-0.87, 0.88-0.88 y 0.79-0.93 para P. cooperi, A. arizonica, J.
deppeana y Q. sideroxyla, respectivamente. Las fracciones de copa se consideraron

las mas dificiles de modelar (Mufioz et al., 2008).

Las bondades de los ajustes para Pinus son similares a las registradas en
trabajos previos a nivel nacional en alometrias de biomasa para este género
(Montes de Oca-Cano et al. 2009; Montes de Oca-Cano et al., 2012; Vargas-
Larreta et al., 2017). Montes de Oca-Cano et al. (2009) realizaron el ajuste de
ecuaciones de biomasa por componente para arboles de Pinus durangensis, cuyas
edades eran de 3 a 10 afios; sus resultados indicaron que el fuste tuvo los
mejores estadisticos de ajuste, con un R? de 0.86, mientras que los coeficientes
de determinacion en las ramas y hojas fueron de 0.74 y 0.74, respectivamente.
Valores similares documentaron Montes de Oca-Cano et al. (2012), con R? de 0.73
para las hojas; Vargas-Larreta et al. (2017) consignaron valores de R? de 0.74
para la fracciéon de hojas de Pinus cooperi, con las variables diametro y altura. En
el presente estudio, el valor de R? fue de 0.84 para las hojas de Pinus cooperi, lo

gue mejorod el ajuste, al agregar el didametro de copa al modelo empleado.
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Geudens et al. (2004), en Pinus sylvestris con edades de 1 a 4 afios y las
variables didmetro y altura (dap?h) obtuvieron el mejor ajuste para la biomasa
aérea con una R? de 0.95; resultados que se asemejan a los sefialados en el
presente documento, con un coeficiente de determinacién R®> de 0.97. Vargas-
Larreta et al. (2017) citan valores de R? para el mejor modelo de biomasa total
de 0.94 y 0.90, respectivamente en la regeneracion de Pinus cooperi y P.

leiophylla, los cuales son muy similares a los de P. cooperi en este estudio.

Las bondades de los ajustes de Quercus concuerdan con lo registrado en la
literatura. Gonzalez (2008) estimd la biomasa para Quercus spp. en arboles
seleccionados dentro de las categorias de regeneracidon natural de brinzales, con
alturas de 2 m y latizales de hasta 21 m. El mejor modelo para estimar biomasa
total incluyé como variable independiente el diametro normal, con un coeficiente de
determinacién de 0.96. En el presente trabajo con ajuste simultaneo, el valor de R?
fue igual (0.96). En el noroeste de Espafa, Gémez-Garcia et al. (2013), para
Quercus robur L. estiman la biomasa por fracciones y peso total; el mejor ajuste
para la fraccién hojas lo obtuvieron al usar como variable explicativa el dap, R® =
0.78. Lo anterior concuerda con el coeficiente de determinacion para las hojas de
Quercus (0.79) calculado para Durango, mediante el uso de las variables
predictoras db y dc.

En el género Juniperus, el uso del diametro de base generd buenos resultados en trabajos
previos. Asi en Texas, Reemts (2013) con arboles pequeios (< 15 cm de didametro basal)
de Juniperus ashei J.Buchholz sefala que las ecuaciones alométricas basadas en el db y
db’h ajustaron mejor la biomasa total que las expresiones generadas con base en la
altura del arbol y el volumen de dosel (R?= 0.95-0.97 versus R?=0.71-0.77).
Rodriguez-Laguna et al. (2009) obtuvieron coeficientes de determinacion de 0.97 para
Juniperus flaccida Schltdl., a partir de un modelo potencial, cuya variable predictora fue el

diametro normal.

En general, los coeficientes de determinacién para Arbutus arizonica fueron buenos,
y el mejor correspondié al peso total, con un valor de R?> de 0.97. Resultado similar
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al de Harrington et al. (1984), quienes estimaron la biomasa total para Arbutus
menziesii Pursh con la variable explicativa de didmetro normal y un coeficiente de
determinacion de 0.97. Vargas-lLarreta et al. (2017) registran coeficientes de
determinacion de 0.74 y 0.92 para hojas y peso total, respectivamente para
Arbutus bicolor S. Gonzalez, M. Gonzalez & P.D. Sgrensen, sus variables predictoras
fueron el diametro y la altura. Ter-Mikaelian y Korzukhin (1997) consignan coeficientes
de determinacion de 0.83 para Arbutus menziesii en la biomasa de las hojas, cuando
se usd como variable predictora el didametro a la altura del pecho. En el estudio que
aqui se documenta, el ajuste para las hojas explico 78 % de la variabilidad

observada.
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Quercus sideroxyla
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Figura 2. Graficos de valores observados frente a predichos de biomasa por

fraccion de grosor, hojas y biomasa total de las cuatro especies estudiadas.

Aunque el didametro de la base fue la mejor variable explicativa para todos los
componentes de la biomasa, la altura y la longitud de copa viva y muerta mejoraron
los modelos alométricos para las fracciones de ramas y hojas; similarmente, a lo
observado en otros trabajos (Williams et al., 2005; Antonio et al., 2007; Paul et al.,
2008; Vega-Nieva et al., 2015), pero a expensas de un mayor esfuerzo de muestreo
para aplicar los modelos (Gémez-Garcia et al., 2013).

Conclusiones

Se desarrollaron sistemas de ecuaciones para estimar biomasa por fraccion de
grosor y total para individuos en la etapa de regeneracién de las especies Arbutus
arizonica, Juniperus, Quercus sideroxyla y Pinus cooperi. Estas ecuaciones
permitirdn realizar estimaciones no destructivas de la biomasa de las cuatro
especies estudiadas, y mejorar las estimaciones de alocacién de biomasa, carbono y
nutrientes por fracciones en los diferentes estadios de las masas forestales. Es
importante continuar con el trabajo y mejora de este tipo de modelos, asi como

estudiar la biomasa de masas regeneradas de otras especies de relevancia.
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