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Abstract

The temperate forests demand periodic monitoring in order to reach a sustainable management. The remote sensing makes it possible to
indirectly generate estimates under the assumption of a statistical correlation between satellite data and forest parameters. The aim of this
work was to estimate the basimetric area (G), the forest volume (Via) and the aboveground biomass (W), using spectral data from the
Sentinel 2A satellite in the San Bemardino de Mipillas Chico Community, Pueblo Nuevo, state of Durango. A correlation analysis was
performed between mensuration information from 22 permanent plots for forest and soil research (SPIFyS) and high-resolution spectral
information from the Sentinel 2A sensor. Subsequently, a multiple regression model was developed for each forest stand parameter. The
highest correlation coeffident (r) was observed in the NDVI with values of 0.77, 0.68 and 0.76 for the forest parameters of Wa, G and W,
respedtively. The developed models explained 59 % of the total variance observed for Vta (RCME = m3ha't), 58 % for W (RCME = 39.29
Mg ha) and 51% for G (RCME = 4.40 m?ha). The NDVI was the main predictive variable in three models. The Sentinel 2A data with a
resolution of 10 m in combination with mensuration information from SPIFyS showed a good capadity for mapping forest stand parameters
in temperate forests.
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Resumen

Los bosques templados requieren de un monitoreo periddico con el fin de lograr un manejo sustentable. Los sensores remotos permiten
hacer estimadiones de manera indirecta bajo el supuesto de que existe una correladdn estadistica entre datos satelitales y parémetros
forestales. El objetivo del presente trabajo fue estimar el area basal (G), el volumen forestal (Vta) y la biomasa forestal aérea (W) mediante
datos espedrales del satélite Sentinel 2A en la Comunidad de San Bemardino de Milpillas Chico, Pueblo Nuevo, Durango. Se realizd un
andlisis de correladdn entre informaddn dasométrica procedente de 22 Sitios Permanentes de Investigadon Forestal y de Suelos (SPIFyS)
e informadon espectral de alta resoludon del sensor Sentinel 2A. Posteriormente, se generd un modelo de regresion mltiple para cada
parametro forestal. El coefidente de correlacidn (r) mas alto se observo en el NDVI con valores de 0.77, 0.68 y 0.76 para los parametros
forestales de Wia, G y W, respedivamente. Los modelos desarrollados explicaron 59 % de la varianza total observada en el Via
(RCME=57.60 m*ha), 58 % en W (RCMF=39.29 Mg ha), y 51 % en G (RCME=4.40 m*ha™). El NDVI fue la principal variable predictiva
en los tres modelos. Los datos de Sentinel 2A con resoludén de 10 m en combinadén con informadén dasométrica derivada de SPIFyS
mostraron una buena capaddad para el mapeo de parametros forestales en bosques templados.

Palabras clave: Area basal, biomasa aérea, parcelas permanentes, sensores remotos, Sentinel, volumen
forestal.
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Introduccion

Los bosques templados del estado de Durango, México son la principal fuente de
produccién de madera a nivel nacional (SRNyMA, 2016). De acuerdo con Segura y
Trincado (2003), mantener en aprovechamiento y de manera sostenida a los
bosques requiere de informacién actualizada y confiable de sus recursos naturales.
Para lograr lo anterior, es necesario realizar un monitoreo periédico de estos
ecosistemas (Tomppo et al., 2010). En ese sentido, el estudio de variables
dasométricas para la investigacion forestal permite dar seguimiento a la dinamica y
estructura del ecosistema forestal (Gadow et al., 2012; Hernandez-Ramos et al.,
2020). Una forma de hacelo es por medio de los sitios permanentes que
representan una base importante para obtener datos del efecto de la silvicultura en
el crecimiento, produccién y evolucion de las masas forestales en lapsos cortos
(Gadow et al., 1999). Sin embargo, dicha actividad generalmente conlleva a un
tiempo largo de espera y altos costos para el establecimiento del arbolado y la

colecta de informacién (Emborg, 1998; Toledo et al., 2011).

La aplicacién de tecnologias geoespaciales es cada vez mas relevante para estimar y
monitorear parametros forestales en periodos cortos (Foody et al., 2003; Hall et al.,
2006; Fuchs et al., 2009; Verbesselt et al., 2010; Sobrino et al., 2019). De acuerdo
con Herold et al. (2011) existe un particular interés en el manejo forestal del uso de
sensores remotos para la estimacion de atributos forestales, ya que favorecen la
obtencidn de datos consistente, actualizada y espacialmente explicita en areas de
dificil acceso y con amplia cobertura. Al respecto, la estimacién de parametros
forestales a partir de la combinacion del uso de sensores remotos y de sitios de
campo georreferenciados (sitios permanentes) se han convertido en técnicas utiles
y confiables para estimar variables como el volumen forestal, el area basal y la
biomasa forestal aérea (Hernandez-Ramos et al., 2020; Lépez-Serrano et al.,
2020).
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Con base en esas tecnologias, dicha actividad se realiza de manera indirecta con el
uso de técnicas estadisticas robustas bajo el supuesto de una alta correlacién entre
datos satelitales y datos del inventario tradicional (Aguirre-Salado et al., 2011;

Song, 2013; Wulder et al., 2014; Acosta et al., 2017; Lopez-Serrano et al., 2020).

Por otro lado, la disponibilidad y el mejoramiento de las capacidades de los
diferentes tipos de sensores ofrecen la oportunidad de desarrollar técnicas de
analisis que maximicen las estimaciones de los parametros forestales, con
informacion veraz que proviene de sitios permanentes de investigacion forestal y de
suelo, ya que fortalecen el insumo mediante sensores remotos (Gibbons y
Chakraborti, 2003; Barajas, 2007; Karjalainen et al., 2012; Miranda-Aragén et al.,
2013; Asner y Mascaro, 2014).

En funcién de lo anterior, el objetivo del presente trabajo consistid en estimar el
area basal (G), el volumen forestal (Vta) y la biomasa forestal aérea (W) mediante
datos espectrales del satélite Sentinel 2A en la Comunidad Indigena San Bernardino

de Milpillas Chico, Pueblo Nuevo, Durango.

Materiales y Métodos

Area de estudio

El area de estudio se ubica en la Comunidad Indigena de San Bernardino de Milpillas
Chico, ubicada en el municipio Pueblo Nuevo, Durango, México (Figura 1). La
Comunidad cuenta con una superficie de 156 618.33 ha. Presenta climas de tipo
calido subhumedo (Cw), calido semifrio [C(E)x]; la temperatura media del mes mas
frio es de 3 °C a 18 °C y del mes mas caliente de 6.5 °C a 22 °C, con una
precipitacion media anual de 1 300 mm. Los tipos de suelo presentes en el ejido son
Regosol, Fluvisol y Cambisol, someros y pedregosos. Su intervalo altitudinal

comprende de los 2 500 a los 2 600 m (Inegi, 2017b). El tipo de vegetacién
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corresponde a bosque de pino, en la que las especies arbéreas dominantes son
Pinus durangensis Martinez, Pinus teocote Schlitdl. & Cham., Pinus leiphylla Schitld.

& Cham. y Pinus cooperi C.E. Blanco var. cooperi (Inegi, 2017a).
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Figura 1. Localizacién del area de estudio.
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Datos de campo

Los datos dasométricos se obtuvieron de 22 Sitios Permanentes de Investigacion
Forestal y Suelos (SPIFyS) establecidos durante el invierno del afio 2009 mediante
la metodologia desarrollada por Corral-Rivas et al. (2009); y posteriormente
remedidos en intervalos de 5 afios (2014 y 2019). Los SPIFyS miden 50 x 50 m y
se ubicaron mediante un muestreo sistematico, con una distancia promedio de 3 a 5
km entre ellos. Para el calculo del drea basal (G), se utilizaron las técnicas de
modelizacidn forestal descritas por Diéguez-Aranda et al. (2005). El volumen (Vta)
y la biomasa (W) se calcularon con las ecuaciones especificas por especie
desarrolladas por Simental-Cano et al. (2017) y Vargas-Larreta et al. (2017),

respectivamente.

Adquisicion y procesamiento de las imagenes de satélite

Se adquirieron y procesaron tres escenas de satélite del sensor Sentinel-2A (Cuadro
1) del servidor del Servicio Geoldgico de Estados Unidos (USGS-
https://glovis.usgs.gov). Dichas imagenes tienen un procesamiento de nivel 1
(Level 1C), de las cuales solo se utilizaron las bandas del sector visible e infrarrojo,
con la misma resolucién espacial (Cuadro 2). A fin de eliminar los efectos de la
atmosfera, se procesaron las imagenes para obtener valores de reflectancia de la
superficie (SR-Level 2A), mediante la herramienta Sen2Cor (Casella et al., 2018) en
Software de la Plataforma de Aplicacién Sentinel 2A (SNAP) (Louis et al., 2016).
Posteriormente, se calculé el indice de Vegetacion de Diferencia Normalizada
(NDVI), con el propésito de contribuir con la estimacién de los parametros

forestales.
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NDVI = (NIR — R) / (NIR + R)
Donde:
NIR = Banda espectral en la region del infrarrojo cercano

R = Banda en la region rojo

Cuadro 1. Caracteristicas de las imagenes del sensor Sentinel 2A, utilizadas en este

estudio.

Identificador Fecha de adquisicion ::c::)ertura de nubes Agencia
T13QDF 22/11/2019 0.02 ESA
T13QEF 22/11/2019 0 ESA
T13QDG 22/11/2019 4.2 ESA

ESA = Agencia Espacial Europea.

Cuadro 2. Caracteristicas de las bandas del sensor Sentinel 2A, utilizadas en este

estudio.

Longitud de .. .

Banda Resolucion (m) Abreviatura
onda (pm)

Azul 0.45 - 0.52 10 Bl

Verde 0.54 - 0.57 10 B2

Rojo 0.65 - 0.68 10 B3

Infrarrojo cercano 0.78 - 0.90 10 IRC
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Analisis estadistico

Se realizd un analisis de correlacién para determinar la relacién entre variables
espectrales y parametros forestales. Posteriormente, se ajustaron modelos de
regresion lineal multiple para identificar a las variables que predicen mejor los
parametros forestales mediante el procedimiento stepwise (seleccidn por pasos),
bajo la estrategia mixta; es decir, se usé una combinacién de la seleccién forward y

backward, con la libreria MASS (Ripley, 2020), en el programa R Core Team (2020).

El modelo utilizado fue de la forma:

y = BO + B1X1 + ﬁ2X2+ +ﬁan + gj

Donde:
y = Parametro forestal por estimar
Xn = Bandas espectrales e indice de vegetacion

Bn

g = Error aleatorio

Coeficientes de regresién

G, Vta y W = Variables dependientes

Bandas B1, B2, B3 e ICR y NDVI <0 = Variables independientes

Para evaluar la capacidad de ajuste del modelo se calcularon los coeficientes de
bondad del ajuste, coeficiente de determinacién ajustado (R%ag) y la raiz del
cuadrado medio del error (RCME).
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Donde:
Yi = valor observado de la variable dependiente estudiada

Yi = valores predicho de la variable dependiente estudiada

=<
Il

Media de la variable dependiente estudiada
N = NUmero de observaciones totales

P = NUmero de pardmetros del modelo

Una vez evaluado el mejor modelo, se le utilizd para generar los mapas de cada
parametro forestal; para ello, se considerd solo el drea de bosque templado para el
area de estudio, con base en el uso de suelo y vegetacion (Inegi, 2017a); este
proceso se llevd a cabo mediante la libreria raster (Hijmans, 2020). Enseguida, se
genero la distribucidn espacial del error del modelo (residuos) de cada parametro
con una interpolacidon de Distancia Inversa Ponderada (IDW), por medio de la
libreria gstat (Pebesma, 2004). Dichos procesos se hicieron en el programa R (R
Core Team, 2020). En la Figura 2 se muestra el diagrama de flujo de trabajo del

presente estudio.
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Figura 2. Flujo de trabajo utilizado en este estudio.
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Resultados y Discusion

Las principales estadisticas descriptivas para las variables dasométricas por
hectarea en los sitios de estudio se resumen en el Cuadro 3. Los resultados
muestran que en la Comunidad de San Bernardino de Milpillas Chico el area basal
por hectarea (G) se distribuye en un intervalo de 11.23 a 34.98 m?ha™, con un
valor medio de 19.82 m?ha™l. Vta y W tuvieron valores de 97.38 a 418.62 m®ha'},
y de 54.271 a 289.418 Mg ha™, con promedios de 198.037 m®ha!y 121.683 Mg
ha'!, respectivamente. Estos resultados fueron similares a los obtenidos por
Graciano-Avila (2019) y Lopez-Serrano (2020) para este tipo de bosques en la

region del mismo municipio, Pueblo Nuevo, Durango, México.

Cuadro 3. Estadisticas descriptivas de los parametros forestales estimados en los
22 SPIFyS evaluados.

Variable Minimo Maximo Maedia StD
G 11.23 34.98 19.82 6.63
Vta 97.38 418.62 198.04 97.22
w 54.271 289.42 121.68 65.52

G = Area basal (m?ha?); Vta = Volumen forestal (m3ha™); W = Biomasa forestal

aérea (Mg ha™); StD = Desviacidn estandar.

La correlacion entre G, Vta y W de cada SPIFyS con las diferentes bandas
espectrales y NDVI se presentan en la Figura 3. El coeficiente de correlacion de
Pearson (r) varid de -0.26 a 0.77. El analisis registré una asociacidon negativa en las
reflectancias de las bandas espectrales B1, B2 y B3 con los parametros forestales;
mientras que el IRC y el NDVI tuvieron tendencias positivas. El valor de r mas alto
se registro en el NDVI de 0.68, 0.77 y 0.76 para G, Vta y W, respectivamente;
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comportamiento que resulta similar al publicado por diversos autores bajo el mismo
objetivo de estimacién de variables dasométricas, con distintos tipos de sensores en
diferentes masas forestales (LOpez-Serrano et al., 2016; Acosta et al., 2017; Dos et
al., 2018; Hernandez-Ramos et al., 2020).

B1 B2 B3 IRC NDVI G Via W

B1 1 0.92 092 -022 (-089 -048 -058 -0.58
0.8

B2 1 | 094 016 072 -026 -044 -0.44 06

B3 1 004 -085 -043 -059 -0.59 04

0.2

IRC 1 0.48 0.54 0.42 041

NDVI 1 0.68 0.77 0.76
-0.2

G 1 09 087 04
Va1 1 0.6
-0.8

w1

Figura 3. Coeficientes de correlacidon de Pearson entre variables espectrales y

parametros forestales.

La correlacion alta observada en el NDVI (r = >0.60) con cada una de las variables
dependientes, se debe a que el NDVI tiene la capacidad de explicar la variacién de
la vegetacidn fotosintéticamente activa dada la combinacién de reflectancia en el
espectro verde e infrarrojo del sector electromagnético (Chuvieco, 2002; Lu et al.,
2004). Esto lo convierte en el indice de vegetacién mas utilizado como predictor en
la estimacion de parametros biofisicos forestales, dada la creciente accesibilidad a la
informacion espectral con resoluciones espaciales cada vez mas finas (Assmann et
al., 2020; Myers-Smith et al., 2020).
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Los valores de los coeficientes de determinacidon ajustados (RZAdj) y errores de los
mejores modelos (RCME) para estimar los parametros forestales en el area de
estudio se resumen en el Cuadro 4. En la Figura 4, se ilustra la distribucion de los
residuales de los modelos. El estadistico RZAdj de los modelos de regresidn
estimados vario de 0.51 a 0.59. En la estimacién de Vta, el valor de RZAdJ- fue
ligeramente mayor, ya que el modelo logrd explicar 59 % de la varianza total
observada en ese atributo (RCME = 57.60 m?ha™). Sin embargo, su valor es
ligeramente inferior al obtenido por Chrysafis et al. (2017), quienes estimaron el
volumen forestal en ecosistemas forestales del mediterraneo, y se basaron en
imagenes Sentinel-2, aunque en su caso calcularon un error superior al estimado en
este trabajo (R? = 0.63; RCME = 63.11 m>ha™) y Landsat 8 OLI (R? = 0.62; RCME
= 64.40 m>ha™') y RCME mayor.
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Cuadro 4. Modelos de regresion utilizados en este estudio con sus respectivos

estadisticos de ajuste.

Modelo B Valor R?%u4 RCME
Bo -33.096
B> 65.5993
Bo -1478.4
B 1.4387
B> -0.3673
B3 2 801.5
Bo -1 021.2
B: 0.9901
W =By + 1B3 + ,ICR + B3sNDVI 0.58 39.29
B2 -0.2546
B3 1915.4

G = Area basal (m?ha); Vta = Volumen forestal (m3ha™); W = Biomasa forestal

(Mg ha™); B = Pardmetros del modelo; RZAdJ- = Coeficiente de determinacién

ajustado; RCME = Raiz del cuadrado medio del error.
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Figura 4. Valores predichos frente a valores observados de los modelos

seleccionados para la estimacion de los parametros forestales estudiados.

Hu et al. (2020) estimaron el volumen forestal mediante un analisis de regresion
lineal multiple (R = 0.49; RCME = 70.22 m*>ha™!), basado en las variables

derivadas de Sentinel-2, en los bosques de la provincia de Hunan, China.
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En el caso particular de México, estos resultados fueron superiores a los de
Hernandez-Ramos et al. (2020), quienes calcularon el volumen (R? agi = 0.32; RCME
= 68.39 m>hal), el drea basal (R? adi = 0.28; RCME = 7.64 m?ha™) y la biomasa
(R%447 = 0.32; RCME = 35.65 Mg ha™'), bajo una técnica estadistica de regresion
lineal multiple, en diferentes ecosistemas de selvas mediante la combinacién de
informacion espectral de media resolucion (Landsat) e informacion derivada del

Inventario Nacional Forestal y de Suelos (INFyS) de Quintana Roo.

Por otra parte, Torres-Vivar et al. (2017) calcularon el Vta (R%as = 0.66; RCME =
62.3 m>ha™'), G (R%q4= 0.66; RCME = 5.82 m?ha™) y W (R%g; = 0.66; RCME = 32
Mg ha!) en bosques de coniferas en el estado de Hidalgo, a partir de un andlisis de
regresion multiple y datos del sensor de alta resolucion SPOT 6. Bajo el mismo
esquema, en ecosistemas de selva baja caducifolia y con datos de media resolucion
(Landsat) en el Estado de México, Acosta et al. (2017) determinaron valores del
RCME para Vta de 13.18 m> ha'(R%q4 = 0.66), mientras que para G un valor de
3.30 m?ha™ (R%q = 0.52) y para W 5.91 Mg ha™ (R%44 = 0.60); cifras que fueron

superiores a las del presente trabajo.

Dicha variacién en los resultados del RCME y R?44; en la estimacién y monitoreo de
la vegetacidn con sensores remotos podrian atribuirse a la resolucion espacial de las
imagenes, a las condiciones ambientales prevalecientes durante su toma, e incluso
al tipo de vegetacidon en cada estudio de caso (Lopez-Serrano et al., 2016; Torres-
Rojas et al.,2016; Hawryto et al., 2018; Pham et al., 2019; Hernandez-Ramos et
al., 2020; Lopez-Serrano et al., 2020).

Finalmente, una vez seleccionado el mejor modelo se generaron los mapas para
cada parametro forestal estudiado y se graficé la distribucion espacial del error de
dicho modelo (Figura 5). Para el caso del G la distribucion espacial en el area de
estudio varié de 0 a 40 m? ha', para el Vta de 0 a 500 m> ha' y W de 0 a 300 Mg
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ha™l. Estos mapas representan un esquema de la distribuciéon del recurso forestal

gue se pueden integrar al plan de manejo forestal para mejorar su gestion.
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Conclusiones

La generacion de modelos de regresion permitid estimar de manera indirecta el G,
el Vta y la W mediante informacidon espectral derivada del sensor Sentinel 2A e
informacion dasométrica derivada de SPIFyS. El indice de vegetacion NDVI es la
variable espectral que presenta mayor correlacion con los parametros forestales
estudiados (0.68-0.77). Las imagenes de alta resolucién del sensor Sentinel 2A son
una herramienta util para el mapeo de parametros forestales en bosques templados

a nivel regional.
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