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Artículo 

Estimación de parámetros forestales mediante datos de Sentinel 
2A en Pueblo Nuevo, Durango 

Estimation of forest parameters using Sentinel 2A data in Pueblo 
Nuevo, state of Durango 

Pablito Marcelo López Serrano1, Daniel José Vega Nieva2, Hugo Ramírez Aldaba2, 
Emily García Montiel2*,  José Javier Corral Rivas2

Abstract 

The temperate forests demand periodic monitoring in order to reach a sustainable management. The remote sensing makes it possible to 
indirectly generate estimates under the assumption of a statistical correlation between satellite data and forest parameters. The aim of this 
work was to estimate the basimetric area (G), the forest volume (Vta) and the aboveground biomass (W), using spectral data from the 
Sentinel 2A satellite in the San Bernardino de Milpillas Chico Community, Pueblo Nuevo, state of Durango. A correlation analysis was 
performed between mensuration information from 22 permanent plots for forest and soil research (SPIFyS) and high-resolution spectral 

information from the Sentinel 2A sensor. Subsequently, a multiple regression model was developed for each forest stand parameter. The 
highest correlation coefficient (r) was observed in the NDVI with values of 0.77, 0.68 and 0.76 for the forest parameters of Vta, G and W, 
respectively. The developed models explained 59 % of the total variance observed for Vta (RCME = m3 ha-1), 58 % for W (RCME = 39.29 
Mg ha-1) and 51% for G (RCME = 4.40 m2 ha-1). The NDVI was the main predictive variable in three models. The Sentinel 2A data with a 

resolution of 10 m in combination with mensuration information from SPIFyS showed a good capacity for mapping forest stand parameters 
in temperate forests. 

Key words: Basimetric area, aboveground biomass, permanent plots, remote sensing, Sentinel, forest volume. 

Resumen 

Los bosques templados requieren de un monitoreo periódico con el fin de lograr un manejo sustentable. Los sensores remotos permiten 
hacer estimaciones de manera indirecta bajo el supuesto de que existe una correlación estadística entre datos satelitales y parámetros 
forestales. El objetivo del presente trabajo fue estimar el área basal (G), el volumen forestal (Vta) y la biomasa forestal aérea (W) mediante 
datos espectrales del satélite Sentinel 2A en la Comunidad de San Bernardino de Milpillas Chico, Pueblo Nuevo, Durango. Se realizó un 
análisis de correlación entre información dasométrica procedente de 22 Sitios Permanentes de Investigación Forestal y de Suelos (SPIFyS) 
e información espectral de alta resolución del sensor Sentinel 2A. Posteriormente, se generó un modelo de regresión múltiple para cada 

parámetro forestal. El coeficiente de correlación (r) más alto se observó en el NDVI con valores de 0.77, 0.68 y 0.76 para los parámetros 

forestales de Vta, G y W, respectivamente. Los modelos desarrollados explicaron 59 % de la varianza total observada en el Vta 
(RCME=57.60 m3 ha-1), 58 % en W (RCME=39.29 Mg ha-1), y 51 % en G (RCME=4.40 m2 ha-1). El NDVI fue la principal variable predictiva 
en los tres modelos. Los datos de Sentinel 2A con resolución de 10 m en combinación con información dasométrica derivada de SPIFyS 
mostraron una buena capacidad para el mapeo de parámetros forestales en bosques templados. 

Palabras clave: Área basal, biomasa aérea, parcelas permanentes, sensores remotos, Sentinel, volumen 
forestal. 
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Introducción 

Los bosques templados del estado de Durango, México son la principal fuente de 

producción de madera a nivel nacional (SRNyMA, 2016). De acuerdo con Segura y 

Trincado (2003), mantener en aprovechamiento y de manera sostenida a los 

bosques requiere de información actualizada y confiable de sus recursos naturales. 

Para lograr lo anterior, es necesario realizar un monitoreo periódico de estos 

ecosistemas (Tomppo et al., 2010). En ese sentido, el estudio de variables 

dasométricas para la investigación forestal permite dar seguimiento a la dinámica y 

estructura del ecosistema forestal (Gadow et al., 2012; Hernández-Ramos et al., 

2020). Una forma de hacelo es por medio de los sitios permanentes que 

representan una base importante para obtener datos del efecto de la silvicultura en 

el crecimiento, producción y evolución de las masas forestales en lapsos cortos 

(Gadow et al., 1999). Sin embargo, dicha actividad generalmente conlleva a un 

tiempo largo de espera y altos costos para el establecimiento del arbolado y la 

colecta de información (Emborg, 1998; Toledo et al., 2011). 

La aplicación de tecnologías geoespaciales es cada vez más relevante para estimar y 

monitorear parámetros forestales en periodos cortos (Foody et al., 2003; Hall et al., 

2006; Fuchs et al., 2009; Verbesselt et al., 2010; Sobrino et al., 2019). De acuerdo 

con Herold et al. (2011) existe un particular interés en el manejo forestal del uso de 

sensores remotos para la estimación de atributos forestales, ya que favorecen la 

obtención de datos consistente, actualizada y espacialmente explícita en áreas de 

difícil acceso y con amplia cobertura. Al respecto, la estimación de parámetros 

forestales a partir de la combinación del uso de sensores remotos y de sitios de 

campo georreferenciados (sitios permanentes) se han convertido en técnicas útiles 

y confiables para estimar variables como el volumen forestal, el área basal y la 

biomasa forestal aérea (Hernández-Ramos et al., 2020; López-Serrano et al., 

2020). 
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Con base en esas tecnologías, dicha actividad se realiza de manera indirecta con el 

uso de técnicas estadísticas robustas bajo el supuesto de una alta correlación entre 

datos satelitales y datos del inventario tradicional (Aguirre-Salado et al., 2011; 

Song, 2013; Wulder et al., 2014; Acosta et al., 2017; López-Serrano et al., 2020). 

Por otro lado, la disponibilidad y el mejoramiento de las capacidades de los 

diferentes tipos de sensores ofrecen la oportunidad de desarrollar técnicas de 

análisis que maximicen las estimaciones de los parámetros forestales, con 

información veraz que proviene de sitios permanentes de investigación forestal y de 

suelo, ya que fortalecen el insumo mediante sensores remotos (Gibbons y 

Chakraborti, 2003; Barajas, 2007; Karjalainen et al., 2012; Miranda-Aragón et al., 

2013; Asner y Mascaro, 2014).  

En función de lo anterior, el objetivo del presente trabajo consistió en estimar el 

área basal (G), el volumen forestal (Vta) y la biomasa forestal aérea (W) mediante 

datos espectrales del satélite Sentinel 2A en la Comunidad Indígena San Bernardino 

de Milpillas Chico, Pueblo Nuevo, Durango. 

 

Materiales y Métodos 

Área de estudio 

El área de estudio se ubica en la Comunidad Indígena de San Bernardino de Milpillas 

Chico, ubicada en el municipio Pueblo Nuevo, Durango, México (Figura 1). La 

Comunidad cuenta con una superficie de 156 618.33 ha. Presenta climas de tipo 

cálido subhúmedo (Cw), cálido semifrío [C(E)x]; la temperatura media del mes más 

frío es de 3 ºC a 18 ºC y del mes más caliente de 6.5 ºC a 22 ºC, con una 

precipitación media anual de 1 300 mm. Los tipos de suelo presentes en el ejido son 

Regosol, Fluvisol y Cambisol, someros y pedregosos. Su intervalo altitudinal 

comprende de los 2 500 a los 2 600 m (Inegi, 2017b). El tipo de vegetación 
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corresponde a bosque de pino, en la que las especies arbóreas dominantes son 

Pinus durangensis Martínez, Pinus teocote Schltdl. & Cham., Pinus leiphylla Schltld. 

& Cham. y Pinus cooperi C.E. Blanco var. cooperi (Inegi, 2017a). 

 

 

Figura 1. Localización del área de estudio. 
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Datos de campo 

Los datos dasométricos se obtuvieron de 22 Sitios Permanentes de Investigación 

Forestal y Suelos (SPIFyS) establecidos durante el invierno del año 2009 mediante 

la metodología desarrollada por Corral-Rivas et al. (2009); y posteriormente 

remedidos en intervalos de 5 años (2014 y 2019). Los SPIFyS miden 50 × 50 m y 

se ubicaron mediante un muestreo sistemático, con una distancia promedio de 3 a 5 

km entre ellos. Para el cálculo del área basal (G), se utilizaron las técnicas de 

modelización forestal descritas por Diéguez-Aranda et al. (2005). El volumen (Vta) 

y la biomasa (W) se calcularon con las ecuaciones específicas por especie 

desarrolladas por Simental-Cano et al. (2017) y Vargas-Larreta et al. (2017), 

respectivamente. 

 

Adquisición y procesamiento de las imágenes de satélite 

Se adquirieron y procesaron tres escenas de satélite del sensor Sentinel-2A (Cuadro 

1) del servidor del Servicio Geológico de Estados Unidos (USGS-

https://glovis.usgs.gov). Dichas imágenes tienen un procesamiento de nivel 1 

(Level 1C), de las cuales solo se utilizaron las bandas del sector visible e infrarrojo, 

con la misma resolución espacial (Cuadro 2). A fin de eliminar los efectos de la 

atmósfera, se procesaron las imágenes para obtener valores de reflectancia de la 

superficie (SR-Level 2A), mediante la herramienta Sen2Cor (Casella et al., 2018) en 

Software de la Plataforma de Aplicación Sentinel 2A (SNAP) (Louis et al., 2016). 

Posteriormente, se calculó el Índice de Vegetación de Diferencia Normalizada 

(NDVI), con el propósito de contribuir con la estimación de los parámetros 

forestales. 

 

 



Emily García et al., Estimación de parámetros forestales... 

 
 

86 
 

 

NDVI = (NIR − R) / (NIR + R) 

Donde: 

NIR = Banda espectral en la región del infrarrojo cercano 

R = Banda en la región rojo 

 

Cuadro 1. Características de las imágenes del sensor Sentinel 2A, utilizadas en este 

estudio. 

Identificador Fecha de adquisición 
Cobertura de nubes 

(%) 
Agencia 

T13QDF 22/11/2019 0.02 ESA 

T13QEF 22/11/2019 0 ESA 

T13QDG 22/11/2019 4.2 ESA 
 

ESA = Agencia Espacial Europea. 

 

Cuadro 2. Características de las bandas del sensor Sentinel 2A, utilizadas en este 

estudio. 

Banda 
Longitud de 

onda (µm) 
Resolución (m) Abreviatura 

Azul 0.45 - 0.52 10 B1 

Verde 0.54 - 0.57 10 B2 

Rojo 0.65 - 0.68 10 B3 

Infrarrojo cercano 0.78 - 0.90 10 IRC 
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Análisis estadístico 

Se realizó un análisis de correlación para determinar la relación entre variables 

espectrales y parámetros forestales. Posteriormente, se ajustaron modelos de 

regresión lineal múltiple para identificar a las variables que predicen mejor los 

parámetros forestales mediante el procedimiento stepwise (selección por pasos), 

bajo la estrategia mixta; es decir, se usó una combinación de la selección forward y 

backward, con la librería MASS (Ripley, 2020), en el programa R Core Team (2020). 

El modelo utilizado fue de la forma: 

 

                           

 

Donde: 

y = Parámetro forestal por estimar 

Xn = Bandas espectrales e índice de vegetación 

βn = Coeficientes de regresión 

εi = Error aleatorio 

G, Vta y W = Variables dependientes 

Bandas B1, B2, B3 e ICR y NDVI <0 = Variables independientes 

 

Para evaluar la capacidad de ajuste del modelo se calcularon los coeficientes de 

bondad del ajuste, coeficiente de determinación ajustado (R2
Adj) y la raíz del 

cuadrado medio del error (RCME). 
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Donde: 

iy
 = Valor observado de la variable dependiente estudiada 

ˆ
iy
 = Valores predicho de la variable dependiente estudiada 

iy
 = Media de la variable dependiente estudiada 

n  = Número de observaciones totales 

p  = Número de parámetros del modelo 

 

Una vez evaluado el mejor modelo, se le utilizó para generar los mapas de cada 

parámetro forestal; para ello, se consideró solo el área de bosque templado para el 

área de estudio, con base en el uso de suelo y vegetación (Inegi, 2017a); este 

proceso se llevó a cabo mediante la librería raster (Hijmans, 2020). Enseguida, se 

generó la distribución espacial del error del modelo (residuos) de cada parámetro 

con una interpolación de Distancia Inversa Ponderada (IDW), por medio de la 

librería gstat (Pebesma, 2004). Dichos procesos se hicieron en el programa R (R 

Core Team, 2020). En la Figura 2 se muestra el diagrama de flujo de trabajo del 

presente estudio. 
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Figura 2. Flujo de trabajo utilizado en este estudio. 
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Resultados y Discusión 

Las principales estadísticas descriptivas para las variables dasométricas por 

hectárea en los sitios de estudio se resumen en el Cuadro 3. Los resultados 

muestran que en la Comunidad de San Bernardino de Milpillas Chico el área basal 

por hectárea (G) se distribuye en un intervalo de 11.23 a 34.98 m2 ha-1, con un 

valor medio de 19.82 m2 ha-1. Vta y W tuvieron valores de 97.38 a 418.62 m3 ha-1, 

y de 54.271 a 289.418 Mg ha-1, con promedios de 198.037 m3 ha-1 y 121.683 Mg 

ha-1, respectivamente. Estos resultados fueron similares a los obtenidos por 

Graciano-Ávila (2019) y López-Serrano (2020) para este tipo de bosques en la 

región del mismo municipio, Pueblo Nuevo, Durango, México. 

 

Cuadro 3. Estadísticas descriptivas de los parámetros forestales estimados en los 

22 SPIFyS evaluados. 

Variable Mínimo Máximo Media StD 

G 11.23 34.98 19.82 6.63 

Vta 97.38 418.62 198.04 97.22 

W 54.271 289.42 121.68 65.52 

G = Área basal (m2 ha-1); Vta = Volumen forestal (m3 ha-1); W = Biomasa forestal 

aérea (Mg ha-1); StD = Desviación estándar. 

 

La correlación entre G, Vta y W de cada SPIFyS con las diferentes bandas 

espectrales y NDVI se presentan en la Figura 3. El coeficiente de correlación de 

Pearson (r) varió de -0.26 a 0.77. El análisis registró una asociación negativa en las 

reflectancias de las bandas espectrales B1, B2 y B3 con los parámetros forestales; 

mientras que el IRC y el NDVI tuvieron tendencias positivas. El valor de r más alto 

se registró en el NDVI de 0.68, 0.77 y 0.76 para G, Vta y W, respectivamente; 
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comportamiento que resulta similar al publicado por diversos autores bajo el mismo 

objetivo de estimación de variables dasométricas, con distintos tipos de sensores en 

diferentes masas forestales (López-Serrano et al., 2016; Acosta et al., 2017; Dos et 

al., 2018; Hernández-Ramos et al., 2020). 

 

 

Figura 3. Coeficientes de correlación de Pearson entre variables espectrales y 

parámetros forestales. 

 

La correlación alta observada en el NDVI (r = >0.60) con cada una de las variables 

dependientes, se debe a que el NDVI tiene la capacidad de explicar la variación de 

la vegetación fotosintéticamente activa dada la combinación de reflectancia en el 

espectro verde e infrarrojo del sector electromagnético (Chuvieco, 2002; Lu et al., 

2004). Esto lo convierte en el índice de vegetación más utilizado como predictor en 

la estimación de parámetros biofísicos forestales, dada la creciente accesibilidad a la 

información espectral con resoluciones espaciales cada vez más finas (Assmann et 

al., 2020; Myers-Smith et al., 2020). 
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Los valores de los coeficientes de determinación ajustados (R2
Adj) y errores de los 

mejores modelos (RCME) para estimar los parámetros forestales en el área de 

estudio se resumen en el Cuadro 4. En la Figura 4, se ilustra la distribución de los 

residuales de los modelos. El estadístico R2
Adj de los modelos de regresión 

estimados varió de 0.51 a 0.59. En la estimación de Vta, el valor de R2
Adj fue 

ligeramente mayor, ya que el modelo logró explicar 59 % de la varianza total 

observada en ese atributo (RCME = 57.60 m3 ha-1). Sin embargo, su valor es 

ligeramente inferior al obtenido por Chrysafis et al. (2017), quienes estimaron el 

volumen forestal en ecosistemas forestales del mediterráneo, y se basaron en 

imágenes Sentinel-2, aunque en su caso calcularon un error superior al estimado en 

este trabajo (R2 = 0.63; RCME = 63.11 m3 ha-1) y Landsat 8 OLI (R2 = 0.62; RCME 

= 64.40 m3 ha−1) y RCME mayor. 
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Cuadro 4. Modelos de regresión utilizados en este estudio con sus respectivos 

estadísticos de ajuste. 

Modelo β Valor R2
Adj RCME 

                 

β0 -33.096 

0.51 4.4 β1 0.03543 

β2 65.5993 

                        

β0 -1 478.4 

0.59 57.6 
β1 1.4387 

β2 -0.3673 

β3 2 801.5 

                       

β0 -1 021.2 

0.58 39.29 
β1 0.9901 

β2 -0.2546 

β3 1 915.4 

G = Área basal (m2 ha-1); Vta = Volumen forestal (m3 ha-1); W = Biomasa forestal 

(Mg ha-1); β = Parámetros del modelo; R2
Adj = Coeficiente de determinación 

ajustado; RCME = Raíz del cuadrado medio del error. 

 

 

 

 



Emily García et al., Estimación de parámetros forestales... 

 
 

94 
 

 

 

 

Figura 4. Valores predichos frente a valores observados de los modelos 

seleccionados para la estimación de los parámetros forestales estudiados. 

 

Hu et al. (2020) estimaron el volumen forestal mediante un análisis de regresión 

lineal múltiple (R2 = 0.49; RCME = 70.22 m3 ha-1), basado en las variables 

derivadas de Sentinel-2, en los bosques de la provincia de Hunan, China. 
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En el caso particular de México, estos resultados fueron superiores a los de 

Hernández-Ramos et al. (2020), quienes calcularon el volumen (R2
Adj = 0.32; RCME 

= 68.39 m3 ha-1), el área basal (R2
Adj = 0.28; RCME = 7.64 m2 ha-1) y la biomasa 

(R2
Adj = 0.32; RCME = 35.65 Mg ha-1), bajo una técnica estadística de regresión 

lineal múltiple, en diferentes ecosistemas de selvas mediante la combinación de 

información espectral de media resolución (Landsat) e información derivada del 

Inventario Nacional Forestal y de Suelos (INFyS) de Quintana Roo. 

Por otra parte, Torres-Vivar et al. (2017) calcularon el Vta (R2
Adj = 0.66; RCME = 

62.3 m3 ha-1), G (R2
Adj = 0.66; RCME = 5.82 m2 ha-1) y W (R2

Adj = 0.66; RCME = 32 

Mg ha-1) en bosques de coníferas en el estado de Hidalgo, a partir de un análisis de 

regresión múltiple y datos del sensor de alta resolución SPOT 6. Bajo el mismo 

esquema, en ecosistemas de selva baja caducifolia y con datos de media resolución 

(Landsat) en el Estado de México, Acosta et al. (2017) determinaron valores del 

RCME para Vta de 13.18 m3 ha-1(R2
Adj = 0.66), mientras que para G un valor de 

3.30 m2 ha-1 (R2
Adj = 0.52) y para W 5.91 Mg ha-1 (R2

Adj = 0.60); cifras que fueron 

superiores a las del presente trabajo. 

Dicha variación en los resultados del RCME y R2
Adj en la estimación y monitoreo de 

la vegetación con sensores remotos podrían atribuirse a la resolución espacial de las 

imágenes, a las condiciones ambientales prevalecientes durante su toma, e incluso 

al tipo de vegetación en cada estudio de caso (López-Serrano et al., 2016; Torres-

Rojas et al.,2016; Hawryło et al., 2018; Pham et al., 2019; Hernández-Ramos et 

al., 2020; López-Serrano et al., 2020). 

Finalmente, una vez seleccionado el mejor modelo se generaron los mapas para 

cada parámetro forestal estudiado y se graficó la distribución espacial del error de 

dicho modelo (Figura 5). Para el caso del G la distribución espacial en el área de 

estudio varió de 0 a 40 m2 ha-1, para el Vta de 0 a 500 m3 ha-1 y W de 0 a 300 Mg 
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ha-1. Estos mapas representan un esquema de la distribución del recurso forestal 

que se pueden integrar al plan de manejo forestal para mejorar su gestión. 
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Figura 5. Estimación espacial y distribución espacial del error de G, Vta y W en los 

bosques de la Comunidad Indígena de San Bernardino de Milpillas Chico. 
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Conclusiones 

 

La generación de modelos de regresión permitió estimar de manera indirecta el G, 

el Vta y la W mediante información espectral derivada del sensor Sentinel 2A e 

información dasométrica derivada de SPIFyS. El índice de vegetación NDVI es la 

variable espectral que presenta mayor correlación con los parámetros forestales 

estudiados (0.68-0.77). Las imágenes de alta resolución del sensor Sentinel 2A son 

una herramienta útil para el mapeo de parámetros forestales en bosques templados 

a nivel regional. 
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