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RESUMEN

La productividad forestal es un concepto biológico que puede expresarse matemáticamente. En el presente estudio se describen 
modelos compatibles altura dominante - índice de sitio para Pinus arizonica, P. durangensis, P. leiophylla y P. teocote en la región de 
Santiago Papasquiaro, Durango, una de las zonas forestales más importantes de México. Los datos utilizados fueron obtenidos de análisis 
troncales de 202 árboles dominantes. Se ajustaron los modelos de Korf, Hossfeld y Bertalanffy-Richards, para lo cual se utilizó el 
método de Diferencias Algebraicas Generalizadas (GADA). La principal ventaja de este método es que depende de la calidad de 
estación y no de un parámetro de los modelos, con lo que las curvas obtenidas son polimórficas y con múltiples asíntotas. Durante el 
ajuste se modeló la estructura del error a través de un modelo autorregresivo de segundo orden para corregir la dependencia de 
datos longitudinales. Con base en los estadísticos de ajuste y el análisis gráfico, se recomienda el modelo de Bertalanffy-Richards 
para calificar la calidad de estación de las cuatro taxa. La ecuación de este modelo es polimórfica con múltiples asíntotas e invariante 
con respecto a la edad de referencia, además estima directamente la altura dominante y el índice de sitio a cualquier altura y edad. El 
uso de estas ecuaciones permitirá mejorar significativamente la estimación actual del potencial productivo de las especies estudiadas.

Palabras clave: Calidad de estación, diferencias algebraicas generalizadas, invarianza, modelo autorregresivo, productividad 
forestal, Santiago Papasquiaro. 

ABSTRACT

Forest productivity is a biological concept that can be expressed mathematically. Compatible dominant height-site index models are 
of the most important forest zones of Mexico. The data used were obtained from the stem analyses of 202 dominant trees. Korf, 
Hossfeld and Bertalanffy-Richards models were adjusted by the method of Generalized Algebraic Differences (GADA). The principal 
advantage of this method is that it depends on the quality station more than one parameter of the models, so that the curves obtained are 
polymorphic and with multiple asymptotes. A second-order autoregressive error structure was used in the fitting process to correct the serial 
correlation of the longitudinal data. Based on the goodness of fit statistics and a graphical analysis, the Bertalanffy-Richards model is 
recommended to qualify the quality station of the four species. This equation is polymorphic with multiple asymptotes and base-age 
invariant, and also directly estimates the dominant height and the site index at any height and reference age. Using these equations 
will significantly improve the current estimate of the productive potential of the species studied.
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INTRODUCCIÓN

La calidad de estación se define como el potencial de producción 
de madera de un rodal para una determinada especie o tipo de 
bosque (Clutter et al., 1983), la que resulta de la interacción de un 
conjunto de factores biológicos, climáticos, topográficos y edáficos, 
que influyen en la capacidad productiva del mismo; la combinación 
de estos factores puede resultar favorable para el desarrollo de los 
árboles generando su máximo potencial de crecimiento.

El crecimiento y la producción de las masas forestales para una 
determinada especie dependen en gran medida de lo siguiente: 
(i) la edad de la masa o, en el caso de masas irregulares, la 
distribución de edades; (ii) la capacidad de producción innata del 
área que soporta la masa; (iii) el grado de utilización de esa 
capacidad productiva en el pasado y en el momento actual; 
y (iv) los tratamientos silvícolas aplicados (aclareos, podas y 
control de la vegetación competidora) (Clutter et al., 1983). De lo 
anterior, el segundo componente corresponde a lo que generalmente 
se denomina “calidad de estación”, la que puede describirse como 
la capacidad productiva de un área determinada para el 
crecimiento de árboles, y es la respuesta en el desarrollo de 
una determinada especie a la totalidad de las condiciones 
ambientales existentes en el mismo (Prodan et al., 1997); esto es, la 
calidad de una estación forestal es su capacidad productiva, por 
lo que se puede considerar, entonces, como una propiedad 
inherente del terreno, crezcan o no árboles en un momento 
dado (Davis et al., 2001).

La productividad forestal es un concepto biológico que puede 
expresarse matemáticamente. Es por ello que se ha optado por 
representar la calidad de sitio a través de un valor o índice el cual es 
una expresión cuantitativa de la calidad de sitio. En ese sentido, 
la utilización del crecimiento en altura de los árboles que viven en 
condiciones de poca competencia como indicador de la calidad 
de estación de un rodal forestal se justifica debido a que áreas de buena 
calidad de estación son también zonas de buenos crecimientos en 
altura para muchas especies. En otras palabras, para la mayoría 
de las especies la producción potencial en volumen y el crecimiento en 
altura están positivamente correlacionados (Diéguez-Aranda et al., 
2009). La utilidad práctica de dicha correlación proviene de la 
evidencia empírica que indica que el patrón de crecimiento en 
altura de los árboles de mayores dimensiones en masas regulares 
(correspondientes a las clases sociológicas dominante y codominante, 
y por tanto con poca competencia de los restantes árboles) está 
poco afectado por la densidad del rodal y por las cortas 
intermedias efectuadas, dentro de unos límites moderadamente 
amplios de espaciamiento, lo que depende de la especie (Clutter et al., 
1983). Por ello, las técnicas más habituales para estimar la calidad 
de estación de un rodal se basan en el análisis de la evolución de la 
altura media de los árboles dominantes con la edad, que se 
denomina altura dominante.

INTRODUCTION

Quality station is defined as the timber production potential of a stand for 
a particular species or forest type (Clutter et al., 1983), which results from 
the interaction of a set of biological, climatic, topographic and soil, which 
influence the productive capacity of the same, the combination of 
these factors may be favorable for tree growth generating their 
maximum growth potential.

The growth and production of stands for a given species depends 
largely on the following: (i) the age of the body or, in the case of 
irregular masses, age distribution, (ii) production capacity innate mass 
bearing area, (iii) the degree of productive capacity utilization in 
the past and at the present time, and (iv) the sylvicultural treatments 
(thinning, pruning and competing vegetation control) (Clutter et al., 
1983). From the above, the second component corresponds to 
what is often called “quality station”, which can be described as 
the productive capacity of a given area for the growth of trees, and 
is the response in the development of a particular species all the 
environmental conditions existing therein (Prodan et al., 1997), that is, 
the quality of a forest station is their production capacity, so can 
be considered, then, as an inherent property of the ground, grow 
or trees in a given time (Davis et al., 2001).

Forest productivity is a biological concept that can be expressed 
mathematically. That is why it was decided to represent quality 
station through a value or index which is a quantitative expression 
of quality station. In that sense, the use of height growth of trees 
living in low competition as an indicator of quality station of a 
forest stand is justified because good quality areas are also 
station areas of good growth in height for many species. In other 
words, for most species, the potential volume production and 
height growth are positively correlated (Diéguez-Aranda et al., 
2009). The practical utility of this correlation comes from the 
empirical evidence that indicates that the pattern of growth in 
height of the larger trees in regular masses (corresponding to 
the dominant and co-dominant sociological classes, and therefore 
with little competition from the rest of the trees) is little affected 
by stand density and intermediate cuttings carried out within 
moderately wide limits spacing, which depends on the species 
(Clutter et al., 1983). Therefore, the most common techniques for 
estimating the quality of a stand station based on the analysis of 
the evolution of the average height of dominant trees with age, 
height called dominant. 

Almost every site index curves recently published especially developed 
using the methodology of algebraic differential equations (ADA for 
its acronym in English) (Bailey and Clutter, 1974) or its generalization 
(GADA for its acronym in English) (Cieszewski and Bailey, 2000). 
The main limitation of the ADA methodology is that most of the 
derived models are anamorphic or have a common asymptote (Bailey 
and Clutter, 1974; Cieszewski and Bailey, 2000), while its generalization 
can be obtained with families which are both, polymorphic and multiple 
asymptotes (Cieszewski, 2002).
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Casi todas las curvas de índice de sitio publicadas recientemente se 
han desarrollado utilizando, en especial, la metodología de ecuaciones 
en diferencias algebraicas (ADA por sus siglas en inglés) (Bailey 
y Clutter, 1974) o su generalización (GADA por sus siglas en inglés) 
(Cieszewski y Bailey, 2000). La principal limitación de la metodología 
ADA es que la mayoría de los modelos derivados son anamórficos 
o tienen una asíntota común (Bailey y Clutter, 1974; Cieszewski 
y Bailey, 2000), mientras que con su generalización pueden 
obtenerse familias que sean a la vez polimórficas y con múltiples 
asíntotas (Cieszewski, 2002).

Dado que en la región forestal de Santiago Papasquiaro, Durango, 
no se cuenta con ecuaciones de índice de sitio validadas científicamente, 
el objetivo de este trabajo fue construir curvas de calidad de estación 
para Pinus arizonica Engelm., P. durangensis Martínez, P. leiophylla 
Schiede ex Schltdl. & Cham. y P. teocote Schiede ex Schltdl. & Cham., 
mediante el Método de Diferencias Algebraicas Generalizado.

MATERIALES Y MÉTODOS

Área de estudio

El estudio se llevó a cabo en la región forestal de Santiago 
Papasquiaro, ubicada al noroeste del estado de Durango, 
y que abarca 628 000 ha, aproximadamente. Se localiza a 
los 24°52’22” de latitud norte y los 106°03’46” de longitud 
oeste (Figura 1). La altitud varía entre 2 400 y 3 000 m. La 
temperatura media anual oscila de los 12 - 21 °C, mientras que 
la precipitación promedio anual alcanza de los 800 hasta 
los 1 200 mm (UAFSP, 2010).

Datos

Se utilizaron pares de datos altura dominante-edad procedentes del 
análisis troncal de 202 árboles dominantes de todas las calidades de 
estación, y distribuidos de la siguiente manera: 46 árboles de Pinus 
arizonica, 73 de P. durangensis, 29 de P. leiophylla y 54 de P. teocote. 
Los árboles fueron derribados a una altura del tocón de 0.3 m, que 
posteriormente fueron seccionados a la altura del diámetro 
normal (1.3 m) y a intervalos de alturas variables (de 1 a 2.5 m) a partir 
de los 1.3 m. La edad de cada sección y alturas verdaderas 
fueron determinadas por medio del algoritmo de Fabbio et al. 
(1994). El valor máximo, mínimo y medio, así como la desviación 
estándar de la altura total y la edad de los árboles muestra se 
presentan en el Cuadro 1, donde N, Media, Min, Max y Desv. est., son 
el número de pares de datos de altura-edad, los valores medio, 
mínimo y máximo y la desviación estándar, respectivamente.

Since in the forest region of Santiago Papasquiaro, Durango, 
there are no site index equations scientifically validated, the aim 
of this work was to build quality station curves for Pinus arizonica 
Engelm., P. durangensis Martinez, P. leiophylla Schiede ex Schltdl. 
& Cham., and P. teocote Schiede ex Schltdl. & Cham., using the 
Generalized Algebraic Difference Method.

MATERIALS AND METHODS

Study area

The study was conducted in the forest region of Santiago Papasquiaro, 
located at the northwest of the state of Durango, which covers 
around 628 000 ha. It is located between 24°52’22”north and 
106°03’46” west (Figure 1). Altitude varies from 2 400 to 3 000 m. 
The average annual temperature ranges between 12 and 21° C, 
while the average annual precipitation reaches 800 to 1 200 mm, 
UAFSP (2010).

Data

Pairs of dominant height-age data were used, from the stem 
analysis of 202 dominant trees of all site qualities, and distributed as 
follows: 46 trees of Pinus arizonica, 73 P. durangensis, 29 P. leiophylla 
and 54 P. teocote. Trees were felled to a stump height of 0.3 m, 
which were subsequently sectioned at the level of the normal 
diameter (1.3 m) and heights at varying intervals (1 to 2.5 m) from 
1.3 m. The age of each section and real heights were determined 
by using the algorithm of Fabio et al. (1994). The maximum, minimum 
and average value as well as the standard deviation of the total 
height and age of sample trees are presented in Table 1, where 
N, Mean, Min, Max and Standard Deviation are the number of 
data pairs of age-height, the mean, minimum and maximum values 
and the standard deviation, respectively. 

Estimate of real heights

The height of each cutting section overestimates the actual 
height that the tree had at the age indicated by the section as 
the cross section in the log seldom coincides with the beginning of a 
year, by introducing a bias in subsequent calculations (Dyer and Bailey, 
1987; Fabio et al., 1994).

To solve this problem it is advisable to use the Carmean 
algorithm (1972) and the amendment proposed by Newberry 
(1991) for the end log, methodologies that have accomplished the 
best results when calculating the true heights (Dyer and Bailey, 1987; 
Fabio et al., 1994). This method is based on two assumptions: a) tree 
grows at a constant rate between two sections, and b) the cut is 
made, on average, in the center of the growth in height of one 
year. The equation used to calculate the true height varies with 
the part of the tree (equations 1, 2 and 3).
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Cuadro 1. Estadísticos descriptivos de las variables medidas en las especies evaluadas.

Table 1. Descriptive statistics of the variables measured in the species tested.

  Edad Altura

Especie N Media Min Max Desv. est. N Media Min Max Desv. est.

Pinus arizonica Engelm. 685 37.9 3 139 26.6 685 9.42 0.04 30.51 7.14

Pinus durangensis Martínez 939 41.4 3 186 32.9 939 8.30 0.06 26.50 6.39

Pinua teocote Schiede ex Schltdl. & Cham. 637 36.3 3 152 26.6 637 7.74 0.09 26.60 6.00

Pinus leiophylla Schiede ex Schltdl. & Cham. 426 45.2 3 170 33.3 426 9.05 0.08 27.55 6.84

Figura 1. Localización geográfica del área de estudio.
Figure 1. Geographical location of the study area.

Estimación de las alturas verdaderas

La altura de cada sección de corta sobrestima la altura real que el 
árbol tenía a la edad que indica la sección, ya que la sección de 
corte en la troza rara vez coincide con el comienzo de un año, 
introduciendo un sesgo en los cálculos posteriores (Dyer y Bailey, 1987; 
Fabio et al., 1994).

Para solucionar este inconveniente se utilizaron el algoritmo 
de Carmean (1972) y la modificación propuesta por Newberry 
(1991) para la troza final, metodologías que han presentado los 
mejores resultados para calcular las alturas verdaderas (Dyer 
y Bailey, 1987; Fabio et al., 1994). Este método se basa en 
dos supuestos: a) el árbol crece a un ritmo constante entre dos 
secciones, y b) el corte se realiza, como media, en el centro del 

Where:
	  H

1 
and H

2
 = Heights of the lower and upper sections of

                                    the log
	  N

1 
and N
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 = Number of rings of the lower and upper

                                    section of the log 
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1
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0 
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Age of the tree when it reached the H1 height, that   

                      is N
0
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	 T= The whole number 1 to N
1
 – N

2
.

Analyzed models 

In this study, three models were fitted in the GADA format widely 
used to describe growth in terms of dominant height in relation to 
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age: Korf, Hossfeld and Bertalanffy-Richards (Barrio et al., 2006; 
Castedo et al., 2007, Vargas-Larreta et al., 2010). The expression 
of the base models and their GADA formulation are presented 
in Table 2.

Where:
	 Y  = Dominant height (m) 
	 t

i =
  Reference age or basic age (years) 

	 a
i
 = Parameters in the basic equation 

	 b
i 
= Global parameters in the dynamic equation

                   GADA (formulation) 

GADA methodology description

Many models describing the dominant height-age relationship 
are expressed as algebraic differences (ADA) methodology 
introduced in forestry by Bailey and Clutter (1974). These are based 
on being able to model the growth of a given variable with a 
family of curves based originated by an equation whose form 
is Y = f (t) with all common parameters except one, which is a 
specific parameter of the forest site, in such a way that different 
equations could be obtained for each base model, depending 
on the number of parameters contained therein.

For most base models, only one of the parameters to be estimated a1, 
..., an depends directly on the forest site conditions are common and the 
rest, which gives rise to two types of quality curves in depending 
on the nature of high-aging curves generated: i) anamorphic 
several asymptotes and ii) a single polymorphic asymptote. In 
many cases, the methodology ADA may be sufficient to model 
dominant height in relation to the age of a particular species. 
Sometimes it is necessary to generate a family of curves with 
multiple asymptotes polymorphic, so Cieszewski and Bailey (2000) 
proposed a generalization of this approach which they called method 
generalized algebraic difference equations (Generalized Algebraic 
Difference Approach, GADA), which allows that more than one 
parameter of a model depends on the quality station.

The first step of the GADA method is to select a basis equation 
and identify the parameters therein which are desired to be site 
specific. Then, it must be explicitly defined how these parameters 
change between different sites by replacing them with explicit 
functions of X (the independent variable describing hidden site 
productivity as a result of management practices, soil conditions and 
ecological factors and climate) and new parameters. Thus, the 
bi-dimensional basic equation initially selected (Y = f (t)) is expanded 
into a three dimensional equation (Y = f (t, X)) which discloses 
both transverse and longitudinal change with two independent 
variables (X t). Because X cannot be measured accurately and 
even cannot be defined in functional terms, the last step of 
the GADA methodology consists of replacing X by equivalent 
conditions to the initial which represent specific observations of 
the two observable variables t and Y (e. g. t

0
,Y

0
), so that the 

model can be defined implicitly (e. g. Y = f (t, t
0
, Y

0
)) (Cieszewski and 

crecimiento en altura de un año. La ecuación empleada para 
calcular la altura verdadera varía según la parte del árbol 
(ecuaciones 1, 2 y 3).

Tocón:						      (1)

Troza:						      (2)

Punta:						      (3)

Donde:
	  H

1 
y H

2 
=  Alturas de las secciones inferior y superior

                                de la troza
	  N

1 
y N

2
 = Número de anillos de las secciones inferior y

                              superior de la troza
	  N

0
 = Edad del árbol, es decir el número de anillos del

                        tocón (en el tocón N
0
 = N

1
) 

	 T
0
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Edad del árbol cuando alcanzó la altura H

1
, es

                     decir N
0
 - N

1

	  T =  Número entero de 1 a N
1
 – N

2
.

Modelos analizados

En el presente estudio se ajustaron tres modelos en forma GADA 
ampliamente utilizados para describir el crecimiento en altura 
dominante con relación a la edad: Korf, Hossfeld y Bertalanffy-
Richards (Barrio et al., 2006; Castedo et al., 2007; Vargas-Larreta et al., 
2010). La expresión de los modelos base así como su formulación 
GADA se presentan en el Cuadro 2.

Descripción de la metodología GADA

Muchos modelos que describen la relación altura dominante-edad 
están expresados en forma de diferencias algebraicas (ADA), 
metodología introducida en el campo forestal por Bailey y Clutter 
(1974). Estas se fundamentan en el hecho de poder modelar el 
crecimiento de una determinada variable con una familia de 
curvas originadas por una ecuación base cuya forma es Y=f(t) con 
todos los parámetros comunes excepto uno, que es un parámetro 
especifico del sitio  forestal, de forma que se podrían obtener para 
cada modelo base, diferentes ecuaciones según sea el número 
de parámetros que este contenga.
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Cuadro 2. Modelos base y su correspondiente formulación GADA ajustados en este estudio.

Table 2. Basic models and its corresponding fitted GADA formulation in this study.
Ecuación base Parámetros 

relacionados al sitio
Solución para X con valores iníciales () Ecuación dinámica

       

         

 

Donde:
Y =  Altura dominante (m),
t
i
 = Edad de referencia o edad base (años), 

a
i = 

Parámetros en la ecuación base, 
b

i
 = Parámetros globales en la ecuación dinámica

     (formulación GADA).

Para la mayoría de los modelos base, solamente uno de los 
parámetros que se va a estimar a

1
,…,a

n
 depende directamente 

de las condiciones del sitio forestal y el resto son comunes, lo 
que da lugar a dos tipos de curvas de calidad, en función de la 
naturaleza de las curvas altura-edad que generan: i) anamórficas con 
varias asíntotas y, ii) polimórficas con una única asíntota. En muchos 
casos, la metodología ADA puede ser suficiente para modelar la 
altura dominante con relación a la edad de una especie en particular. 
En otras ocasiones es necesario generar una familia de curvas 
polimórficas con múltiples asíntotas, por lo que Cieszewski y Bailey 
(2000) propusieron una generalización de esta metodología a la 
cual llamaron método de ecuaciones en diferencias algebraicas 
generalizado (Generalized Algebraic Difference Approach, 
GADA), la cual permite que más de un parámetro de un modelo 
dependa de la calidad de estación.

El primer paso de la metodología GADA es seleccionar una ecuación 
base e identificar en ella los parámetros que se desea sean específicos 
del sitio. A continuación, debe definirse de forma explícita cómo 
cambian dichos parámetros entre las diferentes estaciones 
reemplazándolos con funciones explícitas de X (una variable 
independiente oculta que describe la productividad del sitio 
como resultado de las prácticas de manejo, las condiciones del 
suelo y los factores ecológicos y climáticos) y nuevos parámetros. 

Bailey, 2000; Cieszewski, 2002). During this process redundant 
parameters are often eliminated, from which a model is obtained 
with a number of parameters less than or equal to that of the 
original base equation.

Fitting methods

The fitting procedure for the estimation of the parameters was the nested 
iterative procedure (Cieszewski, 2003) which is an invariant 
method with respect to the reference age, which has been used in 
other studies (Vargas-Larreta et al., 2010). This method estimates 
the site-specific effects and assumes that the data always contain 
measurement errors and random errors, which must be modeled 
(Diéguez-Aranda et al., 2005).

The procedure begins with the estimation of global parameters 
(b

1
, b

2
 and b

3
 in the dynamic equations of Table 2), considering the 

local parameter as a constant (Ho), which varies for each tree and 
that, initially, is assigned the average height observed at a given 
base age as a value. In the second step, the estimated values of 
the global parameters are constants and the local parameter 
(Ho) is estimated for each tree. Afterwards, the estimated value 
for each tree of the local parameter is taken as a constant 
and model is fitted to estimate global parameters again. This 
procedure is repeated successively until the global parameters are 
stabilized using as criterion that the reduction of the mean square error 
of the model between two or more consecutive iterations is less 
than 0.0001 (Larreta Vargas et al., 2010
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Statistical analysis

In the analysis of regression equations that describe the behavior 
of individuals over time (longitudinal data) it is common that errors 
are not independent (presence of autocorrelation). Autocorrelation 
leads to biased estimates of the standard errors associated with 
the parameters, which invalidates the hypothesis testing procedures 
and the estimation of the confidence interval of the parameter 
estimates. In this work an autoregressive model (CAR (x)) was used 
to correct the inherent dependence of the longitudinal data that 
were used (Gregoire et al., 1995). According to Zimmerman and 
Núñez-Antón (2001), in an x order autoregressive structure (CAR (x)) 
the error term is expanded as:

						      (7)

Where: 
H

ij
 = Prediction of the  height by using H

j
 (j height), t

i
 (i

       age) and t
j
 (j≠i aged) as predictive variables  

β = Vector of the parameters to be estimated 
e

ij
 = j-ethRresidual of the i-eeth individual 

e
ij-k

 = j-k-eth residual del i-eth individual 
I
k 
= 1 when j>k and 0 when j<k, 

                   = Continuous autorregresive parameter of the k order
         to be estimated, and h

ij
-h

ij-k
 is the distance of the j-eth to

         the j-k-esim observation in each i tree árbol, with
         h

ij
 > h

ij-k
. 

ε
ij
 = Term of the error, independent now and with the 

       zero normal mean distribution

The simultaneous fit of the growth equation and structure of the error, 
given by the autoregressive model, the procedure was performed by 
using the MODEL procedure of the SAS statistical package / ETSTM 
(SAS Institute Inc., 2004), which allows a dynamic update of the waste .

Selecting the best model

The analysis of the fitting ability of the models was based on 
numerical and graphic comparisons.  The following statistics were 
calculated: the root of the mean quadratic error (REMC for its 
acronym in Spanish) and the determination coefficient for non-linear 
regression (R2). Even if there are some objections related to the 
use of R2 in non-linear regression, the general usefulness of some global 
measure of the predictive ability of the model seems to eliminate 
some of these limitations (Ryan, 1997). The expression of such 
statistics is the following: 

		
	 (8)

De este modo, la ecuación base bidimensional inicialmente 
seleccionada (Y=f(t)) se expande en una ecuación tridimensional 
(Y=f(t,X)) que describe tanto cambios transversales como 
longitudinales con dos variables independientes (t y X). Debido 
a que X no se puede medir con precisión e incluso no se puede 
definir en términos funcionales, el último paso de la metodología 
GADA consiste en sustituir X por condiciones iniciales equivalentes 
que representan observaciones puntuales de las dos variables 
observables t e Y (e. g. t

0
, Y

0
), de manera que el modelo se 

pueda definir implícitamente (e. g. Y=f(t, t
0
, Y

0
)) (Cieszewski y Bailey, 

2000; Cieszewski, 2002). Durante este proceso a menudo se 
eliminan parámetros redundantes, de lo que se obtiene un modelo 
con un número de parámetros menor o igual el de la ecuación 
base original.

Métodos de ajuste

El procedimiento de ajuste para la estimación de los parámetros 
fue el denominado método iterativo (nested iterative procedure) 
(Cieszewski, 2003) que es un método invariante con respecto a la edad 
de referencia, el cual ha sido utilizado en otros estudios (Vargas-Larreta et 
al., 2010). Este método estima los efectos específicos del sitio y asume 
que los datos siempre contienen errores de medición y errores 
aleatorios, los cuales deben ser modelados (Diéguez-Aranda 
et al., 2005).

Este proceso comienza con la estimación de los parámetros 
globales (b

1
, b

2
 y b

3
 en las ecuaciones dinámicas del Cuadro 2), que 

considera constante el parámetro local (H
0
), mismo que varía 

para cada árbol y al que, en principio, se le asigna como valor, 
la altura media observada a una edad base determinada. En 
el segundo paso los valores estimados de los parámetros globales 
también se toman como constantes y el parámetro local (H

0
) se estima 

para cada árbol, y se ajusta una vez más el modelo empleando 
como valor inicial para los parámetros locales la altura observada 
a la mitad de la edad del árbol. Posteriormente, el valor 
estimado para cada árbol del parámetro local es una constante 
y se ajusta el modelo para estimar de nuevo los parámetros 
globales. Este procedimiento se repite sucesivamente hasta que los 
parámetros globales se estabilizan utilizando como criterio que la 
reducción del error medio cuadrático del modelo entre dos o más 
iteraciones consecutivas sea menor de 0.0001 (Vargas-Larreta 
et al., 2010).

Análisis estadístico

En el análisis de ecuaciones de regresión que describen el 
comportamiento de individuos a lo largo del tiempo (datos longitudinales) 
es frecuente que los errores no sean independientes (presencia 
de autocorrelación). La autocorrelación conlleva a estimaciones 
sesgadas de los errores estándar asociados a los parámetros, lo 
que invalida los procedimientos de contraste de hipótesis y de estimación 
de intervalos de confianza de las estimaciones de los parámetros. 

kr
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En este trabajo se utilizó un modelo autorregresivo (CAR(x)) para 
corregir la dependencia inherente a los datos longitudinales empleados 
(Gregoire et al., 1995). De acuerdo a Zimmerman y Núñez-Antón 
(2001), en una estructura autorregresiva de orden x (CAR(x)) el 
término de error se expande como:

						      (7)

Donde:
H

ij
 = Predicción de la altura  utilizando H

j
 (altura j),

       t
i
 (edad i), y t

j
 (edad j≠i) como variable predictoras 

β = Vector de parámetros a estimar 
e

ij
 = j-ésimo residuo del i-ésimo individuo 

e
ij-k

 = j-k-ésimo residuo del i-ésimo individuo 
I
k 
= 1 cuando j>k y 0 cuando j<k, 

     = Parámetro autorregresivo continuo de orden k a
       ser estimado, y h

ij
-h

ij-k
 es la distancia de la j-ésima

      a la j-k-ésima observación en cada árbol i, con
       h

ij
 > h

ij-k
. 

ε
ij
 = Término del error, ahora independiente y con

       distribución normal de media cero.

El ajuste simultáneo de la ecuación de crecimiento y de la 
estructura del error dada por el modelo autorregresivo, se realizó 
con el procedimiento MODEL del paquete estadístico SAS/ETSTM 
(SAS Institute Inc., 2004), que permite una actualización dinámica 
de los residuos.

Selección del mejor modelo

El análisis de la capacidad de ajuste de los modelos se basó en 
comparaciones numéricas y gráficas. Se calcularon los siguientes 
estadísticos: la raíz del error medio cuadrático (REMC) y el 
coeficiente de determinación para regresión no lineal (R2). 
Aunque existen varias objeciones relacionadas con el uso de la 
R2 en regresión no lineal, la utilidad general de una medida global 
de la capacidad predictiva del modelo parece anular algunas de 
esas limitaciones (Ryan, 1997). La expresión de estos estadísticos es 
la siguiente:

	 (8)

	 (9)

Donde:
 Y

i
 e        = Valores observado, estimado y promedio de

                la variable dependiente, 

	 (9)

Where:
Y

i
 and       = Observed, estimated and average values

                   of the dependent variable  
       = Total number of observations used to fit the model 
p = Number of the parameters to be estimated
             = Correlation coefficient between Y

i 
and

Among the various available graphic methods to evaluate 
the goodness of fit of the models, the following were used: i) the fitted 
curves overlap the trajectories of the heights observed over time, 
ii) representation of residuals versus the values predicted by the model 
and iii) representation of the residuals against residuals with 
different delays to prove the correction of the autocorrelation of 
the errors by means of modeling the structure of the error.

RESULTS AND DISCUSSION

Structure of the data mean 

In Figure 2 are shown the growth trajectories in heights that come 
from the stem analysis and the real structure of the mean for 
each one of the species that were studied.  In general terms, 
a fall of the mean around 100 hears occurred, even though for 
most of the species a fall was observed between 60 and 80 
years old, which means a lack of information for the best site 
qualities. The representation of the real structure of the mean is 
important because one of this falls might have an impact in the 
quality of fit from a lack of data of these ages (Álvarez-González 
et al., 2005).

Selecting the best mode

To detect autocorrelation problems between residues of the 
same tree,  models 4, 5 and 6 were fitted (Table 2) regardless of 
the structure parameters of the error autocorrelation (Pi). Table 3 
presents the parameter estimates and goodness of fit statistics obtained 
from the fit of the three base models without considering the 
structure of the error for each of the species.

The average errors (IR) obtained with the model of Korf for 
all species ranged from 0.77 (P. teocote) to 0.99 m (P. arizonica) 
(Table 3);it is worth noting that equations 5 and 6 showed similar 
IR values. For all of the species, the three models explained more 
than 94% of the variance in dominant height growth in terms of 
age, excelling in all cases Korf model (equation 4), with values 
greater than 0.98 R2, except for P. leiophylla, this model is the one 
with the best fittings, although the difference with the best for this 
species (equation 5) was minimal.
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   = Número total de observaciones utilizadas para
       ajustar el modelo 
p =  Número de parámetros a estimar y
              = Coeficiente de correlación entre Y

i 
e

Entre los diferentes métodos gráficos disponibles para la 
evaluación de la bondad de ajuste de los modelos se emplearon 
los siguientes: i) superposición de las curvas ajustadas sobre las 
trayectorias de las alturas observadas a lo largo del tiempo, 
ii) representación de los residuos frente a los valores predichos 
por el modelo, y iii) representación de los residuos frente a 
residuos con diferentes retrasos para comprobar la corrección 
de la autocorrelación de los errores mediante la modelización de 
la estructura del error.

RESULTADOS Y DISCUSIÓN

Estructura de la media de los datos

En la Figura 2 se presentan las trayectorias de crecimiento en 
altura provenientes de los análisis troncales y la estructura real 
de la media para cada una de las especies estudiadas. En 
general, existió una caída de la media en torno a los 100 años, 
aunque para la mayoría de las especies se observó entre 60 
y 80 años, lo que indica una falta de información en las mejores 
calidades de estación. La representación de la estructura real de la 
media es importante porque una caída de estas puede tener 
efecto en la calidad de los ajustes debido a la falta de datos en 
esas edades (Álvarez-González et al., 2005).

Selección del mejor modelo

Para detectar problemas de autocorrelación entre los residuos 
de un mismo árbol se realizó el ajuste de los modelos 4, 5 y 6 
(Cuadro 2) sin tener en cuenta los parámetros de la estructura 
de autocorrelación del error (Pi). El Cuadro 3 presenta las 
estimaciones de los parámetros y los estadísticos de bondad 
de ajuste obtenidos en el ajuste de los tres modelos base, sin 
considerar la estructura del error para cada una de las especies.

Los errores medios (REMC) obtenidos con el modelo de Korf para 
todas las especies osciló entre 0.77 (P. teocote) y 0.99 m (P. arizonica) 
(Cuadro 3), destacando que las ecuaciones 5 y 6 presentaron 
valores de REMC similares. Para todas las especies los tres 
modelos explicaron más del 94% de la varianza del crecimiento 
en altura dominante en función de la edad, destacando en 
todos los casos el modelo de Korf (ecuación 4), con valores de 
R2 mayores de 0.98; excepto para P. leiophylla, este modelo fue el 
que presentó los mejores ajustes, aunque la diferencia con el mejor 
para esta especie (ecuación 5) fue mínima.

Pinus teocote showed good adjustments for the three 
equations, however, the parameter b

1
 of the Korf model 

(equation 4) was non-significant, a situation that also occurred to 
P. leiophylla, for which, despite having high fit statistics, parameter 
b

2
 Korf models (Equation 4) and Bertalanffy-Richards (Equation 6) 

were not significant at the 1%.

Since the differences between the goodness of fit statistics 
were minimal, the selection of the best model was based on 
graphic analysis overlapping the quality curves generated 
with each model on the original data to compare their ability to 
describe the dominant height-age relationship (Figure 3).

The graphical comparison allows to observe that the 
Bertalanffy-Richards equation (Equation 6) describes slightly 
better individual growth trends in height, mainly at ages over 
80 years for all species. In all cases, the curves generated by 
equation 6 present more plausible asymptotic values than those 
generated with the equations 4 and 5, with which the asymptote is 
reached at a much higher age of 180 years. For example, for 
P. teocote the asymptote appears at an age of about 140 years 
with Bertalanffy-Richards model, with a value of 33 m for the 
best quality station, close to the maximum height reported for 
this species in the region (Garcia and Gonzalez, 2003), while 
from equations 4 and 5 the asymptotes are reached at heights 
of 38 and 40 m, values far above the maximum that this species 
can get.

For P. durangensis the asymptote obtained with equation 6 in 
the best quality station was 38 m, a value close to the maximum 
height reported for this species (40 m) in the state of Durango 
(García and González, 2003); in contrast, with equation 4 
(Korf), dominant height growth did not stabilize until the age of 
nearly 180 years, whereas with equation 5 (Hossfeld) the asymptote 
is reached at a height of 33 m, well below the maximum heights 
that this species can record in the best quality forests.

This analysis reinforces the point made by Diéguez-Aranda et al. 
(2006), who argue that different models can have the same statistical 
goodness of fit or comparison but a different response.

Finally, the trend of bias (Figure 4) of each model was analyzed 
in estimating the age class heights for each species.

In general, the estimation of heights with the Richards- Bertalanffy 
model describes a distribution of bias around the zero line, while 
the Korf and Hossfeld equations show a bias greater virtually 
in all age classes, primarily between 40 and 60 years and in 
younger ages.

Larreta Vargas et al. (2010) found that Bertalanffy-Richards 
model also proved to be the best to describe the height growth of 
Pinus cooperi in the region of El Salto, Durango, noting that the 
other models compared by these authors were also the Korf and 
Hossfeld. The results of this study are also consistent with those 
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Cuadro 3. Parámetros estimados y estadísticos de ajuste de los modelos evaluados sin considerar la estructura del error.
Table 3. Parameter estimates and fit statistics of the models evaluated without considering the structure of the error.

Especie Modelo Parámetro
Valor 

estimado
Error Std. 

aprox.
Valor-t

Valor-p 
aprox.

REMC R2

Pinus arizonica Engelm.

4

b
1

-45.2384 5.5961 -8.08 <.0001 0.993 0.981

b
2

257.5268 22.256 11.57 <.0001

b
3

0.7033 0.027 25.67 <.0001

5

b
1

15.3048 1.362 11.23 <.0001 0.998 0.981

b
2

19774.76 2261.8 8.74 <.0001

b
3

1.8347 0.0297 61.8 <.0001

6

b
1

0.0272 0.0009 28.7 <.0001 1.019 0.979

b
2

-1.4711 0.2099 -7.01 <.0001

b
3

11.4920 0.7209 15.94 <.0001    

Pinus durangensis Martínez

4

b
1

-106.14 12.0367 -8.82 <.0001 0.892 0.980

b
2

527.458 54.2578 9.72 <.0001

b
3

0.5397 0.0173 31.16 <.0001

5

b
1

27.7622 1.1282 24.61 <.0001 0.893 0.981

b
2

5784.998 920.7 6.28 <.0001

b
3

1.6636 0.0166 100.13 <.0001

6

b
1

0.01780 0.0005 34.06 <.0001 0.915 0.979

b
2

-2.3997 0.1571 -15.28 <.0001

b
3

14.0793 0.5295 26.59 <.0001    

Pinus leiophylla Schiede ex Schltdl. & 
Cham.

4

b
1

15.7898 0.9009 17.53 <.0001 0.956 0.980

b
2

-11.0535 4.3707 -2.53 0.0118

b
3

0.4499 0.0249 18.05 <.0001

5

b
1

15.5885 3.1504 4.95 <.0001 0.942 0.981

b
2

34262.14 5417.6 6.32 <.0001

b
3

1.6767 0.0236 71 <.0001

6

b
1

0.01542 0.0007 22.04 <.0001 0.951 0.981

b
2

0.2909 0.1681 1.73 0.044

b
3

5.0036 0.6032 8.29 <.0001    

Pinus teocote Schiede ex Schltdl. & 
Cham.

4

b
1

1.6548 1.9323 0.86 0.392 0.779 0.983

b
2

56.1622 8.5395 6.58 <.0001

b
3

0.5313 0.0211 25.24 <.0001

5

b
1

5.44732 3.2942 1.65 <.0987 0.786 0.981

b
2

29415.49 3844.1 7.65 <.0001

b
3

1.658737 0.0219 75.62 <.0001

6

b
1

0.01949 0.0007 27.91 <.0001 0.795 0.983

b
2

0.70022 0.1262 5.55 <.0001

b
3

3.5316 0.4358 8.1 <.0001    
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Figura 2. Superposición de los datos de análisis troncales y la estructura 
real de la media (línea sólida).

Figure 2. Overlapping of the data from stem analysis and the real 
structure of the mean (solid line).

Figura 3. Sobreposición de las curvas de calidad a los datos originales generadas con los 
modelos de Korf (línea discontinua), Hosffeld (línea punteada) y Bertalanffy-Richards 
(línea continua).

Figure 3. Overlay curves of the original data quality models generated with Korf (discontinuous 
line), Hosffeld (dotted line) and Bertalanffy-Richards models (solid line).
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Cuadro 4. Estimaciones de los parámetros y estadísticos de bondad de ajuste del modelo 6 integrando un modelo autorregresivo CAR(2).
Table 4. Parameter estimates and goodness-of-fit of the model 6 CAR integrated autoregressive model (2).

Modelo Especie Parámetro
Valor 

estimado
Error Std. 

Aprox.
Valor-t

Valor-p 
aprox.

REMC R2

6 Pinus arizonica Engelm.

b
1

0.022939 0.0012 18.42 <.0001 0.689 0.9907

b
2

-0.26195 0.2036 -1.29 0.1987

b
3

6.32735 0.6983 9.06 <.0001

ρ
1

0.99074 0.0046 216.56 <.0001

ρ
2

0.92689 0.0069 133.34 <.0001

6 Pinus durangensis Martínez

b
1

0.014255 0.0007 21.13 <.0001 0.639 0.9901

b
2

-2.43018 0.2156 -11.27 <.0001

b
3

13.28394 0.7262 18.29 <.0001

ρ
1

0.98941 0.0046 216.77 <.0001

ρ
2

0.93093 0.0061 152.81 <.0001

6

Pinus leiophylla Schiede ex Schltdl. & 

Cham.

b
1

0.010439 0.0009 10.86 <.0001 0.689 0.9901

b
2

-0.30258 0.2571 -1.18 0.24

b
3

5.70930 0.9203 6.2 <.0001

ρ
1

0.97515 0.0084 116.66 <.0001

ρ
2

0.94366 0.0078 121 <.0001

6

Pinus teocote Schiede ex Schltdl. & 

Cham.

b
1

0.01618 0.0010 15.99 <.0001 0.595 0.9902

b
2

0.54769 0.1654 3.31 0.001

b
3

2.68035 0.5569 4.81 <.0001

ρ
1

0.98970 0.0052 192.29 <.0001

ρ
2

0.95414 0.0056 170.97 <.0001

reported by Santiago et al. (2009). Based on the above, it was 
decided to select the Bertalanffy-Richards model for further analysis.

Modelling the error structure

After selecting the best model (equation 6), it was proceeded 
to adjust it again, by integrating a second-degree autoregressive 
model (CAR (2)) in order to correct for potential autocorrelation 
of the errors. Figure 5 shows the trend of the residual equation 6 
by adjusting regardless autocorrelation errors. After correction 
of the autocorrelation using the second-order autoregressive 
model, the trend in the residuals disappears (Figure 5).

Para Pinus teocote las tres ecuaciones mostraron buenos ajustes, 
sin embargo, el parámetro b

1
 del modelo de Korf (ecuación 4) fue 

no significativo, situación que también ocurrió para P. leiophylla, 
para la cual, a pesar de sus estadísticos de ajuste altos, el parámetro 
b

2
 de los modelos de Korf (ecuación 4) y Bertalanffy-Richards 

(ecuación 6) fueron no significativos a nivel de 1%. 

Dado que las diferencias entre los estadísticos de bondad de 
ajuste fueron mínimas, la selección del mejor modelo se apoyó en 
el análisis gráfico sobreponiendo las curvas de calidad generadas 
con cada modelo sobre los datos originales para comparar 
su capacidad para describir la relación altura dominante-edad 
(Figura 3).
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Cuadro 5. Expresión final de las ecuaciones desarrolladas.
Table 5. Final expression of the formulated equations 

Especie Bertalanffy-Richards

Pinus arizonica

(10)

Pinus durangensis

(11)

Pinus leiophylla

(12)

Pinus teocote

(13)
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The model considers autocorrelation correction of errors explains 
over 99% of the variance of height growth of all species (Table 4), with 
an average error from 0.60 (P. teocote) to 0.69 m (P. arizonica 
and P. leiophylla), values slightly lower than those obtained in 
the fit excluding the autoregressive model (Table 3), in addition to 
providing a random pattern of residuals around the zero line with 
homogeneous variance without detected no clear tendency 
(Figure 6); these results are similar to those obtained by Diéguez-Aranda 
et al. (2005), Corral-Rivas et al. (2004) and Vargas-Larreta et al. (2010).

The final expression of the equation in each species GADA 
based Bertalanffy-Richards model shown in Table 5, whereas 
in Figure 7, curves generated with the aforementioned quality 
equations (8, 9, 10 and 11) (Table 5).

Figura 4. Sesgo en las predicciones de altura estimadas con los modelos de Korf (línea discontinua), Hosffeld (línea 
punteada) y Bertalanffy-Richards (línea continua).

Figure 4. Bias in estimated height predictions with Korf (dashed line), Hosffeld (dotted line) and Bertalanffy-Richards models 
(solid line).

La comparación gráfica permite observar que la ecuación de 
Bertalanffy-Richards (ecuación 6) describe ligeramente mejor las 
tendencias individuales de crecimiento en altura, principalmente 
a edades superiores a los 80 años para las cuatro especies. 
En todos los casos, las curvas generadas con la ecuación 6 
presentan valores asintóticos más plausibles que las generadas 
con las ecuaciones 4 y 5, con las cuales la asíntota se alcanza a 
edades mucho mayores de 180 años. Por ejemplo, para P. teocote 
la asíntota se aprecia a una edad aproximada de 140 años 
con el modelo de Bertalanffy-Richards, con un valor de 33 m 
para la mejor calidad de estación, altura cercana a la máxima 
registrada para este taxon en la región (García y González, 
2003), mientras que con las ecuaciones 4 y 5 las asíntotas se 
manifiestan en a alturas de 38 y 40 m, valores muy por encima 
de los máximos que esta especie puede llegar a tener. 
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En cambio, para P. durangensis la asíntota obtenida con la 
ecuación 6 en la mejor calidad de estación fue 38 m, valor 
cercano a la altura máxima citada para esta especie (40 m) en el 
estado de Durango (García y González, 2003), en cambio con 
la ecuación 4 (Korf) el crecimiento en altura dominante no se estabilizó 
hasta una edad cercana a los 180 años, mientras que con la ecuación 5 
(Hossfeld) la asíntota se alcanza a una altura de 33 m, muy por debajo 
de las alturas máximas que esta especie puede alcanzar en las 
mejores calidades de estación.

Este análisis refuerza lo señalado por Diéguez-Aranda et al. (2006), 
quienes afirman que diferentes modelos pueden presentar los 
mismos estadísticos de bondad de ajuste o de comparación, 
pero una respuesta distinta.

Finalmente, se analizó la tendencia del sesgo (Figura 4) de 
cada modelo en la estimación de las alturas por clases de edad 
para cada especie.

En general, la estimación de alturas con el modelo de 
Bertalanffy-Richards describe una distribución del sesgo alrededor 
de la línea del cero, mientras que las ecuaciones de Korf y 
Hossfeld muestran un sesgo mayor prácticamente en todas las 
clases de edad, en particular entre los 40 y 60 años y para 
edades jóvenes.

Vargas-Larreta et al. (2010) encontraron que el modelo de 
Bertalanffy-Richards también resultó ser el mejor para describir 
el crecimiento en altura dominante de Pinus cooperi en la 
región de El Salto, Durango, destaca que los otros modelos 
comparados por estos autores fueron también el de Korf y Hossfeld. 
Los resultados del presente trabajo también son consistentes 
con los consignados por Santiago et al. (2009). Con base en lo 
anterior se decidió seleccionar el modelo de Bertalanffy-Richards 
para posteriores análisis.

Modelización de la estructura del error

Una vez seleccionado el mejor modelo (ecuación 6), se procedió 
a ajustarlo nuevamente integrando un modelo autorregresivo de 
segundo grado (CAR(2)) con la finalidad de corregir la potencial 
autocorrelación de los errores. La Figura 5 ilustra la tendencia de 
los residuales al ajustar la ecuación 6 sin tener en cuenta la 
autocorrelación de los errores. Después de la corrección de 
la autocorrelación con el modelo autorregresivo de segundo 
orden, la tendencia en los residuales desaparece (Figura 5).

El modelo que considera la corrección de la autocorrelación 
de los errores explica por encima del 99% de la varianza del 
crecimiento en altura dominante de todas las especies (Cuadro 4), con 
un error medio entre 0.60 (P. teocote) y 0.69 m (P. arizonica 
y P. leiophylla), valores ligeramente menores a los obtenidos 
en el ajuste sin considerar el modelo autorregresivo (Cuadro 3), 
además de proveer un patrón aleatorio de los residuos alrededor de 

Figura 5. Residuos frente a: residuos de la observación anterior 
(residuos LAG1) y residuos de la observación 
realizada tres mediciones antes (residuos LAG3) para 
la ecuación [6] ajustada a los datos de P. arizonica Engelm., 
P. durangensis Martínez, P. leiophylla Schiede ex Schltdl. 
& Cham. y P. teocote Schiede ex Schltdl. & Cham, 
sin considerar los parámetros autocorregresivos 
(1ª columna) y usando un modelo autorregresivo de 
orden 2 CAR (2) (2ª columna).

Figure 5. Residuals versus residues of the previous 
observation (LAG1 residuals) and residuals of the 
observation made three measurements earlier (LAG3 
residuals) to the equation [6] fitted to the data 
of P. arizonica Engelm., P. durangensis,Matínez, 
P. leiophylla  Schiede ex Schltdl. & Cham. and P. 
teocote Schiede ex Schltdl. & Cham., regardless 
of the autocorregresive parameters (1st column) 
and using an autoregressive model of a 2 CAR 
(2) order (2nd column).
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la línea del cero con varianza homogénea y sin detectarse ninguna 
tendencia clara (Figura 6); estos son resultados similares a los 
obtenidos por Diéguez-Aranda et al. (2005), Corral-Rivas et al. 
(2004) y Vargas-Larreta et al. (2010).

Es importante señalar que desde el punto de vista práctico, 
los parámetros ρ

1
 y ρ

2
, utilizados para modelar la estructura 

del error, generalmente no se utilizan (Diéguez-Aranda et al., 
2006). El propósito principal de modelar la estructura del error 
es obtener estimaciones consistentes de los parámetros, de sus 
errores estándar, y el parámetro especifico de la calidad 
de estación estimado para cada individuo se suprime de forma 
similar como en el proceso de autocorrelación (Cieszewski, 
2001), así, la altura estimada en función de su edad en un nuevo 
individuo se incorpora directamente para realizar predicciones.

Figura 6. Residuos frente a alturas predichas estimadas con la ecuación (6) considerando el modelo autorregresivo 
CAR(2).

Figure 6. Residuals versus predicted heights estimated with equation (6) considering the CAR autoregressive model (2).

It is important to note that, from a practical standpoint, ρ
1
 and 

ρ
2
 parameters, are generally not used for modelling the structure 

of the error (Diéguez-Aranda et al., 2006). The main purpose of 
modeling the error structure is to obtain consistent estimates 
of the parameters and their standard errors, and parameter 
specific quality estimate for each individual station is suppressed 
in a similar way as in the autocorrelation process (Cieszewski, 
2001); thus, the estimated height based on their age into a new 
individual is included directly to make predictions.

Where:
Y

0
 = Dominant height (m) at the t

0
 age (years)

Y = Estimated height (m) at the t age (years)
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La expresión final de la ecuación en forma GADA para 
cada especie basada en el modelo de Bertalanffy-Richards se 
muestra en el Cuadro 5, mientras que en la Figura 7, las curvas 
de calidad generadas con las mencionadas ecuaciones (8, 9, 10 
y 11) (Cuadro 5).

Donde:
		
	 Y

0
 = Altura dominante (m) a la edad t

0
 (años) 

	 Y = Altura estimada (m) a la edad t (años).

Figura 7. Curvas de calidad a la edad de referencia de 50 años para P. arizonica (arriba-izq.), P. durangensis (arriba-der.), 
P. leiophylla (abajo-izq.) y P. teocote (abajo-der.) construidas con el modelo dinámico de Bertalanffy-Richards 
ajustado con el modelo autorregresivo CAR(2).

Figure 7. Quality curves at the reference age of 50 years for P. arizonica  Engelm. (up-left), P. durangensis  Martínez 
(up-right), P. leiophylla  Schiede ex Schltdl. & Cham. (down-left) and P. teocote  Schiede ex Schltdl. & Cham. 
(down-right) built with the dynamic model of Bertalanffy-Richards fitted with the CAR(2) autoregressive model.
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CONCLUSIONS

The goodness of fit parameters showed no significant differences 
between models, however, the graphic analysis to conclude that 
the Bertalanffy-Richards model was the one that presented the 
most logical biological behavior by overlaying the site index 
curves on the original data.

The equations obtained are polymorphic with multiple 
asymptotes and invariant with respect to the reference age, and 
they also estimate directly dominant height and site index at any 
reference height and reference age.

These equations will significantly improve the current estimate 
of the productive potential of the species studied, through their 
inclusion into the existing forest management programs for the 
forest region of Santiago Papasquiaro, Durango.

End of the English version

CONCLUSIONES

Los parámetros de bondad de ajuste no mostraron diferencias 
significativas entre modelos, sin embargo, el análisis grafico permitió 
concluir que el modelo de Bertalanffy-Richards fue el que 
presentó el comportamiento biológico más lógico al sobreponer 
las curvas de índice de sitio sobre los datos originales.

Las ecuaciones obtenidas son polimórficas con múltiples asíntotas 
e invariantes con respecto a la edad de referencia, además estiman 
directamente la altura dominante y el índice de sitio a cualquier 
altura y edad de referencia.

El uso de estas ecuaciones permitirá mejorar significativamente 
la estimación actual del potencial productivo de las especies estudiadas, 
a través de su incorporación a los programas de manejo forestal 
vigentes para la región forestal de Santiago Papasquiaro, Durango.
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