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Abstract

T    imely identification of phytosanitary problems in agricultural crops is essential to reduce 
production losses. Artificial intelligence algorithms facilitate their rapid and reliable 
identification. In this research, three learning classifiers, namely random forest (RF), support 

vector machine (SVM) and multilayer perceptron (MLP), were evaluated to identify three target 
classes (healthy fruit, anthracnose [Colletotrichum spp.] and scab [Sphaceloma perseae]) from digital 
fruit images. Two color descriptor extraction techniques (region selection and image subsampling) 
were compared with the RF classifier, and an overall classification accuracy (ACC) of 98±0.03 % with 
region selection and 84±0.08 % with subsampling was obtained. Subsequently, the classifiers were 
evaluated with color descriptors extracted with region selection. RF and MLP were superior to SVM, 
with an ACC of 98±0.03 %. Scab and anthracnose were identified with an F1 score of 98 %. The high 
performance of the classifiers shows the potential for applying artificial intelligence paradigms to 
identify phytosanitary problems in agricultural crops.

Resumen

La identificación oportuna de problemas fitosanitarios en cultivos agrícolas es esencial para 
reducir pérdidas de producción. Los algoritmos de inteligencia artificial facilitan su identificación 
rápida y confiable. En esta investigación, se evaluaron tres clasificadores de aprendizaje: bosque 

aleatorio (RF), máquina de soporte vectorial (SVM) y perceptrón multicapa (MLP), para identificar 
tres clases objetivo (frutos sanos, antracnosis [Colletotrichum spp.] y roña [Sphaceloma perseae]) a partir 
de imágenes digitales de frutos. Se compararon dos técnicas de extracción de descriptores de color 
(selección por región y submuestreo de imágenes) con el clasificador RF, y se obtuvo una precisión 
global de clasificación (ACC) de 98±0.03 % con selección por región, y de 84±0.08 % con submuestreo. 
Posteriormente, los clasificadores se evaluaron con descriptores de color extraídos con selección por 
región. RF y MLP fueron superiores a SVM, con una ACC de 98±0.03 %. La roña y la antracnosis se 
identificaron con un puntaje F1 de 98 %. El alto desempeño de los clasificadores muestra el potencial 
de aplicación de los paradigmas de inteligencia artificial para identificar problemas fitosanitarios en 
cultivos agrícolas.
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Introduction

Mexico is the world’s leading producer and exporter 
of avocado, with production exceeding two million 
tons in 2021 (Servicio de Información Agroalimentaria 
y Pesquera [SIAP], 2022); however, postharvest loss is 
a factor that affects marketing and food security. Two 
fungal diseases of commercial interest are reported in 
avocado fruit: scab (Sphaceloma perseae) and anthracnose 
(Colletotrichum spp.). Improper management of avocado 
orchards can cause losses of more than 70 % before 
harvest, and total postharvest losses if environmental and 
biological conditions exist for the development of these 
diseases (Téliz & Mora, 2019). Early detection of phyto- 
sanitary problems is an essential step to ensure food 
safety. In the literature, automatic systems with the 
ability to detect diseases in plant species based on  
digital images have been proposed (Saleem, Potgieter,  
& Arif, 2019).

The machine learning (ML) paradigm is widely used to 
detect diseases. A basic task in ML is the supervised clas-
sification or prediction of a discrete response variable. 
Input data are associated with each target class to form 
a training set, and the model learns to predict the target 
classes on an unseen data set (Ketkar & Moolayil, 2021).

In agriculture, different studies have been conducted 
using ML algorithms for automatic disease detection in 
plants. Among the paradigms applied are the support 
vector machine (SVM) (Sandhya, Balasundaram, & Arun-
kumar, 2022), random forest (RF) (Srinivasa, Venkata, 
Anusha, Sai, & Bhanu, 2022) and multilayer perceptron 
(MLP) (Chen, Dewi, Huang, & Caraka, 2020). These al-
gorithms have been applied to different plant organs, 
such as leaves, roots, or fruits (Doh et al., 2019). 

A deep learning classifier allows automatic feature 
extraction from an input dataset and reduces user error 
for feature selection. In general, high overall classification 
accuracy levels are achieved with this approach when 
large datasets are available. In agriculture, this has been 
used in disease identification, crop classification, and 
yield prediction (Alzubaidi et al., 2021).

The aim of this research was to identify anthracnose-
infected, scab-infected and healthy fruits (three target 
classes) by means of three machine learning models 
(RF, SVM and MLP) and extracted chromatic descriptors 
(region selection [BD1] and image subsampling [BD2]) 
from digital avocado fruit images. 

Materials and methods

Database

The set of avocado fruit images used in this study (30 
per target class) were selected with different disease 

Introducción

México es el principal productor y exportador de 
aguacate del mundo, con una producción superior 
a dos millones de toneladas en 2021 (Servicio de 
Información Agroalimentaria y Pesquera [SIAP], 2022); 
sin embargo, la pérdida en poscosecha es un factor que 
afecta la comercialización y la seguridad alimentaria. 
En los frutos de aguacate se reporta la presencia de dos 
enfermedades fungosas de interés comercial: la roña 
(Sphaceloma perseae) y la antracnosis (Colletotrichum spp.). 
El manejo inadecuado de los huertos de aguacate puede 
ocasionar pérdidas superiores a 70 % antes de la cosecha, 
y pérdidas totales en poscosecha si existen condiciones 
ambientales y biológicas para el desarrollo de estas 
enfermeda-des (Téliz & Mora, 2019). La detección 
temprana de problemas fitosanitarios es una etapa 
esencial para garantizar la seguridad alimentaria. En 
la literatura, se han propuesto sistemas automáticos 
con capacidad para detectar enfermedades en especies 
vegetales con base en imágenes digitales (Saleem, 
Potgieter, & Arif, 2019).

El paradigma de aprendizaje automático (ML, machine 
learning) es ampliamente utilizado para detectar 
enfermedades. Una tarea básica en ML es la clasificación 
o predicción supervisada de una variable respuesta 
discreta. Los datos de entrada se asocian con cada clase 
objetivo para formar un conjunto de entrenamiento, y 
el modelo aprende a predecir las clases objetivo sobre 
un conjunto de datos no vistos (Ketkar & Moolayil, 2021).

En la agricultura, se han reportado diferentes trabajos 
que utilizan algoritmos de ML para la detección 
automática de enfermedades en plantas. Entre los 
paradigmas aplicados se tienen los algoritmos máquina 
de soporte vectorial (SVM, support vector machine) (Sandhya, 
Balasundaram, & Arunkumar, 2022), bosque aleatorio  
(RF, random forest) (Srinivasa, Venkata, Anusha, Sai, & 
Bhanu, 2022) y perceptrón multicapa (MLP, multilayer 
perceptron) (Chen, Dewi, Huang, & Caraka, 2020). Estos 
algoritmos se han aplicado a diferentes órganos de la 
planta, como hojas, raíces o frutos (Doh et al., 2019).

Un clasificador de aprendizaje profundo (deep learning) 
permite la extracción automática de características a 
partir de un conjunto de datos de entrada, y reduce 
el error del usuario para la selección de éstas. En 
general, con este enfoque se alcanzan altos niveles de 
precisión global de clasificación cuando se dispone 
de grandes conjuntos de datos. En la agricultura, esto 
se ha utilizado en la identificación de enfermedades, 
clasificación de cultivos y predicción de rendimientos 
(Alzubaidi et al., 2021).

El objetivo de esta investigación fue identificar frutos 
infectados con antracnosis, con roña y frutos sanos 
(tres clases objetivo) por medio de tres modelos de 
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levels from a database with 569 digital images of 256 x 
256 pixels in size, belonging to avocado fruits of the 
Fuerte variety reported in a previous study (Campos-
Ferreira & González-Camacho, 2021) (https://www.
kaggle.com/datasets/camposfe1/clasifiacin-de-enfer-
medades-del-aguacatero).

Images of the fruits were captured in the laboratory 
under homogeneous lighting conditions. The target 
classes were healthy fruits (H), scab (S, Sphaceloma 
perseae) and anthracnose (A, Colletotrichum spp.). Fruits 
were obtained in the municipalities of Ocuituco (18° 
51’ 47.6” NL and 98° 46’ 49.1” WL) and Tetela del Volcán 
(18° 53’ 36.3” NL and 98° 43’ 47.7” WL) in the state of 
Morelos. Fuerte variety fruits, when ripe, are green, 
which allows contrasting the lesions caused by the two 
diseases mentioned (Figure 1).

Software and hardware

Python programming language ver. 3.9 was used as  
the programming platform, and the scikit-learn ver. 1.0.2 
library was used to implement the machine learning 
classifiers. Training and validation of the classifiers were 
performed in Spyder development environment ver. 
4.2.1 and the MacOs Monterey (12.6) operating system on 
a Mac mini (Apple) computer, which uses an ARM (M1) 
chip with 3.2 GHz processing speed and 8 GB of RAM.

Image processing

The set of images represented with the RGB (red, 
blue and green) color model was transformed to the 
HSV (hue, saturation and value) color model. This is 
because the HSV representation is more appropriate 
than RGB for extracting color features, and allows 
for improving the performance of learning classifiers 
(Abdel-Hamid, 2019).  

Figure 1. Target classes used in this study: A) healthy fruits, B) fruits with scab, and C) fruits with anthracnose.
Figura 1. Clases objetivo utilizadas en el presente trabajo: A) frutos sanos, B) frutos con roña y C) frutos con antracnosis.

aprendizaje automático (RF, SVM y MLP) y descriptores 
cromáticos extraídos (selección por región [BD1] y 
submuestreo de imágenes [BD2]) de imágenes digitales 
de frutos de aguacate.

Materiales y métodos

Base de datos

El conjunto de imágenes de frutos de aguacate que  
se utilizaron en este estudio (30 por clase objetivo) se 
seleccionaron con diferentes niveles de las enfermedades 
de una base de datos con 569 imágenes digitales de tama-
ño 256 x 256 píxeles, pertenecientes a frutos de aguacate 
variedad Fuerte reportadas en un estudio previo (Campos-
Ferreira & González-Camacho, 2021) (https://www.kaggle.
com/datasets/camposfe1/clasifiacin-de-enfermedades- 
del-aguacatero). 

Las imágenes de los frutos se capturaron en laboratorio y 
bajo condiciones homogéneas de iluminación. Las clases 
objetivo fueron: frutos sanos (S), roña (R, Sphaceloma 
perseae) y antracnosis (A, Colletotrichum spp.). Los frutos se 
obtuvieron en los municipios de Ocuituco (18° 51’ 47.6” 
LN y 98° 46’ 49.1” LO) y Tetela del Volcán (18° 53’ 36.3” LN 
y 98° 43’ 47.7” LO) en el estado de Morelos. Los frutos de la 
variedad Fuerte, en su periodo de madurez, son de color 
verde, lo cual permite contrastar las lesiones provocadas 
por las dos enfermedades mencionadas (Figura 1).

Software and hardware

El lenguaje de programación Python ver. 3.9 se utilizó 
como plataforma de programación, y la librería scikit-
learn ver. 1.0.2 se utilizó para implementar los clasifi-
cadores de aprendizaje automático. El entrenamiento 
y validación de los clasificadores se realizaron en el 
ambiente de desarrollo Spyder ver. 4.2.1 y el sistema 



118 Automatic identification of avocado fruit diseases based on machine learning and chromatic descriptors

Revista Chapingo Serie Horticultura | Vol. 29, núm. 3, septiembre-diciembre 2023.

Color feature extraction

The extraction of color features (descriptors) was carried 
out using two techniques: BD1 and BD2. This was 
done with the help of the IDENTO program (Ambrosio-
Ambrosio, González-Camacho, Rojano-Aguilar, & del 
Valle-Paniagua, 2023) to create the input datasets from 
the images for each target class. The BD1 dataset was 
created using the region extraction technique. This 
consisted of selecting, in each image, a region of interest, 
and from a seed, or starting, pixel, the algorithm extracts 
a set of pixels similar to the seed, where each pixel is 
represented by the H, S and V color channels. IDENTO 
allowed generating, for each target class, a set of 45,536 
value triplets (H, S and V) (Table 1). 

The BD2 dataset was created using the technique of 
extraction by subsampling a box-shaped section of the 
image with the area of interest. For this, with the aid of 
the IDENTO software, three rectangular areas (30 × 30 
pixels) with the representative color of each target class 
were selected. In total, 90 image samples per target 
class (270 in total) were obtained; subsequently, the 
total set of 39,675 value triplets (H, S and V), associated 
with each target class, was created (Table 1).  

In both datasets, repeated triplets within and between 
target classes were removed. The sets of value triplets (H, 
S, and V), and their associated target class, were exported 
and saved to a .csv format file for use in training and 
testing with the RF classifier. 

Table 1. Description of the input datasets (pixels or H, S and V color descriptors) obtained with the region extraction  (BD1 
and image subsampling (BD2) techniques.

Cuadro 1. Descripción de los conjuntos de datos de entrada (pixeles o descriptores de color H, S y V) obtenidos con las 
técnicas de extracción por región (BD1) y submuestreo de imágenes (BD2).

Class / Clase BD1 BD2

H / S 15,213 17,746

S / R 14,836 13,416

A 15,487 8,513

Total 45,536 39,675

H = healthy fruits; S = fruits with scab; A = fruits with anthracnose.

S = frutos sanos; R = frutos con roña; A = frutos con antracnosis.

operativo MacOs Monterey (12.6) en una computadora 
Mac mini (Apple), la cual utiliza un chip ARM (M1) con 
velocidad de procesamiento de 3.2 GHz y 8 GB de RAM.

Procesamiento de imágenes

El conjunto de imágenes representadas con el modelo de 
color RGB (red, blue y green) se transformaron al modelo 
de color HSV (hue, saturation y value). Lo anterior debido 
a que la representación HSV es más apropiada que RGB 
para extraer características de color, y permite mejorar 
el desempeño de los clasificadores de aprendizaje (Abdel-
Hamid, 2019).

Extracción de características de color

La extracción de características (descriptores) de co-
lor se realizó por medio de dos técnicas: BD1 y BD2.  
Esto se realizó con la ayuda del programa IDENTO 
(Ambrosio-Ambrosio, González-Camacho, Rojano-Agui-
lar, & del Valle-Paniagua, 2023) para crear los conjun-
tos de datos de entrada a partir de las imágenes por 
cada clase objetivo. El conjunto de datos BD1 se creó 
con la técnica de extracción por región. Esta consistió 
en seleccionar, en cada imagen, una región de interés, 
y a partir de un píxel semilla, o de inicio, el algoritmo 
extrae un conjunto de píxeles similares a la semilla, 
donde cada píxel se representa por los canales de co-
lor H, S y V. IDENTO permitió generar, para cada clase 
objetivo, un conjunto de 45,536 tripletas de valores  
(H, S y V) (Cuadro 1).
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Random forest (RF)

The RF classifier is a supervised ensemble learning mod-
el. In the case of a classification problem, this algorithm 
uses decision trees based on a condition, and each tree 
obtains a value to classify the data. Each tree casts a unit 
vote, and the choice of the best decision tree is made 
according to the one with the highest number of votes 
from the entire forest (Parmar, Katariya, & Patel, 2019).

In RF, each tree is constructed from a randomly drawn 
sample, with replacement, from the training dataset 
(bootstrap); subsequently, multiple training sets are 
produced with values other than the initial set. From 
each sample, a model is built (bagging) and the data 
from the original sample is inputted, its predicted 
class is determined and the difference with the actual 
value is analyzed, thus obtaining the classification 
error. Ensemble models allow for reducing the 
variance of the RF estimator and avoiding overfitting 
of the model (Knauer et al., 2019).

In an RF model, the aim is to maximize the information 
gain, which is defined by:

where f is the condition dividing the parent node, Dp 
and Dj belong to the data of the parent node and the 
j-th child, I is the impurity metric, Np is the number 
of samples in the parent node and Nj is the number of 
samples from the j-th child. The information gain is 
the difference between the impurity of the parent node 
and the sum of the impurities of the child nodes; the 
lower the impurities of the child nodes, the greater  
the information gain (Raschka, Liu, & Mirjalili, 2022).

An objective function used in RF is the Gini criterion (IG) 
and is calculated as:

where K corresponds to the number of target classes an 
pmk represents the proportion of training observations 
in the m-th region that belong to the k-th class of 
interest (Géron, 2022). Another criterion is entropy (IE), 
which is defined by:

In this work, the random forest classifier function was used, 
which takes as its main arguments the number of trees 
(n_estimators, NE), the criterion (criterion, Cr), tree depth 

^

El conjunto de datos BD2 se creó con la técnica de 
extracción por submuestreo de un recuadro de la imagen 
con el área de interés. Para ello, con la ayuda del programa 
IDENTO, se seleccionaron tres áreas rectangulares (30  
x 30 píxeles) con el color representativo de cada clase 
objetivo. En total, se obtuvieron 90 muestras de imágenes 
por clase objetivo (270 en total); posteriormente, se creó 
el conjunto total de 39,675 tripletas de valores (H, S y V), 
asociadas a cada clase objetivo (Cuadro 1). 

En ambos conjuntos de datos, se eliminaron las tripletas 
repetidas dentro de clases y entre clases objetivo. Los 
conjuntos de tripletas de valores (H, S y V), y su clase 
objetivo asociada, se exportaron y guardaron en un 
archivo con formato .csv para su uso en el entrenamiento 
y prueba con el clasificador RF.

Bosque aleatorio (RF)

El clasificador RF es un modelo de aprendizaje supervi-
sado de ensamble. En el caso de un problema de 
clasificación, este algoritmo utiliza árboles de decisión 
a partir de una condición, y cada árbol obtendrá un 
valor para clasificar los datos. Cada árbol emite un voto 
unitario, y la elección del mejor árbol de decisión se hace 
de acuerdo con el que tenga el mayor número de votos de 
todo el bosque (Parmar, Katariya, & Patel, 2019).

En RF, cada árbol se construye a partir de una muestra 
extraída de manera aleatoria, con reemplazo, del 
conjunto de datos de entrenamiento (bootstrap); poste- 
riormente, se producen múltiples conjuntos de 
entrenamiento con valores distintos al conjunto inicial. 
A partir de cada muestra, se construye un modelo  
(bagging) y se introducen los datos de la muestra 
original, se determina su clase predicha y se analiza 
la diferencia con el valor real, con lo cual se obtiene 
el error de clasificación. Los modelos de ensamble 
permiten reducir la varianza del estimador de RF y 
evitar el sobre-ajuste del modelo (Knauer et al., 2019). 

En un modelo RF se busca maximizar la ganancia de 
información, la cual está definida por:

donde f es la condición que divide el nodo padre, Dp y 
Dj pertenecen a los datos del nodo padre y del j-ésimo 
hijo, I es la métrica de impureza, Np es el número de 
muestras en el nodo padre y Nj es el número de muestras 
del j-ésimo hijo. La ganancia de información es la 
diferencia entre la impureza del nodo padre y la suma 
de las impurezas de los nodos hijo, mientras más bajas 
sean las impurezas de los nodos hijo, más grande es la 
ganancia de información (Raschka, Liu, & Mirjalili, 2022).
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(max_depth, MD) and maximum features (max_features, 
MF) (Raschka et al., 2022). These hyperparameters were 
used to optimize the RF model based on the following 
intervals and values (selected by trial and error): NE = 
100, 200, 300 and 1000; Cr = ‘gini’ and ‘entropy’; MD = 4, 
6 and 8; MF = ‘sqrt’ and ‘auto’.

Support vector machine (SVM)

SVM is a model that associates the data from the 
original set, from an input space with a high-
dimensional feature space, making it simpler in the 
feature space. This is done to optimally separate the 
classes in a hyperplane, minimize the generalization 
error and maximize the margin.

In case the classes are separable from each other from 
a linear classifier, the SVM model determines the 
hyperplane that minimizes the generalization error (by 
means of a test dataset). Otherwise, when at least one 
class is not separable from the others, SVM tries to find 
the hyperplane that maximizes the margin and, at the 
same time, minimizes it by an amount proportional to 
the number of misclassifications. Based on the selected 
hyperplane, the maximum margin between classes will 
be obtained, that is, the sum of the distances between 
the separation hyperplane and the closest points for 
each class (Das, Singh, Mohanty, & Chakravarty, 2020). 

The equation of a hyperplane is defined as w × x + b = 0, 
where w is a normal vector to the hyperplane and b is 
an offset. In the case of a multiclass classification, the 
following optimization problem is used:

where ξi (i = 1, …, n) are slack variables, which may 
allow some data to remove the constraints that define 
the minimum margin required for the training data for 
a separable case. C is a user-defined penalty parameter 
to control the margin of error of the training set;  
the larger the value of C, the larger the penalty. On the 
other hand, the j-th SVM is trained with the data in 
the j-th class with labels belonging to the class, and the 
other classes with labels different from the class (Pisner 
& Schnyer, 2020).

There is a kernel function, which is used to transform 
the training data set so that a nonlinear decision 
surface is transformed into a linear equation in a larger 
number of dimensional spaces. In general, this function 
returns the inner product between two points in a 
feature dimension. The most commonly used kernels 
are linear:

^

Una función objetivo que se utiliza en RF es el criterio 
de Gini (IG) y se calcula como:

donde K corresponde al número de clases objetivo 
y pmk representa la proporción de observaciones de 
entrenamiento en la m-ésima región que pertenecen a 
la k-ésima clase de interés (Géron, 2022). Otro criterio 
es la entropía (IE), la cual está definida por:

En este trabajo, se utilizó la función randomforestclassifier, 
que toma como argumentos principales el número 
de árboles (n_estimators, NE), el criterio (criterion, Cr), 
la profundidad del árbol (max_depth, MD) y las carac-
terísticas máximas (max_features, MF) (Raschka et al., 
2022). Estos hiperparámetros se utilizaron para optimizar 
el modelo RF con base en los siguientes intervalos y 
valores (seleccionados por prueba y error): NE = 100, 
200, 300 y 1000; Cr = ‘gini’ y ‘entropy’; MD = 4, 6 y 8;  
MF = ‘sqrt’ y ‘auto’.

Máquina de soporte vectorial (SVM)

SVM es un modelo que asocia los datos del conjunto ori-
ginal, a partir de un espacio de entrada con un espacio 
de características de alta dimensión, volviéndolo más 
simple en el espacio de características. Esto se realiza 
para separar, de manera óptima, las clases en un hiper-
plano y minimizar el error de generalización, además 
de maximizar el margen. 

En caso de que las clases sean separables entre sí a partir 
de un clasificador lineal, el modelo SVM determina el 
hiperplano que minimiza el error de generalización 
(mediante un conjunto de datos de prueba). En caso 
contrario, cuando al menos una clase no es separable 
de las otras, SVM intenta buscar el hiperplano que 
maximice el margen y, al mismo tiempo, minimice a 
una cantidad proporcional al número de clasificaciones 
incorrectas. Con base en el hiperplano seleccionado, se 
tendrá el máximo margen entre clases; es decir, la suma 
de las distancias entre el hiperplano de separación y 
los puntos más cercanos para cada clase (Das, Singh, 
Mohanty, & Chakravarty, 2020).

La ecuación de un hiperplano se define como w × x + b 
= 0, donde w es un vector normal al hiperplano y b es 
un sesgo. En el caso de una clasificación multiclase, se 
utiliza el siguiente problema de optimización:
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And the Radial basis function (RBF) kernel, also known 
as the Gaussian kernel: 

where σ > 0 is the parameter controlling the kernel 
width. This expression can be simplified as follows:

where γ =     . This value can be understood as the 
cutoff, and is defined by the user; in it, the influence or 
scope of the training samples is increased, which leads to 
a soft or narrow decision boundary (Raschka et al., 2022).

Classification methods are included in the scikit-learn 
program library, within the svm module. In the present 
work, the support vector classification (SVC) function 
was used, which takes as its main hyperparameters 
the penalty or C value (C), the gamma value (γ) and the 
kernel mask size (K). By trial and error, the following 
intervals and values were defined: C = 0.01, 0.1, 1, 10 
and 100; γ = 0.001, 0.1, 1, 10 and 100; kernels = ‘rbf ’ 
and ‘linear’ (Raschka et al., 2022).

Multilayer perceptron (MLP)

In MLP, the basic element is known as an artificial 
neuron. This artificial neuron, of the feed forward type, 
consists of input and output elements that are processed 
in the central unit. The input layers depend on the data 
used for training, while the hidden layers and the output 
layers pertain to the number of classes of interest. 

The MLP architecture consists of an input layer, one 
or more hidden layers, and an output layer. The input 
layer depends on the number of input data, the hidden 
layers represent the level of complexity that exists 
between the input and output layer, and the output 
layer represents the number of target classes and gives 
the predicted class (Edmond & Girsang, 2020).

The function that transforms the input data is known as 
the activation function. The most common is the ReLU 
(Rectified Linear Unit) function, which is expressed as:

f (z) = max (0, z)

where the response is z if the input is positive and 0 
if it is negative. ReLU is used to filter the data in the 
intermediate layers. In the output layer, the softmax 
activation function is used, which is expressed as:

∑k
j=1 e
e

donde ξi (i = 1, …, n) son variables de holgura, las cuales 
pueden permitir algunos datos para eliminar las 
limitaciones que definen el margen mínimo requerido 
para los datos de entrenamiento para un caso separable. 
C es un parámetro de penalización definido por el 
usuario para controlar el margen de error del conjunto 
de entrenamiento; mientras más grande sea el valor de C, 
más grande es la penalización. Por otra parte, el j-ésimo 
SVM es entrenado con los datos en la j-ésima clase con 
etiquetas pertenecientes a la clase, y las demás clases 
con etiquetas diferentes a la clase (Pisner & Schnyer,   2020).

Existe una función kernel, la cual es utilizada para 
transformar el conjunto de datos de entrenamiento, 
para que una superficie de decisión no lineal se 
transforme en una ecuación lineal en una mayor 
cantidad de espacios dimensionales. De manera general, 
esta función devuelve el producto interno entre dos 
puntos en una dimensión de características. Los kernel 
más utilizados son el lineal:

Y el kernel Radial basis function (RBF), también conocido 
como kernel Gaussiano:

donde σ > 0 es el parámetro que controla el ancho 
del kernel. Esta expresión se puede simplificar de la 
siguiente forma:

donde  γ =         . Este valor se puede entender como el 
corte, y es definido por el usuario; en él, se aumenta la 
influencia o alcance de las muestras de entrenamiento, 
las cuales llevan a un límite de decisión suave o estre-
cho (Raschka et al., 2022).

En la biblioteca de programas scikit-learn, dentro del 
módulo svm, se incluyen los métodos para clasificación. 
En el presente trabajo, se utilizó la función support 
vector classification (SVC), la cual toma como principales 
hiperparámetros la penalización o el valor C (C), el valor 
gamma (γ) y el tamaño de la máscara kernel (K). Mediante 
prueba y error se definieron los siguientes intervalos y 
valores: C = 0.01, 0.1, 1, 10 y 100; γ = 0.001, 0.1, 1, 10  
y 100; kernels = ‘rbf ’ y ‘linear’ (Raschka et al., 2022).

Perceptrón multicapa (MLP)

En MLP, al elemento básico se le conoce como neurona 
artificial. Esta neurona artificial, de tipo hacia adelante 
(feed forward), consta de elementos de entrada y salida 
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where p(z) is the probability that an input z belongs to 
the i-th class (Chollet, 2018).

For MLP training, the adam (Adaptive moment 
estimation) optimizer was used, which is a variant of 
the gradient descent method. This method uses the 
momentum and variance of the loss function’s gradient 
to update the weights, which allows smoothing the 
learning curve and improving the learning of the 
classifier (Géron, 2022).

The scikit-learn neural network module contains 
the MLPClassifier function, and takes the following 
hyperparameters as arguments: hidden layer size 
(HL), number of iterations (It), activation function 
(AF), optimizer (Op), learning range (LR) and batch size 
of samples entering the model at each iteration step 
(BS) (Raschka et al., 2022). The intervals and search 
values of the hyperparameters were defined by trial 
and error, and the following were considered: HL = 50, 
100 and 500; It = 50, 100 and 500; AF = ‘softmax’ and 
’ReLU’; Op = Broyden-Fletcher-Goldfarb-Shanno (lbfgs) 
and adam algorithm; LR = ‘constant’ and ‘adaptative’; 
BS = 8, 16 and 32.

Performance metrics

The metrics for determining overall performance and 
each target class of the classifiers are obtained from the 
confusion matrix, based on the test data. In the case 
of a binary classification, this matrix has four possible 
outcomes: true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) (Kulkarni, Chong, 
& Batarseh, 2020). Based on these values, the following 
metrics are defined:

Precision (P), which measures how accurate the model 
is in predicting positive values.

Recall or sensitivity (R), which measures the strength to 
predict positive outcomes.

The F1 score, which is the harmonic mean between P 
and R.

These three metrics are used to evaluate the perfor-
mance of the classifier to predict each class. The evalu-
ation of the overall performance of the classifiers was 
made based on the overall classification accuracy (ACC) 

∑k
j=1 e
e

que se procesan en la unidad central. Las capas de entrada 
dependen de los datos utilizados para el entrenamiento, 
mientras que las capas ocultas y las capas de salida 
pertenecen al número de clases de interés.

La arquitectura MLP se compone de una capa de entrada, 
una o más capas ocultas y una capa de salida. La capa 
de entrada depende del número de datos de entrada, las 
capas ocultas representan el nivel de complejidad que 
existe entre la capa de entrada y de salida, y la capa de 
salida representa el número de clases objetivo y da la 
clase predicha (Edmond & Girsang, 2020).

La función que transforma los datos de entrada se conoce 
como función de activación. La más común es la función 
ReLU (Rectified Linear Unit), la cual se expresa como:

f (z) = max (0, z)

donde la respuesta es z si la entrada es positiva y 0 si 
es negativa. ReLU se utiliza para filtrar los datos en 
las capas intermedias. En la capa de salida se utiliza 

la función de activación softmax, que se expresa como:

donde p(z) es la probabilidad de pertenencia de una 
entrada z a la clase i-ésima (Chollet, 2018).

Para el entrenamiento de MLP, se utilizó el optimizador 
adam (Adaptative moment estimation), que es una variante 
del método gradiente descendente. Este método 
utiliza el momentum y la varianza del gradiente de la 
función de pérdida para actualizar los pesos, lo cual 
permite suavizar la curva de aprendizaje y mejorar el 
aprendizaje del clasificador (Géron, 2022).

El modulo neural_network de scikit-learn contiene la 
función MLPClassifier, y toma como argumentos los 
siguientes hiperparámetros: tamaño de la capa oculta 
(CO), número de iteraciones (It), función de activación 
(FA), optimizador (Op), rango de aprendizaje (RA) y 
tamaño del lote de muestras que entran al modelo en 
cada paso de iteración (TL) (Raschka et al., 2022). Los 
intervalos y valores de búsqueda de los hiperparámetros 
se definieron por prueba y error, y se consideraron 
los siguientes: CO = 50, 100 y 500; It = 50, 100 y 500;  
FA = ‘softmax’ y ’ReLU’; Op = aproximación del 
algoritmo Broyden–Fletcher–Goldfarb–Shanno (lbfgs) 
y adam; RA = ‘constant’ y ‘adaptative’; TL = 8, 16 y 32.

Métricas de desempeño

Las métricas para determinar el desempeño global 
y para cada clase objetivo de los clasificadores se 
obtienen a partir de la matriz de confusión, con base 
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and the area under the curve (AUC) for the ROC (re-
ceiver operating characteristic) curve.

ACC is the ratio of correct classifications to the total 
number of samples, and is expressed as:

The ROC is a graph that is constructed with values for 
different probability thresholds of the true positive 
rate (TPR) versus the false positive rate (FPR) (Jiang, 
Li, & Safara, 2021). AUC varies between 0 and 1, and 
measures the performance of the model for each target 
class. TPR is obtained from the following equation:   

and FPR is calculated as:

Machine learning model selection

In the literature, it is reported that the RF, SVM and MLP 
classifiers, in general, achieve good overall classification 
accuracy (Yuvali, Yaman, & Tosun, 2022). In preliminary 
tests, these classifiers performed well in terms of 
classifying avocado fruit images. 

Training and testing of classifiers

The training and testing of the classifiers consisted of 
two stages. In the first, the RF classifier was trained 
based on the BD1 and BD2 datasets to compare the 
chromatic descriptor extraction and image subsampling 
techniques, and to select the one that generates the best 
RF performance in terms of . In the second stage, the 
three classifiers (RF, SVM and MLP) were trained with 
the most appropriate dataset from stage 1. The optimal 
hyperparameters for each classifier were obtained by 
grid search and cross-validation (Raschka et al., 2022). 

Selection of optimal hyperparameters

To optimize each classifier, we first performed a strati-
fied random partitioning by each target class of the 
dataset at an 80:20 ratio (80 % for training and 20 % 
for the prediction test). This ratio establishes a balance 
between the training and test data to measure the per-
formance of the classifiers. The training data were stan-
dardized to homogenize the input descriptors using the 
following expression: 

en los datos de prueba. En el caso de una clasificación 
binaria, esta matriz tiene cuatro posibles resultados: 
verdadero positivo (VP), verdadero negativo (VN), falso 
positivo (FP) y falso negativo (FN) (Kulkarni, Chong, & 
Batarseh, 2020). Con base en estos valores se definen las 
siguientes métricas:

La precisión (P), la cual mide que tan acertado es el 
modelo para predecir los valores positivos.

La exhaustividad o sensibilidad (E), que mide la fuerza 
para predecir muestras positivas.

El puntaje F1, que es la media armónica entre P y E.

Estas tres métricas se utilizan para evaluar el desem-
peño que tiene el clasificador al predecir cada clase. La 
evaluación del desempeño global de los clasificadores 
se realizó con base en la precisión global de clasifica-
ción correcta (ACC) y el área bajo la curva (AUC) ROC 
(curva característica operativa del receptor).

La ACC es la proporción de clasificaciones correctas con 
respecto al total de muestras, y se expresa como:

La ROC es una gráfica que se construye con valores para 
diferentes umbrales de probabilidad de la tasa de ver-
daderos positivos (TVP) versus la tasa de falsos positivos 
(TFP) (Jiang, Li, & Safara, 2021). AUC varía entre 0 y 1, 
y mide el desempeño del modelo para cada clase obje-
tivo. TVP se obtiene a partir de la siguiente ecuación:

y TFP se calcula como:

Selección de modelos de aprendizaje automático

En la literatura se reporta que los clasificadores RF, 
SVM y MLP, en general, alcanzan buena precisión  
global de clasificación (Yuvali, Yaman, & Tosun, 2022). 
En pruebas preliminares, estos clasificadores obtuvie-
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where x corresponds to each descriptor of the input 
set, µx is the mean of the set of x values and σx is the 
sampling variance of the set of x values.

Optimal hyperparameter selection was performed using 
a grid search and cross-validation with k = 10 disjoint 
groups. For each classifier, value intervals of each 
hyperparameter were defined to select the combination 
of values that maximize the average ACC of the classifier 
(Liashchynskyi & Liashchynskyi, 2019).

Cross-validation consists of dividing the training set 
randomly into k disjoint groups, where k-1 groups are 
used as training sets, and the remaining group as a 
validation set. This process is repeated k times for each 
combination of hyperparameter values, and an average 
ACC of k model runs is obtained (Raschka et al., 2022). 
The optimal combination of hyperparameter values is 
the one that generates the maximum average ACC value.  

Classifier prediction test

With the set of optimal hyperparameters obtained in 
the training stage, a cross-validation procedure was 
performed with k = 10 groups with the total input 
dataset (100 %) to recalculate the weights or parameters 
of each classifier. In each k run, the ACC prediction 
performance was determined for each k-th test set. After 
k runs, the average ACC performance of each classifier 
was obtained.

The codes implemented for the present work can 
be found at the following link: https://github.com/
Camposfe1/Avocado-disease-classification.git.

Results and discussion

Selection of optimal hyperparameters

The optimal hyperparameter values for each classifier 
were NE = 10, MF = ‘auto’, MD = 8 and Cr = ‘entropy’ 
for RF, C = 10, γ = 10 and K = ‘rbf’ for SVM, and BS = 8, 
HL = 150, AF = ‘ReLU’, It = 100 and Op = ‘adam’ for MLP.

Comparison of descriptor extraction techniques

Comparison of color feature or descriptor extraction 
techniques, by region and image subsampling, as well 
as their effect on RF classifier performance, showed that 
selection by region (BD1) allows generating color pixel 
sets with more information to differentiate the three 
target classes (H, S and A). RF obtained greater accuracy 
to classify the three target classes. The values of FP and 
FN, for each class, were lower than those corresponding 
to BD2. Likewise, extraction by region generated better 
balanced class sizes than by subsampling (Figure 2).

ron buen desempeño para clasificar imágenes de frutos 
de aguacate. 

Entrenamiento y prueba de los clasificadores

El entrenamiento y prueba de los clasificadores constó 
de dos etapas. En la primera se entrenó el clasificador 
RF con base en los conjuntos de datos BD1 y BD2 para 
comparar las técnicas de extracción de descriptores 
cromáticos y por submuestreo de imágenes, y para 
seleccionar la que genere el mejor desempeño de RF 
en términos de ACC. En la segunda etapa, los tres 
clasificadores (RF, SVM y MLP) se entrenaron con el 
conjunto de datos más apropiado de la etapa 1. Los 
hiperparámetros óptimos de cada clasificador se 
obtuvieron por medio de una búsqueda por retícula y 
validación cruzada (Raschka et al., 2022). 

Selección de hiperparámetros óptimos

Para optimizar cada clasificador, primero se realizó una 
partición aleatoria estratificada por cada clase objetivo 
del conjunto de datos en proporción 80:20 (80 % para 
entrenamiento y 20 % para la prueba en predicción). 
Esta proporción establece un balance entre los datos de 
entrenamiento y de prueba para medir el desempeño 
de los clasificadores. Los datos de entrenamiento se 
estandarizaron para homogeneizar los descriptores de 
entrada mediante la siguiente expresión: 

donde x corresponde a cada descriptor del conjunto 
de entrada, µx es la media del conjunto de valores de 
x y σx es la varianza muestral del conjunto de valores 
de x.

La selección óptima de hiperparámetros se realizó 
por medio de una búsqueda por retícula y validación 
cruzada con k = 10 grupos disjuntos. Para cada clasi-
ficador, se definieron intervalos de valores de cada  
hiperparámetro para seleccionar la combinación de  
valores que maximicen la ACC promedio del clasifica-
dor (Liashchynskyi & Liashchynskyi, 2019).

La validación cruzada consiste en dividir el conjun-
to de entrenamiento de forma aleatoria en k grupos  
disjuntos, donde k-1 grupos se utilizan como conjuntos 
de entrenamiento, y el grupo restante como conjunto 
de validación. Este proceso se repite k veces para cada  
combinación de valores de los hiperparámetros, y se  
obtiene una ACC promedio de k corridas del mode-
lo (Raschka et al., 2022). La combinación de valores 
óptimos de los hiperparámetros es la que genera el 
máximo valor de ACC promedio.
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Similarly, RF performance, overall and at the class level, 
was superior with BD1 than with BD2. With BD1, RF 
achieved an average ACC of 98 %, while with BD2 it 
was 84 %. At the class level, F1 scores were higher than  
97 % with BD1 and higher than 76 % with BD2 (Table 2). 

Evaluation of the prediction of RF, 
SVM and MLP classifiers

The prediction performance of the three classifiers was 
high. The confusion matrices for each classifier show 
that RF and MLP achieved the highest ACC for all three 
classes. All three classifiers have the highest FP value 
for predicting class H; that is, the classifiers predict 
samples from classes S or A as H. For this analysis, 
there are pixel samples with scab that are predicted 
to be healthy, and healthy samples that are predicted to 
have anthracnose (Figure 3).

In terms of overall classifier performance, RF and MLP 
were superior to SVM with an ACC of 98 %. Likewise, 
both classifiers obtained an F1 score above 97 % for 
each target class (Table 3).

The BD1 method of extracting features or color 
descriptors had a significant effect on classifier 
performance. This method allowed obtaining pixels 
or color samples representative of each target class 
and balanced class sizes, which led to better classifier 
performance. The BD2 feature extraction method 

Figure 2.   Confusion matrices of the random forest (RF) classifier based on the datasets generated with region extraction 
(BD1) and image subsampling (BD2). Target classes: H = healthy fruit; S = fruit with scab; A = fruit with 
anthracnose. Predicted versus actual color pixels by target class. 

Figura 2.  Matrices de confusión del clasificador bosque aleatorio (RF) con base en los conjuntos de datos generados con 
extracción por región (BD1) y submuestreo de imágenes (BD2). Clases objetivo: S = frutos sanos; R = frutos  
con roña; A = frutos con antracnosis. Píxeles de color predichos versus reales por clase objetivo.

Prueba en predicción de los clasificadores

Con el conjunto de hiperparámetros óptimos obtenidos 
en la etapa de entrenamiento, se realizó un procedimiento 
de validación cruzada con k = 10 grupos con el conjunto 
total de datos de entrada (100 %) para recalcular los pesos 
o parámetros de cada clasificador. En cada corrida k, se 
determinó el desempeño de predicción ACC para cada 
conjunto de prueba k-ésimo. Después de k corridas, se 
obtuvo el desempeño ACC promedio de cada clasificador.

Los códigos implementados para el presente trabajo se 
encuentran en el siguiente enlace: https://github.com/
Camposfe1/Avocado-disease-classification.git.

Resultados y discusión

Selección de hiperparámetros óptimos

Los valores óptimos de los hiperparámetros de cada 
clasificador fueron NE = 10, MF = ‘auto’, MD = 8 y  
Cr = ‘entropy’ para RF, C = 10, γ = 10 y K = ‘rbf’ 
para SVM, y TL = 8, CO = 150, FA = ‘ReLU’, It = 100 y  
Op = ‘adam’ para MLP.

Comparación de técnicas de 
extracción de descriptores

La comparación de las técnicas de extracción de 
características o descriptores de color, por región y 
submuestreo de imágenes, así como su efecto en el 
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Figura 3.   Matrices de confusión de los clasificadores bosque aleatorio (RF), máquina de soporte vectorial (SVM y 
perceptrón multicapa (MLP) con base en la extracción de descriptores por región (BD1). Clases objetivo: 
S = frutos sanos; R = frutos con roña; A = frutos con antracnosis.

Figure 3.  Confusion matrices of the random forest (RF), support vector machine (SVM) and multilayer perceptron (MLP 
classifiers based on descriptor extraction by region (BD1). Target classes: H = healthy fruits; S = fruits with 
scab; A = fruits with anthracnose.

Table 2. Prediction performance metrics of the random forest (RF) classifier based on region-based color descriptor   
 extraction (BD1) and image subsampling (BD2) methods. 

Cuadro 2. Métricas de desempeño en predicción del clasificador bosque aleatorio (RF) con base en los métodos de extracción 
 de descriptores de color por región (BD1) y submuestreo de imágenes (BD2).

Metric /
Métrica

BD1 BD2

H / S S / R A H / S S / R A

P 0.94 1.00 1.00 0.77 0.97 0.76

R / E 1.00 0.97 0.96 0.98 0.75 0.84

F1 0.97 0.98 0.98 0.86 0.84 0.76

AUC 1.00 1.00 1.00 0.97 0.94 0.95

ACC 0.98 ± 0.03 0.84 ± 0.08

H = healthy fruits; S = fruits with scab; A = fruits with anthracnose; P = precision; R = recall; F1 = F1 score; ACC = overall classification accuracy; AUC = area under 
the ROC curve.  

S = frutos sanos; R = frutos con roña; A = frutos con antracnosis; P = precisión; E = exhaustividad; F1 = puntaje F1; ACC = precisión global de clasificación; AUC = 
área bajo la curva ROC.
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generated a dataset with unbalanced classes and the 
H class of healthy fruits was favored. The imbalance 
between class sizes in BD2 had a negative effect on 
the performance of the RF classifier, which reached an 
ACC of 84 %. Some publications state that there is no 
difference between feature extraction methods (Jones, 
Faiz, Qiu, & Zheng, 2022; Suresh & Mohan, 2020); 
however, in this study the BD1 selection technique 
allowed obtaining a better ACC of the RF model than 
BD2, which depends on the ability to select the areas 
of interest (Chen et al., 2020). In the case of unbalanced 
classes, the F1 metric (harmonic mean of P and R) 
is a more suitable measure to evaluate classifier 
performance (Fourure, Javaid, Posocco, & Tihon, 2021). 

When there are unbalanced classes, the classifiers bias 
the prediction to the majority class; hence, there is a 
misclassification for the minority class (Kaur, Singh, & 
Kaur, 2019). This is because it is easier to get healthy 
fruits than ones with disease symptoms, since certain 
conditions are needed for symptoms to be expressed in 
the fruit (Wardhani, Rochayani, Iriany, Sulistyono, & 
Lestantyo, 2019). 

Table 3. Prediction performance metrics of random forest (RF), support vector machine (SVM) and multilayer perceptron 
(MLP) machine learning classifiers based on descriptor extraction by region (BD1).

Cuadro 3. Métricas de desempeño en la predicción de los clasificadores de aprendizaje automático bosque aleatorio (RF), 
máquina de soporte vectorial (SVM) y perceptrón multicapa (MLP) con base en la extracción de descriptores por 
región (BD1).

Metric /
Métrica

RF SVM MLP

H / S S / R A H / S S / R A H / S S / R A

P 0.94 1.00 1.00 0.94 1.00 0.99 0.95 1.00 1.00

R / E 1.00 0.97 0.96 0.99 0.95 0.97 1.00 0.97 0.97

F1 0.97 0.98 0.98 0.96 0.98 0.98 1.00 0.98 0.98

AUC 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00

ACC 0.98 ± 0.03 0.97 ± 0.06 0.98 ± 0.03

H = healthy fruit; S = fruit with scab; A = fruit with anthracnose; P = precision; R = recall; F1 = F1 value; AUC = area under the ROC curve; ACC = overall 
classification accuracy. 

S = frutos sanos; R = frutos con roña; A = frutos con antracnosis; P = precisión; E = exhaustividad; F1 = valor F1; AUC = área bajo la curva ROC; ACC = precisión 
global de clasificación.

desempeño del clasificador RF, mostró que la selección 
por región (BD1) permite generar conjuntos de píxeles 
de color con más información para diferenciar las tres 
clases objetivo (S, R y A). RF obtuvo mayor precisión 
para clasificar las tres clases objetivo. Los valores 
de FP y FN, para cada clase, fueron menores que los 
correspondientes a BD2. Asimismo, la extracción por 
región generó tamaños de clase mejor balanceados que 
por submuestreo (Figura 2). 

De manera similar, el desempeño de RF, a nivel global y 
a nivel de clase, fue superior con BD1 que con BD2. Con 
BD1, RF alcanzó una ACC promedio de 98 %, mientras 
que con BD2 ésta fue de 84 %. A nivel de clase, los pun-
tajes F1 fueron superiores a 97 % con BD1 y superiores 
a 76 % con BD2 (Cuadro 2).

Evaluación de la predicción de los 
clasificadores RF, SVM y MLP

El desempeño, en cuanto a la predicción de los tres 
clasificadores, fue alto. En las matrices de confusión de 
cada clasificador se observa que RF y MLP alcanzaron 
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The three classifiers, RF, SVM, and MLP, categorized scab 
and anthracnose fruit with an F1 score of 98 %, and were 
the best-classified classes. Fruits with scab are visually 
differentiated from healthy or anthracnose fruits; there-
fore, pixel values between classes are more contrasting.

The machine learning classifiers used in this study show 
that high performance levels can be achieved with small 
datasets and shorter computational times compared to 
deep learning classifiers, particularly convolutional neu-
ral networks, which require longer computational times. 
However, in more complex identification problems, with 
a large number of classes (greater than 10) and large da-
tasets (thousands of images), deep learning algorithms 
are more appropriate (Alzubaidi et al., 2021). 

Conclusions

The extraction of color descriptors with the region 
selection method induced a better overall classification 
accuracy (ACC = 98 %) of the random forest classifier, in 
contrast to the image subsampling extraction method  
(ACC = 84 %). All three classifiers (random forest, vector 
support machine and multilayer perceptron) obtained 
a ACC greater than 97 % for classifying the surface of 
avocado fruits as being healthy, with scab or with 
anthracnose. Likewise, the fruit surface classes with scab 
and with anthracnose obtained an F1 score of 98 % with  
all three classifiers.
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