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Abstract

Introduction: Estimating the risk of occurrence of a fire contributes to reducing human, 
infrastructure and natural resource losses; promoting activities to maintain and restore fire 
regimes; and optimizing resources for suppression.
Objective: To develop an index of occurrence of forest fires on large areas, called Area at risk 
of fire (SeR).
Materials and methods: The index corresponds to the area associated with a probability 
level measured at the right tail of the density distribution of the area affected annually by 
forest fires. The density distribution was estimated from the history of the area affected 
(1970-2018) in Mexico by state. The fit was performed by minimizing the Kolmogorov-
Smirnov statistic with four models: exponential, gamma, lognormal and Weibull. Two 
related indicators are proposed: proportion of forest area affected by wildfires (PSeR) and 
incremental area at risk (ISeR).
Results and discussion: all models showed a statistically significant fit (P < 0.05); the 
lognormal model performed the best. The SeR discriminates territorial units with the largest 
area affected by fires; additionally, it efficiently predicts the area to be affected by fires. The 
PSeR facilitates the comparison of the risk of fire occurrence between territorial units of 
different sizes, while the ISeR estimates the change in the maximum area affected by fires 
over a period.
Conclusion: SeR is an extreme event risk index that provides useful information and has a 
statistically acceptable predictive power.

Resumen

Introducción: La estimación del riesgo de ocurrencia de un incendio contribuye a reducir 
pérdidas humanas, de infraestructura y recursos naturales; promover actividades para 
mantener y restaurar regímenes de fuego; y optimizar los recursos destinados a la supresión.
Objetivo: Desarrollar un índice de ocurrencia de incendios forestales en superficies extensas, 
denominado superficie en riesgo de incendio (SeR).
Materiales y métodos: El índice corresponde a la superficie asociada a un nivel de 
probabilidad medido en la cola derecha de la distribución de densidad de la superficie 
afectada anualmente por incendios forestales. La distribución de densidad se estimó a partir 
del historial de superficie siniestrada (1970-2018) en México por entidad federativa. El ajuste 
se realizó minimizando el estadístico Kolmogorov-Smirnov con cuatro modelos: exponencial, 
gama, lognormal y Weibull. Se proponen dos indicadores relacionados: proporción de la 
superficie forestal afectada (PSeR) y superficie incremental en riesgo (ISeR).
Resultados y discusión: Todos los modelos mostraron un ajuste significativo (P < 0.05); 
el modelo lognormal fue el de mejor desempeño. La SeR discrimina unidades territoriales 
con mayor superficie afectada por incendios; adicionalmente, predice eficientemente la 
superficie a ser afectada por incendios. La PSeR facilita la comparación del riesgo de ocurrencia 
de incendios entre unidades territoriales de tamaño diferente, mientras que la ISeR estima el 
cambio en la máxima superficie afectada por incendios en un periodo.
Conclusión: La SeR es un índice de riesgo de eventos extremos que brinda información útil 
y tiene un poder predictivo estadísticamente aceptable.
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Introduction

Forest fires are considered the most important cause 
of loss of vegetation cover (Moore, 2019). In tropical 
regions of Asia and America, the occurrence of fires in 
wooded areas, is the second most important factor of 
loss of vegetation only behind Land-Use Change (Food 
and Agricultural Organization [FAO], 2007). In Mexico, 
the effects of these incidents are an important cause 
of loss and degradation of forest cover. An average of 
7 087 ± 2 538 fires are recorded each year (1970-2018) 
with an average annual burned area of 253 950 ± 
189 500.597 ha and an average burned area by fire of 
109 ± 107 ha (Comisión Nacional Forestal [CONAFOR], 2019).

In recent years, forest fires show greater dispersion, 
frequency, size and severity (International Panel on 
Climate Change [IPCC], 2007). This increase in the 
occurrence rate is attributed both to the generation of 
greater fuel volume, as a result of fire suppression actions, 
and to climate change (Marlon et al., 2009; Westerling, 
Hidalgo, Cayan, & Swetnam, 2006). Both drivers have 
led to significant changes in precipitation and drought 
patterns, and fuel accumulation processes, which 
together have changed the dynamics of forest fires (IPCC, 
2007). As a result, globally, governments spend a large 
budget on fire prevention and firefighting. While most 
of the government expenditure is spent on suppression, 
the design of prevention and management mechanisms, 
among which the generation of information to qualify 
the risk or anticipate the occurrence of a fire, accounts 
for a significant proportion of the expenditure (FAO, 
2007). In this context, the estimation of the occurrence 
of a fire is significant, since it allows to plan measures to 
minimize loss of human lifes, infrastructure and natural 
resources (Adab, Kanniah, Solaimani, & Sallehuddin, 
2015); to promote activities to maintain and restore fire 
regimes (Keeley, Fotheringham, & Morais, 1999); and 
to optimize the distribution of available resources in 
suppression activities (Podschwit, Larkin, Steele, Cullen, 
& Alvarado, 2018). 

The occurrence of a fire has been estimated through 
two strategies. The first is to estimate indicators 
of risk of occurrence based on indirect measures of 
climatic, physical, environmental attributes or the 
characteristics of the same fires (i. e. statistics of 
occurrence). This strategy is derived from the absence 
or low quality and quantity of data on the causal 
variables of a fire or from the limited knowledge of 
fire behavior in a particular region (Miller & Ager, 
2013; Thompson & Calkin, 2011). The estimates are 
made through indicators derived from probabilistic 
analysis of the available information (distributions of 
sizes) with refinements through regression models, 
neural networks, mathematical programming and 
Markovian models (Ager, Vaillant, & Finney, 2010; 
Miller & Ager, 2013; Podur, Martell, & Stanford, 

Introducción

Los incendios forestales se consideran la causa más 
importante de pérdida de cobertura vegetal (Moore, 
2019). En regiones tropicales de Asia y América, 
la ocurrencia de incendios, en áreas arboladas, es 
el segundo factor más importante de pérdida de 
vegetación tan solo detrás del cambio de uso del suelo 
(Food and Agricultural Organization [FAO], 2007). 
En México, las afectaciones de estos siniestros son 
una causa importante de pérdida y degradación de la 
cobertura forestal. Cada año se registran en promedio 
7087 ± 2538 incendios (1970-2018) con una superficie 
anual afectada promedio de 253950 ± 189500.597 
ha y una superficie de afectación promedio por 
incendio de 109 ± 107 ha (Comisión Nacional Forestal 
[CONAFOR], 2019).

En años recientes, los incendios forestales muestran 
mayor dispersión, frecuencia, tamaño y severidad 
(International Panel on Climate Change [IPCC], 2007). 
Este aumento en la siniestralidad se atribuye tanto 
a la generación de mayor volumen de combustible, 
resultado de las acciones de supresión de incendios, 
como al cambio climático (Marlon et al., 2009; 
Westerling, Hidalgo, Cayan, & Swetnam, 2006). 
Ambos factores han ocasionado cambios importantes 
en los patrones de precipitación y sequía, y en los 
procesos de acumulación de combustibles, que 
en conjunto han modificado la dinámica de los 
incendios forestales (IPCC, 2007). Por lo anterior, a 
nivel mundial, los gobiernos gastan un presupuesto 
importante en labores de prevención y combate de 
incendios. Si bien la mayor parte del gasto se destina 
a labores de supresión, el diseño de mecanismos de 
prevención y manejo, dentro de los cuales destaca la 
generación de información para calificar el riesgo o 
anticipar la ocurrencia de un incendio, representa 
una proporción importante del gasto (FAO, 2007). 
En este contexto, la estimación de la ocurrencia de 
un incendio es relevante, ya que permite planear 
medidas para minimizar pérdidas humanas, de 
infraestructura y de recursos naturales (Adab, 
Kanniah, Solaimani, & Sallehuddin, 2015); promover 
actividades para mantener y restaurar los regímenes 
de fuego (Keeley, Fotheringham, & Morais, 1999); y 
optimizar la distribución de los recursos disponibles 
en las labores de supresión (Podschwit, Larkin, Steel, 
Cullen, & Alvarado, 2018). 

La ocurrencia de un incendio se ha estimado a través 
de dos estrategias. La primera consiste en estimar 
indicadores de riesgo de ocurrencia con base en medidas 
indirectas de atributos climáticos, físicos, ambientales 
o de las características de los mismos incendios (i. e. las 
estadísticas de ocurrencia). Esta estrategia se deriva de 
la ausencia o poca calidad y cantidad de datos de las 
variables causales de un incendio o del conocimiento 
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2009; Preisler et al., 2004).  The second strategy is the 
prediction of the occurrence or characteristics of a fire 
(size, intensity and duration), through models that 
predict the probability of observing an affected area 
(or fire attributes) depending on the site characteristics 
(v. g. slope, exposure, elevation, road distance and 
population density) (Adab et al., 2015; Adab, Kanniah, & 
Solaimani, 2013; Avila et al., 2010; Munn, Zhai, & Evans, 
2003). Estimates are made through a wide variety of 
techniques ranging from statistical prediction models, 
to Bayesian networks and methods, among others 
(Stojanova, Panov, Kobler, Džeroski, & Taškova, 2006). 

The estimation of the occurrence of a fire by one or 
another strategy is complex, not only due to the multitude 
of factors that determine its presence (Rodriguez, 
2015), but also because they have their own dynamics. 
Therefore, forest fires have been categorized as “complex 
events, whose occurrence is the result of the interaction 
between natural processes and human factors in a social, 
economic and cultural context” (Vasilakos, Kalabokidis, 
Hatzopoulos, Kallos, & Matsinos, 2007). 

The estimation of indicators of occurrence of fires 
or the burned area (annual burned area) in a season, 
based on the analysis of distribution of fire sizes, 
has been a recurrent practice to analyze their 
general behavior or to generate long-term indicators 
of occurrence (Malamud, Morein, & Turcotte, 1998; 
Torres-Rojo, Magaña-Torres, & Ramírez-Fuentes, 2007). 
The basic assumption is that burned surfaces follow 
a stationary process, so their size distribution does 
not change (Federal Emergency Management Agency 
[FEMA], 2002; Finney, 2005). These analyses have been 
extended to the study of large-scale fires, events that 
have acquired great relevance, because their frequency 
has increased and because they cause the greatest 
negative impact on forest cover (Jones et al., 2016). 
Studies have shown that large burned areas are a non-
stationary process; that is, their frequency distribution 
does change, making their estimation more complicated 
(Holmes, Huggett, & Westerling, 2008; Liu, Stanturf, & 
Goodrick, 2010; Sun & Tolver, 2012). 

In this context, the present work is a contribution 
to the study of size distribution and its application to 
estimate indicators of occurrence of large burned 
areas. The study aimed to present an indicator of the 
maximum area at risk of being affected by forest fires 
(SeR) in a territorial unit and over a season.

Materials and methods

Development of the maximum 
area at risk of fire indicator

The random variable “annual burned area” (y) is 
defined as the sum of the area affected by all fires 

limitado del comportamiento del fuego en una 
región particular (Miller & Ager, 2013; Thompson & 
Calkin, 2011). Las estimaciones se hacen a través de 
indicadores derivados de análisis probabilísticos de la 
información disponible (distribuciones de tamaños) 
con refinamientos a través de modelos de regresión, 
redes neuronales, programación matemática y 
modelos Markovianos (Ager, Vaillant, & Finney, 2010; 
Miller & Ager, 2013; Podur, Martell, & Stanford, 
2009; Preisler et al., 2004).  La segunda estrategia 
es la predicción de la ocurrencia o características 
de un incendio (tamaño, intensidad y duración), 
a través de modelos que predicen la probabilidad 
de observar una superficie afectada (o atributos del 
incendio) en función de las particularidades del sitio 
(v. g. pendiente, exposición, elevación, distancia a 
caminos y densidad de población) (Adab et al., 2015; 
Adab, Kanniah, & Solaimani, 2013; Ávila et al., 2010; 
Munn, Zhai, & Evans, 2003). Las estimaciones se hacen 
a través de una variedad amplia de técnicas que van 
desde modelos estadísticos de predicción, hasta redes 
y métodos bayesianos, entre otras (Stojanova, Panov, 
Kobler, Džeroski, & Taškova, 2006).

La estimación de ocurrencia de un incendio por una u 
otra estrategia es compleja, no solo por la multitud de 
factores que determinan su presencia (Rodríguez, 2015), 
sino también porque estos tienen dinámica propia. 
Por ello, los incendios forestales han sido catalogados 
como “eventos complejos, cuya ocurrencia es el 
resultado de la interacción entre procesos naturales 
y factores humanos en un entorno social, económico y 
cultural” (Vasilakos, Kalabokidis, Hatzopoulos, Kallos, 
& Matsinos, 2007). 

La estimación de indicadores de ocurrencia de incendios 
o del área siniestrada (annual burned area) en una 
temporada, con base en el análisis de distribución de 
tamaños de incendio, ha sido una práctica recurrente 
para analizar su comportamiento general o generar 
indicadores de ocurrencia de largo plazo (Malamud, 
Morein, & Turcotte, 1998; Torres-Rojo, Magaña-
Torres, & Ramírez-Fuentes, 2007). El supuesto básico 
es que las superficies siniestradas siguen un proceso 
estacionario, por lo que su distribución de tamaños 
no cambia (Federal Emergency Management Agency 
[FEMA], 2002; Finney, 2005). Estos análisis se han 
extendido al estudio de incendios de gran magnitud, 
eventos que han adquirido gran relevancia, debido 
a que su frecuencia ha aumentado y a que causan 
el mayor impacto negativo en la cobertura vegetal 
(Jones et al., 2016). Los estudios han demostrado 
que las grandes superficies incendiadas constituyen 
un proceso no estacionario; es decir, su distribución 
de frecuencias si cambia, por lo que su estimación 
es más complicada (Holmes, Huggett, & Westerling, 
2008; Liu, Stanturf, & Goodrick, 2010; Sun & 
Tolver, 2012). 
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occurring over a year in a territorial unit and, like 
any random variable, it has a density distribution 
f(y) and a distribution function F(y). This variable is 
known in the English-language literature as “annual 
burned area” (ABA) and should not be confused with 
the variable “area affected by a single fire” (SAI) in a 
territorial unit, which is most commonly used to model 
fire size distributions. The frequency distributions of 
the variable-SAI exhibits positive skewness, similar to 
that illustrated in Figure 1 for the random variable y; 
however, they are characterized by having heavy-tailed 
distribution (Jiang, Zhuang, Flannigan, & Little, 2009; 
Katz, Brush & Parlange, 2005), which complicates 
the modeling, even with the use of extreme-value 
distributions (Alvarado, Sandberg, & Pickford, 1998; 
Jiang & Zhuang, 2011). 

For the remainder of the document, the random 
variable y will be referred to as the area burned and 
is equivalent to the sum of areas affected by fires over 
a year in a territorial unit. It should be noted that 
this variable is the most used indicator to qualify the 
severity of a fire season, the risk of the area under 
timber harvesting or to associate air quality and health 
in the presence of fires (Wiitala & Carlton,1994). The 
variable also has a positive skewness (Figure 1), but 
the weight of the right tail is lower, because individual 
fires with very large effects are a plus in the sum of 
affected areas in a year and do not represent a single 
value at the end of the distribution, as happens in 
individual event distributions. 

En este contexto, el presente trabajo es una 
contribución al estudio de la distribución de tamaños 
y su aplicación para estimar indicadores de ocurrencia 
de superficies extensas afectadas por incendios. El 
estudio tuvo por objetivo presentar un indicador de 
la superficie máxima en riesgo de ser afectada por 
incendios forestales (SeR) en una unidad territorial y 
a lo largo de una temporada.

Materiales y métodos

Desarrollo del indicador de máxima 
superficie en riesgo de incendio

La variable aleatoria “superficie anual afectada por 
incendios forestales” (y) se define como la suma de la 
superficie afectada por todos los incendios ocurridos 
a lo largo de un año en una unidad territorial y, como 
toda variable aleatoria, posee una distribución de 
densidad f(y) y una función de distribución F(y). Dicha 
variable se conoce en la literatura anglosajona como 
“área quemada anual” (annual burned area) y no debe 
confundirse con la variable “superficie afectada por 
incendio” (SAI) en una unidad territorial, la cual es la 
más usada comúnmente para modelar distribuciones de 
tamaño de incendios.  Las distribuciones de frecuencia 
de la variable SAI exhiben asimetría positiva, similar a 
la que se ilustra en la Figura 1 para la variable aleatoria 
y; sin embargo, se caracterizan por tener una cola muy 
pesada (Jiang, Zhuang, Flannigan, & Little, 2009; Katz, 
Brush, & Parlange, 2005), que dificulta el modelaje, 

Figure 1.  Random variable y (annual area affected by forest fires) with density distribution f (y). The maximum 
area at risk of fire (SeR) with maximum probability (Pmax) of 5 % is illustrated.

Figura 1.  Variable aleatoria y (superficie anual afectada por incendios forestales) con distribución de densidad 
f(y). Se ilustra la máxima superficie en riesgo de incendio (SeR) con probabilidad máxima (Pmax) de 5 %.
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If f(y) is known, then the maximum area at risk of fire 
(SeR) in a territorial unit, given a level of probability 
Pmax, is defined as the area corresponding to the value 
of y in the right tail of f(y) for a level of probability Pmax; 
that is, SeR = F-1 (1- Pmax). SeR is an indicator analogous to 
Value at Risk (Jorion, 2000) popularly known as VaR and 
used as a measure of risk in the financial sector. SeR is 
illustrated in Figure 1 with Pmax = 5 %. This indicator, 
measured in area, has the attribute of isolating very 
high value events (total area affected in a year) from 
those occurring in 1- Pmax of all occasions. This allows 
the estimation of the magnitude of a rare but large-
scale loss without the effect of the most common 
events (area affected in one year). 

The determination of the Pmax value depends on the risk 
willing to be taken in the estimation of the maximum 
burned area. Financial VaR uses a probability level 
of 5 %, but occasionally uses 2.5 % and 1 % (Dowd, 
2003). For the estimation of SeR, the value Pmax = 5 % 
seems appropriate, since it approximates the relative 
frequency of large-scale fires (Taylor et al., 2013 ) and 
can also be associated with a return period ( ) 
of 20 years.

Other related indicators

Large - scale forest fires are regularly associated with 
climate change, increased fuel accumulation or poor 
incident management (Fernandes, Pacheco, Almeida, 
& Claro, 2016); therefore, fires follow a non-stationary 
pattern derived from the same characteristic of 
their main causes, which causes their probability 
distribution to change from period to period (Read & 
Vogel, 2016). This change in the distribution of large 
fires and, consequently, of the affected areas between 
year t-k and year t, can be assessed by the difference 
in the value of SeR in both times. This measure will 
be called in the subsequent Incremental SeR (ISeR); its 
calculation for a period of k years, given a Pmax ( ) 
is performed as , where SeRi,j 
corresponds to SeR in period i calculated with a Pmax = j. 

ISeR provides a metric of the magnitude and sense in 
which the risk of occurrence of an burned area changes 
over the k-year period. An increase in ISeR over a period 
of k years indicates that risk increases at increasing rate 
(nonlinear), given the nonlinearity at the tail of the 
frequency distribution (Dowd, 2003). 

The ratio between the area affected by fires in a year 
and the total forest area, in each territorial unit, is a 
relative expression of the area affected with respect 
to the forest area. This proportion constitutes a new 
random variable x (x = total burned area/forest area), 
which also has a density function f(x). Similarly, to 
SeR, the “maximum proportion of forest area at risk 

incluso con el uso de distribuciones de valores 
extremos (Alvarado, Sandberg, & Pickford, 1998; Jiang 
& Zhuang, 2011). 

En lo que resta del documento, la variable aleatoria y 
será referida como la superficie afectada y equivale a la 
suma de superficies afectadas por incendios a lo largo 
de un año en una unidad territorial. Cabe señalar que 
esta variable es el indicador más usado para calificar 
la severidad de una temporada de incendios, el riesgo 
de la superficie bajo aprovechamiento maderable o 
para asociar la calidad del aire y salud en presencia de 
incendios (Wiitala & Carlton,1994). La variable también 
tiene una asimetría positiva (Figura 1), pero el peso de 
la cola derecha es menor, debido a que los incendios 
individuales con afectaciones muy grandes son un 
sumando más en la suma de superficies afectadas en 
un año y no representan un valor único en el extremo 
de la distribución, como sucede en distribuciones de 
eventos individuales. 
                      
Si f(y) es conocida, entonces la máxima superficie en 
riesgo de incendio (SeR) en una unidad territorial, 
dado un nivel de probabilidad Pmax, se define como 
la superficie que corresponde al valor de y en la cola 
derecha de f(y) para un nivel de probabilidad Pmax; es 
decir, SeR = F-1 (1- Pmax). La SeR es un indicador análogo 
al valor en riesgo (Jorion, 2000) conocido popularmente 
como VaR y usado como medida de riesgo en el sector 
financiero. La SeR se ilustra en la Figura 1 con Pmax = 5 %. 
Este indicador, medido en superficie, tiene el atributo 
de aislar los eventos de valores muy altos (superficie 
total afectada en un año) de los que ocurren en 1- Pmax 
de las ocasiones. Con ello se logra estimar la magnitud 
de una pérdida poco frecuente, pero de gran escala, sin 
el efecto de los eventos (superficie afectada en un año) 
más comunes. 

La determinación del valor de Pmax depende del riesgo 
que se esté dispuesto a tomar en la estimación de la 
superficie de máxima afectación. El VaR financiero usa 
un nivel de probabilidad de 5 %, aunque ocasionalmente 
utiliza 2.5 % y 1 % (Dowd, 2003). Para la estimación de 
la SeR, el valor Pmax = 5 % parece apropiado, ya que 
aproxima la frecuencia relativa de incendios de gran 
magnitud (Taylor et al., 2013) y también puede asociarse 
a un periodo de retorno (  ) de 20 años.

Otros indicadores relacionados

Los incendios forestales de gran magnitud regularmente 
se asocian al cambio climático, mayor acumulación 
de combustibles o al manejo deficiente de incidentes 
(Fernandes, Pacheco, Almeida, & Claro, 2016); por ello, 
los incendios siguen un patrón no estacionario derivado 
de la misma característica de sus principales causales, 
lo cual origina que su distribución de probabilidades 
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of fire” (PSeR) with a confidence level Pmax, was defined 
as the proportion in the right tail of f(x) given a Pmax 
probability level.

If f(x) is known for two consecutive moments, it is 
possible to calculate a difference in the maximum 
proportion of area at risk of fire (PSeR) in a period of 
k years and given a Pmax( ). This difference will 
be referred to as Incremental PSeR (IPSeR), which is 
estimated as , where 
PSeRi,j corresponds to the PSeR in the period i calculated 
with Pmax = j.

Data

The area affected by forest fires per entity and per year 
was obtained from CONAFOR for the period 1970-2018. 
The area covered by forests varies year after year as a 
result of land-use change processes. The estimation of 
this coverage has a variable level of accuracy. Therefore, 
the forest area was considered constant over time and 
was determined based on the last available land use and 
vegetation cover (Series VI of the Instituto Nacional de 
Estadística y Geografía [INEGI], 2015). This assumption 
makes the form of the empirical distribution of the 
variable PSeR [f(x)] similar to that of the variable SeR 
[f(x)], since X = Y/k, where k is constant in all years.

Method

Each of the forest burned area data series, by state, 
was adjusted to several distribution function models 
to identify the best model fit. The models tested were: 
gama, exponential, lognormal and Weibull, selection 
based on the recommendations of several authors 
(Alvarado et al., 1998; Cui & Perera, 2008; Cumming, 
2001; Jiang & Zhuang, 2011). The probability function 
was adjusted from the estimation of an empirical 
distribution [ ] (Forbes, Evans, Hastings, & Peacock, 
2011). This distribution was adjusted to the test model 
(gamma, exponential, lognormal and Weibull) using 
the Dmax statistic from the Kolmogorov-Smirnov 
test, as a criterion for minimization of deviations. 
The statistic is defined as , where  
represents the distribution function predicted under 
the hypothetical model. This methodology ensured 
that estimates met the minimum Dmax criterion from 
the fit. The fit was made using the Risk Simulator™ 
application, developed for Excel.

The performance of each model was evaluated 
with the significance of the Dmax statistic and two 
qualitative criteria. The first criterion qualified the 
model with the best significance with a value of 1, 
the model with the next best significance with 2 and 
so on until 4, corresponding to the model with the 

cambie de periodo a periodo (Read & Vogel, 2016). 
Este cambio en la distribución de incendios grandes y, 
por consecuencia, de las superficies afectadas entre el 
año t-k y el año t, se puede evaluar por la diferencia 
en el valor de la SeR en ambos tiempos. A esta medida se 
le denominará en lo subsecuente SeR incremental (ISeR); su 
cálculo para un periodo de k años, dada una Pmax( ) 
se realiza como , donde SeRi,j 

corresponde a la SeR en el periodo i calculada con una 
Pmax = j. 

La ISeR brinda una métrica de la magnitud y el sentido 
en que el riesgo de ocurrencia de una superficie afectada 
cambia en el periodo de k años. Un aumento en la ISeR 
en un periodo de k años indica que el riesgo aumenta 
a tasa creciente (no lineal), dada la no linealidad de la 
cola de la distribución de frecuencias (Dowd, 2003). 

La razón entre la superficie afectada por incendios en 
un año y la superficie forestal total, en cada unidad 
territorial, es una expresión relativa de la superficie 
afectada respecto a la superficie forestal. Esta 
proporción constituye una nueva variable aleatoria x (x 
= superficie total incendiada/superficie forestal), la cual 
también tiene una función de densidad f(x). De manera 
análoga a la SeR, la “máxima proporción de superficie 
forestal con riesgo de ser afectada por incendios” 
(PSeR) con un nivel de confianza Pmax, se definió como 
la proporción en la cola derecha de f(x) dado un nivel 
de probabilidad Pmax.

Si f(x) es conocida para dos momentos consecutivos, es 
posible calcular una diferencia en la proporción máxima 
de superficie en riesgo de incendio (PSeR) en un 
periodo de k años y dada una Pmax( ). Esta diferencia 
se denominará PSeR incremental (IPSeR), la cual se estima 
como , donde PSeRi,j 
corresponde a la PSeR en el periodo i calculada con una 
Pmax = j.

Datos

La superficie afectada por incendios forestales por 
entidad y por año se obtuvo de la CONAFOR para el 
periodo 1970-2018. La superficie con cobertura forestal 
varía año con año derivado de los procesos de cambio 
de uso del suelo. La estimación de esta cobertura 
tiene un nivel variable de precisión. Por ello, la 
superficie forestal se consideró constante en el tiempo 
y se determinó con base en la última cobertura de 
vegetación disponible (serie VI del Instituto Nacional 
de Estadística y Geografía [INEGI], 2015). Este supuesto 
hace que la forma de la distribución empírica de la 
variable PSeR [f(x)] sea similar a aquella de la variable 
SeR [f(x)], dado que X = Y/k, donde k es constante en 
todos los años.
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least significance. The rating of each model across all 
states was summed up and used as a first indicator of 
the most recommended model. The second criterion 
rated the model that provided the best fit with 1 and 0 
for the others. The sum of these values, divided by the 
number of features, defines the proportion of times a 
model provided the best fit.

Once the most significant model was chosen, the SeR 
was calculated for Pmax values of 1 %, 5 %, 20 % and 
90 % for the series 1970-2008, 1970-2013 and 1970-
2018, following the best fit model for each entity (i. e. 
a generic model was not used for all entities). These 
Pmax values were chosen since they correspond to return 
periods of 100, 20, 5 and 1 year, respectively.

In order to identify the predictive power of the 
developed indicators, the prediction for year t+1 of 
a model composed by SeR and ISeR was contrasted 
with the prediction for the same year based on the 
affected area in the previous year variable (SAA), 
which theoretically has greater predictive power. 
The prediction model with SeR and ISeR is based on 
a linear model of two components: i) a systematic or 
inevitable risk estimator related to the inherent risk of 
the territorial unit and ii) an estimator of the trend 
of the area at risk, which, as noted, approximates the 
accumulation of fuels. The systematic risk component 
was defined by SeR with Pmax = 90 % (SeR0.90), because this 
area is the expected in a one-year return period, while 
the trend component was approached with the ISeR 
of the last k = 5 años (ISeR5,0.90). The prediction model 
has the basic form SAAt+1 = ß0 + ß1 SeRt,0.90 + ß2 ISeR5,0.90 + 
e, where the ßi correspond to model parameters and e 
corresponds to the error term. This model is analogous 
to a search algorithm in which, given a reference 
point, the next point is approached with a direction 
and a step size. The step size is defined by the value of 
the SeRPmax, while the direction is approximated by the 
ISeRk,Pmax estimated with the same Pmax. Variants of this 
model were compared with the lag prediction model, 
defined by SAAt+1 = ß0 + ß1 SAAt + e. The comparison was 
made with the criterion of R2. 

Results

Functional form of f(y)

The fits had high statistical significance for the 
Dmax statistic in all states, with the exception of Baja 
California Sur, where it was necessary to eliminate 
observations with zero burned area to improve the 
quality of the fits. The lognormal model had the best 
rating according to qualitative criteria, followed by the 
gamma, exponential and finally the Weibull models 
(Table 1). This shows that burned area distribution 
follows a lognormal function in most cases, as several 

Métodos

Cada una de las series de datos de superficie afectada 
a causa de incendios forestales, por entidad, se 
ajustó a varios modelos de función de distribución 
para identificar el modelo de mejor ajuste. Los 
modelos probados fueron: gama, exponencial, 
lognormal y Weibull, selección realizada con base en 
las recomendaciones de varios autores (Alvarado et 
al., 1998; Cui & Perera, 2008; Cumming, 2001; Jiang & 
Zhuang, 2011). La función de probabilidad se ajustó a 
partir de la estimación de una distribución empírica 
[ ] (Forbes, Evans, Hastings, & Peacock, 2011). Esta 
distribución se ajustó al modelo de prueba (gama, 
exponencial, lognormal y Weibull) con el uso del 
estadístico Dmax de la prueba Kolmogorov-Smirnov, 
como criterio de minimización de desviaciones. El 
estadístico se define como , donde  
representa la función de distribución predicha bajo 
el modelo hipotético. Esta metodología aseguró que 
los estimadores cumplieran con el criterio Dmax 
mínimo desde el ajuste. La estimación se realizó con 
la aplicación Risk Simulator™, desarrollada para Excel.

El desempeño de cada modelo se evaluó con la 
significancia del estadístico Dmax y dos criterios 
cualitativos. El primer criterio calificó con un valor de 
1 al modelo con mejor significancia, 2 al modelo con la 
siguiente mejor significancia y así sucesivamente hasta 
4 que corresponde al modelo de menor significancia. 
La calificación de cada modelo en todas las entidades 
se sumó y se usó como un primer indicador del modelo 
más recomendable. El segundo criterio calificó con 1 al 
modelo que brindó el mejor ajuste y 0 para los demás. 
La suma de estos valores, dividido entre el número de 
entidades, define la proporción de ocasiones en que un 
modelo brindó el mejor ajuste.

Una vez elegido el modelo de mayor significancia se 
procedió a calcular la SeR para valores de Pmax de 1 %, 
5 %, 20 % y 90 % para las series 1970-2008, 1970-2013 y 
1970-2018, siguiendo el modelo de mejor ajuste para 
cada entidad (i. e. no se usó un modelo genérico para 
todas las entidades). Estos valores de Pmax se eligieron 
dado que corresponden a periodos de retorno de 100, 
20, 5 y 1 año, respectivamente.

A fin de identificar el poder predictivo de los 
indicadores desarrollados, la predicción para el año 
t+1 de un modelo compuesto por la SeR y la ISeR se 
contrastó con la predicción para el mismo año basada 
en la variable superficie afectada en el año anterior (SAA), 
variable que en teoría tiene mayor poder predictivo. El 
modelo de predicción con la SeR y la ISeR se basa en un 
modelo lineal de dos componentes: i) un estimador de 
riesgo sistemático o inevitable relacionado con el riesgo 
inherente de la unidad territorial y ii) un estimador de la 
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authors have mentioned (Holmes et al., 2008; Reed, 
2001; Strauss, Bednar, & Mees, 1989).

Maximum area at risk of fire (SeR)

Figure 2 shows the maximum area at risk of fire (SeR) 
for Pmax values at 1 % (SeR1 %) and 5 % (SeR5 %). In this graph 

tendencia de la superficie en riesgo, el cual como se ha 
señalado, aproxima la acumulación de combustibles. El 
componente de riesgo sistemático se definió por la SeR 
con Pmax = 90 % (SeR0.90), debido a que esta superficie es la 
esperada en un periodo de retorno de un año, mientras 
que el componente de tendencia se aproximó con la 
ISeR de los últimos k = 5 años (ISeR5,0.90). El modelo de 

Table 1.  Rating of the distribution function models tested in the burned area data series by entity.
Cuadro 1.  Calificación de los modelos de función de distribución probados en las series de datos de superficie 

afectada a causa de incendios forestales por entidad.

Model / Modelo
Ordered significance* / 

Significancia ordenada* 
Entities with better fit (%) / 

Entidades con mejor ajuste (%)

Exponential / Exponencial 75 3 

Gama 67 16 

Lognormal 38 81 

Weibull 120 0 

* Lower value means greater significance.

*Valor menor significa mayor significancia.

Figure 2. Maximum area at risk of fire (SeR) estimates for maximum probability values (Pmax) at 1 and 5 %.
Figura 2.  Estimaciones de superficie máxima en riesgo de incendio (SeR) para valores de probabilidad máxima 

(Pmax) al 1 y 5 %.
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the states with the largest forest area (Chihuahua, 
Durango, Jalisco, Quintana Roo, Oaxaca, Chiapas 
and Guerrero) stand out, derived from their greater 
exposure to risk (greater forest area). Some states such 
as Coahuila, Sonora, Baja California, Zacatecas and 
Nuevo Leon showed a significantly large SeR; however, 
the result may be misleading since the area reported as 
affected is not necessarily related to the wooded area. 

Figure 2 highlights the differences between SeR1 % 
and SeR5 % for states such as Quintana Roo, Coahuila, 
Sonora, Oaxaca, Campeche, Chiapas and Querétaro. 
The differential shows a greater occurrence of 
large effects in return periods of 100 years (SeR1 %). 
Presumably, the differential could be associated with 
particular fuel accumulation conditions, climatic 
conditions (extreme temperatures and specific 
winds), fire regimes, efficiency of suppression 
actions or even socio-economic conditions that create 
an environment of increased risk for the spread of 
large-scale events. These differences contrast with 
states such as Mexico City, Mexico State or Sinaloa, 
where it is evident that extreme events (i. e. big total 
effects in a year) in a 100-year return period, are not 
proportionally larger in relation to those that could 
be observed in a 20-year period.

Maximum proportion of area at risk of fire (PSeR)

Unlike SeR, PSeR is comparable between territorial 
units, regardless of its size and amount of forest area; 
therefore, it is a relative index. The PSeR evaluated 
with Pmax = 5 % and Pmax = 1 % in each entity, for the 
period 1970-2018, is shown in Figure 3. In this figure, 
considering Pmax = 5 %, the values of entities with PSeR 
lower than 3 % were divided from those with higher 
proportion. The results showed some interesting 
patterns. The states with the largest forest area are 
within the group of entities with PSeR < 3 %; that is, the 
proportionally largest effects do not occur in the states 
with the largest forest area. In this way, states such as 
Coahuila, Baja California, Nuevo Leon and Tabasco, 
with a low proportion of forest area, have high PSeR 
values. Also, the case of Baja California stands out with 
very high values of PSeR (26 %). However, this value is 
misleading since PSeR is relative to forest cover and 
much of the fires in this state are grassland or semi-
arid vegetation. In a similar situation are the states of 
Coahuila and Nuevo Leon.

Another relevant aspect in the results is the PSeR with 
Pmax = 1 % (PSeR1 %) for Quintana Roo, a state with a high 
incidence of large events; its PSeR1 % is proportionally 
higher than the PSeR5 %, suggesting greater probability 
of observing more isolated events of large-magnitude 
than events of medium magnitude.  The same case 
is observed for states such as Campeche, Tamaulipas, 
Zacatecas, Yucatan, Queretaro and Baja California.

predicción tiene la forma básica SAAt+1 =  ß0 + ß1 SeRt,0.90 + 
ß2 ISeR5,0.90  + e, donde las ßi corresponden a parámetros 
del modelo y e corresponde al término de error. Este 
modelo es análogo a un algoritmo de búsqueda en 
el cual, dado un punto de referencia, se aproxima el 
siguiente punto con una dirección y un tamaño de 
paso. El tamaño de paso está definido por el valor de 
la SeRPmax, mientras que la dirección se aproxima por la 
ISeRk,Pmax estimada con la misma Pmax. Variantes de este 
modelo se compararon con el modelo de predicción de 
un retraso, definido por SAAt+1 = ß0 + ß1 SAAt + e. La 
comparación se realizó con el criterio de R2. 

Resultados

Forma funcional de f(y)

Los ajustes tuvieron significancia alta para el 
estadístico Dmax en todos los estados, a excepción de 
Baja California Sur, entidad en la que fue necesario 
eliminar las observaciones con nula superficie afectada 
para mejorar la calidad de los ajustes. El modelo 
lognormal brindó la mejor calificación de acuerdo con 
los criterios cualitativos, seguido del modelo gama, 
exponencial y al final el modelo Weibull (Cuadro 1).  Lo 
anterior muestra que la distribución de incendios sigue 
una función lognormal en la mayoría de los casos, tal 
y como lo han referido varios autores (Holmes et al., 
2008; Reed, 2001; Strauss, Bednar, & Mees, 1989).

Superficie máxima en riesgo de incendio (SeR)

La Figura 2 muestra la superficie máxima en riesgo de 
incendio (SeR) para valores de Pmax al 1 % (SeR1 %) y al 
5 % (SeR5 %). En este gráfico sobresalen los estados de 
mayor superficie forestal (Chihuahua, Durango, Jalisco, 
Quintana Roo, Oaxaca, Chiapas y Guerrero), derivado 
de su mayor exposición al riesgo (mayor superficie 
arbolada). Algunos estados como Coahuila, Sonora, Baja 
California, Zacatecas y Nuevo León mostraron una SeR 
significativamente grande; sin embargo, el resultado 
puede ser engañoso dado que la superficie reportada 
como afectada no necesariamente está relacionada con 
la superficie arbolada. 

La Figura 2 resalta las diferencias entre la SeR1 % y la 
SeR5 % para estados como Quintana Roo, Coahuila, 
Sonora, Oaxaca, Campeche, Chiapas y Querétaro.  El 
diferencial muestra una mayor ocurrencia de grandes 
afectaciones en periodos de retorno de 100 años 
(SeR1 %). Presumiblemente, el diferencial podría estar 
asociado a condiciones particulares de acumulación 
de combustibles, condiciones climáticas (temperaturas 
extremas y vientos específicos), regímenes de fuego, 
eficiencia de las acciones de supresión o incluso de 
condiciones socioeconómicas que crean un entorno de 
mayor riesgo para la propagación de eventos de gran 
escala. Estas diferencias contrastan con entidades 
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Proportion of area at incremental risk (IPSeR)

To exemplify the incremental PSeR (IPSeR) a period 
k = 10 years was used. The difference was obtained by 
comparing the PSeR for the period 1970-2018 with that 
for the period 1970-2008 (i. e. the evaluated period is 
2009-2018). In all cases, the comparison was made with 
the functional form f(x) that had the best fit for each 
state. Figure 4 shows three groups of entities: the first 
composed of entities where IPSeR is increasing, the 
second group with entities where there is practically no 
change, and the third group where IPSeR is decreasing 
for the period 2009-2018. Increases in IPSeR above 
2 % are only observed in Mexico City, Baja California, 
Quintana Roo, and Aguascalientes. In contrast, 
reductions in IPSeR are only observed in Coahuila; the 
rest of the entities appear to have very small changes 
during the analyzed period.

IPSeR is an indicator of the direction in which the PSeR 
changes during the analyzed period and is most likely 
related to the amount of fuel available or the higher 
incidence of causative agents in a territorial unit. An 
example of their relationship with fuel availability are 
the states of Coahuila, Chiapas, Mexico and Nuevo Leon, 
which had significant burned areas in the previous 

como la Ciudad de México, Estado de México o Sinaloa, 
donde es evidente que los eventos extremos (i. e. 
afectaciones totales grandes en un año) en un periodo 
de retorno de 100 años, no son proporcionalmente 
más grandes en relación con aquellos que podrían 
observarse en un periodo de 20 años.

Máxima proporción de la superficie 
en riesgo de incendio (PSeR)

A diferencia de la SeR, la PSeR es comparable entre 
unidades territoriales, independientemente de su 
tamaño y cantidad de superficie forestal; por ello es 
un índice relativo. La PSeR evaluada con Pmax  = 5 % y 
Pmax = 1 % en cada entidad, para el periodo 1970-2018, 
se muestra en la Figura 3. En esta figura, considerando 
Pmax  = 5 %, los valores de las entidades con PSeR menor de 
3 % se dividieron de aquellas con mayor proporción. Los 
resultados mostraron algunos patrones interesantes. 
Los estados de mayor superficie forestal se encuentran 
dentro del grupo de entidades con PSeR < 3 %; esto 
es, las afectaciones proporcionalmente mayores 
no ocurren en las entidades de mayor superficie 
forestal. De esta forma, entidades como Coahuila, Baja 
California, Nuevo León y Tabasco, con baja proporción 
de superficie forestal, presentan altos valores de PSeR. 

Figure 3. Estimates of the maximum proportion of area at fire risk (PSeR) for maximum probability values (Pmax) 
of 1 % and 5 %. Entities with PSeR < 3 % considering Pmax = 5 % (a) and PSeR ≥ 3% considering Pmax = 5 % 
(b), in the period 1970-2018.

Figura 3.  Estimaciones de la máxima proporción de la superficie en riesgo de incendio (PSeR) para valores de 
probabilidad máxima (Pmax) de 1 % y 5 %. Entidades con PSeR < 3 % considerando Pmax = 5 % (a) y PSeR ≥ 3 % 
considerando Pmax = 5 % (b), en el periodo 1970-2018.
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period (2009-2018) and caused a reduction in fuel 
volume. Such a reduction presumably decreased the 
post-period effects, which is reflected in an IPSeR < 0. 
On the other hand, states with positive IPSeR (Mexico 
City, Baja California, Quintana Roo and Aguascalientes) 
are characterized by having presented extensive areas 
affected in a period greater than 10 years, before 
2009, so they most likely recovered the inventory 
of fuels along the evaluated period (2009-2018) and 
show greater risk of having extensive burned areas 
after that year.  A result that reinforces this argument is 
that, in these entities, the average number of fires in 
the analyzed period was statistically higher than the 
average for the whole series.

Prediction of affected areas

Table 2 shows the results of the adjustments made for 
the prediction of SAA in 2014, based on variants of the 
models indicated in the methodological section. The 
ISeR corresponds to that between the periods 2009-2013 
(k = 5). In all cases a logarithmic transformation was 
used, because the best fit model is a lognormal model. 
Model C provided estimators whose sum of  ßi is close to 
the unit, which is consistent with the theoretical model 

Asimismo, el caso de Baja California destaca con valores 
muy altos de PSeR (26 %). No obstante, este valor es 
engañoso dado que la PSeR es relativa a la cobertura 
forestal y gran parte de los incendios en esta entidad 
corresponden a pastizales o vegetación semiárida. En 
una situación similar se encuentran los estados de 
Coahuila y Nuevo León.
    
Otro aspecto relevante en los resultados es la PSeR 
con Pmax = 1 % (PSeR1 %) para Quintana Roo, entidad con 
alta incidencia de eventos grandes; su PSeR1 % es 
proporcionalmente más alta que la PSeR5 %, lo que 
sugiere mayor probabilidad de que se observen eventos 
más aislados de gran magnitud que eventos de mediana 
magnitud.  El mismo caso se observa para entidades 
como Campeche, Tamaulipas, Zacatecas, Yucatán, 
Querétaro y Baja California.

Proporción de la superficie en 
riesgo incremental (IPSeR)

Para ejemplificar la PSeR incremental (IPSeR) se usó un 
periodo k = 10 años. La diferencia se obtuvo comparando 
la PSeR del periodo 1970-2018 con aquella del periodo 
1970-2008 (i. e. el periodo evaluado es 2009-2018). En 

Figure 4. Values of proportion of area at incremental risk (IPSeR10, 5 %) of fires between 2009 and 2018.
Figura 4.  Valores de proporción de la superficie en riesgo incremental (IPSeR10, 5 %) de incendios entre 2009 y 2018.
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SAAt+1 =  ß0 + ß1 SeRt.0.90 + ß2 ISeR5,0.90 + e and a  ß0 restricted 
to zero. In contrast, model A did not restrict ß0 = 0, 
although the adjustment showed that this estimator 
is statistically equal to zero (ß = 0), which confirmed 
the expected result for model 3. Model D included a 
nonlinear component for SeR0.90 (double logarithm of 
SeR0.90) and shows that the sum of ßi moved away from 
the unit, but with more robust estimators. Finally, the 
autoregressive model (B) showed an extraordinary fit 
for the 2014 prediction. However, this model has an 
obvious restriction on predicting infrequent events, as 
it requires year-over-year calibration, unlike the more 
consistent SeR-based models. In summary, model D 
showed the best fit; however, model C showed the best 
parsimony and reliability.

Discussion

Adjustments for all distributions of annual burned area 
over a year, and for each of the   states, showed high 
statistical significance (P ≤ 0.05). Several authors have 
pointed out that the Pareto distribution is the one that 
best adjusts the size distributions of individual fires, 
since these are very heavy-tailed (Alvarado et al., 1998; 
Cui & Perera, 2008; Irland, 2013; Schoenberg, Peng, & 
Woods, 2003); however, the distributions of the total 
burned area for a year in a territorial unit did not 
show such heavy tail, and therefore did not require 
the use of extreme value models (i . e. Pareto, Gumbel, 
Fréchet or Weibull of more than two parameters) for 
its fit or the application of special fitting techniques 
(i. e. probabilistically weighted model). In all cases, 
the models tested to adjust the size distributions of the 
effects in each of the states showed high goodness of 
fit. The lognormal model stood out for being the best 

todos los casos, la comparación se hizo con la forma 
funcional f(x) que tuvo mejor ajuste para cada estado. La 
Figura 4 muestra tres grupos de entidades: el primero 
compuesto por entidades donde la IPSeR es creciente, 
el segundo grupo con entidades donde prácticamente 
no hay cambio, y el tercer grupo donde la IPSeR es 
decreciente para el periodo 2009-2018. Los aumentos 
en la IPSeR superiores a 2 % solo se observan en la 
Ciudad de México, Baja California, Quintana Roo y 
Aguascalientes. Por el contrario, reducciones en la 
IPSeR solo se observan en Coahuila; el resto de las 
entidades parece tener cambios muy pequeños durante 
el periodo analizado.

La IPSeR es un indicador de la dirección en 
que la PSeR cambia durante el periodo analizado 
y muy probablemente se relaciona con la cantidad 
de combustible disponible o la mayor incidencia de 
agentes causales en una unidad territorial. Un ejemplo 
de su relación con la disponibilidad de combustibles son 
los estados de Coahuila, Chiapas, México y Nuevo León, 
que tuvieron superficies incendiadas importantes en el 
periodo previo (2009-2018) y causaron una reducción 
en el volumen de combustibles. Tal reducción 
presumiblemente disminuyó las afectaciones 
posteriores a este periodo, lo cual se refleja en una IPSeR 
< 0. Por el contrario, entidades con IPSeR positivos 
(Ciudad de México, Baja California, Quintana Roo y 
Aguascalientes) se caracterizan por haber presentado 
superficies extensas afectadas en un periodo mayor de 
10 años, antes de 2009, por lo que muy probablemente 
recuperaron el inventario de combustibles en el periodo 
evaluado (2009-2018) y muestran mayor riesgo de tener 
superficies extensas afectadas después de dicho año.  
Un resultado que refuerza este argumento es que, en 

Table 2. Models used to predict the area affected by fires in the previous year compared to 2014.
Cuadro 2. Modelos usados para la predicción de la superficie afectada por incendios en el año anterior con 

respecto al 2014.

Variable
Models / Modelos

A B C D

Intercept / Intercepto 14.3744 ns

ln(Affected area 2013) / ln(Superficie afectada 2013) 0.8351*

ln(ISeR 2009-2013) 1.3237* 0.4871* 0.8189*

ln(SeR (Pmax = 90 %)) -0.3916 ns 0.4170* 1.9051*

ln[ln(SeR (Pmax = 90 %))] 1.2691 ns -7.0846*

R2 adjusted / R2 ajustado 0.5402 0.9431 0.9349 0.9416

Observations / Observaciones 32 32 32 32

ns: no significant; *significant (P ≤ 0.05).

ns: no significativo; *significativo (P ≤ 0.05).
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fit in 75 % of states, in agreement with Taylor et al. 
(2013), who propose this model for the same variable 
(sum of areas burned in a season).

The SeR approximates the occurrence of very large 
events with a level of probability, making it an 
indicator of possible large-scale impact. The indicator 
is relevant since large events constitute less than 
5 % of occurrence (Taylor et al., 2013); however, they 
are the ones that cause the greatest damage (Strauss 
et al., 1989). The SeR does not consider factors such 
as intensity of the event or the effects of fire on the 
structure or composition of the affected vegetation; 
variables that are more linked to short-term risk indices 
and of local application as defined by Adab et al. (2015), 
Ager et al. (2010), Keeley et al. (1999), Podur et al. (2009) 
y Preisler et al. (2004). Nevertheless, an estimator of 
the occurrence of extreme events in a territorial unit is 
useful for estimating a budget scenario in the presence 
of atypical (large) events, as well as estimating the 
opportunity cost of a forest area’s lack of protection. As 
far as is known, there are no risk indicators similar to 
those proposed in this study that have been reported in 
the literature. The closest is Jiang and Zhuang (2011), 
who used extreme value distributions to estimate the 
return periods of large forest fires using individual fire 
data. As noted above, the return period is related to 
the SeR as the size distribution is estimated and the 
extreme values are identified. The other close estimator 
is that of Podur, Martell, and Knight (2002), who used 
the distribution of the sum of annually burned areas 
(annually burned area), to assess the change in fire 
damage in Canada; their approximation uses moments 
of distribution to identify differences in burned areas, 
but did not estimate a probability of occurrence of 
burned areas over large expanses.  

The PSeR is a particularly useful indicator for a central 
planner, such as CONAFOR, as it provides information to 
prioritize regions or states in the face of the possibility 
of having an atypical event (total area burned) of great 
magnitude. The knowledge of the regions or entities 
that may have the greatest risk of presenting an event 
of this nature improves the planning of the needs of 
equipment, human and financial resources that must 
be invested in each entity to face the contingencies.  

Several authors point out that large, atypical events 
are more related to the amount of fuel available than 
to weather conditions, combined with poor incident 
management (Fernandes et al., 2016; Taylor et al., 2013). 
Therefore, recurring recommendations to avoid large, 
atypical events are to reduce the amount of fuels where 
possible and to increase monitoring of this material, 
particularly in regions near the urban interface 
(Fernandes et al., 2016). In this context, the ISeR is a 
relevant indicator, since it shows the dynamics of the 

estas entidades, el número promedio de incendios en 
el periodo analizado fue estadísticamente superior al 
promedio de toda la serie.

Predicción de superficies afectadas

El Cuadro 2 muestra los resultados de los ajustes 
realizados para la predicción de la SAA en el año 2014, 
a partir de variantes de los modelos señalados en la 
sección metodológica. La ISeR corresponde a aquella 
entre los periodos 2009-2013 (k = 5). En todos los casos 
se usó una transformación logarítmica, debido a que 
el modelo de mejor ajuste es un modelo lognormal. El 
modelo C brindó estimadores cuya suma de ßi es cercana 
a la unidad, lo cual es consistente con el modelo teórico 
SAAt+1 =  ß0 + ß1 SeRt.0.90 + ß2 ISeR5,0.90  + e y una ß0 restringida 
a cero. Por el contrario, en el modelo A no se restringió 
ß0 = 0, aunque el ajuste mostró que este estimador es 
estadísticamente igual a cero (ß = 0), lo que confirmó 
el resultado esperado para el modelo 3. El modelo D 
incluyó un componente no lineal para la SeR0.90 (doble 
logaritmo de SeR0.90) y muestra que la suma de ßi se 
alejó de la unidad, pero con estimadores más robustos. 
Finalmente, el modelo autorregresivo (B) mostró un 
ajuste extraordinario para la predicción de 2014. No 
obstante, este modelo tiene una evidente restricción 
para predecir eventos poco frecuentes, ya que requiere 
de una calibración año con año, a diferencia de los 
modelos basados en SeR que son más consistentes. 
En resumen, el modelo D mostró el mejor ajuste; sin 
embargo, el modelo C presentó mejor parsimonia 
y fiabilidad.

Discusión

Los ajustes de todas las distribuciones de superficie 
anual afectada por incendios a lo largo de un año, y 
para cada una de las entidades federativas, mostraron 
alta significancia estadística (P ≤ 0.05). Varios autores 
han señalado que la distribución Pareto es la que 
mejor ajusta las distribuciones de tamaño de incendios 
individuales, ya que estas tienen cola muy pesada 
(Alvarado et al., 1998; Cui & Perera, 2008; Irland, 2013; 
Schoenberg, Peng, & Woods, 2003); sin embargo, 
las distribuciones de la superficie total afectada por 
incendios durante un año en una unidad territorial no 
mostraron colas tan pesadas, por lo que no requirieron 
el uso de modelos de valores extremos (i. e. Pareto, 
Gumbel, Fréchet o Weibull de más de dos parámetros) 
para su ajuste o la aplicación de técnicas de ajuste 
especial (i. e. modelo ponderado probabilísticamente). 
En todos los casos, los modelos probados para ajustar 
las distribuciones de tamaño de las afectaciones en cada 
una de las entidades mostraron alta bondad de ajuste. 
El modelo lognormal destacó por ser el de mejor ajuste 
en 75 % de los estados, en concordancia con Taylor 
et al. (2013), quienes proponen dicho modelo para la 
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SeR over time and, thus, the probable accumulation 
of fuel given the greater or lesser occurrence of large, 
atypical events. A small (negative) ISeR is related to 
recent large, atypical events, which have probably 
consumed fuel; so a smaller occurrence of such events 
would be expected in the short term. The relationship 
seems to have theoretical bases; however, more research 
is needed to calibrate the fuel accumulation time with 
the periodicity of the calculation of ISeR, since this 
variable could be related to others non-observables 
such as extreme climatological events, increased 
anthropogenic activity linked to the occurrence of fires, 
differentiated suppression actions or poor incident 
management, as indicated by Fernandes et al. (2016).

Based on estimates, the states with the largest forest 
area have smaller PSeR but relatively larger SeR. The 
inverse relationship can be attributed to factors such 
as: 1) states with less forest area have forests more 
vulnerable to fire; 2) states with higher tree cover 
presumably have more area under timber management, 
which leads to the development of numerous activities 
for fuel control or improvement in the timeliness and 
effectiveness of the suppression activities being carried 
out.  In any case, more research is needed on this 
subject, the result of which can be of great value in the 
planning of fire prevention and suppression activities.

The SeR, PSeR and IPSeR indicators are practical tools 
for estimating the occurrence of large fire effects. 
The three indicators can be recalculated year by year 
on the basis of new fire statistics and used in a public 
application to update such important variables in 
the planning of fire seasons as: 1) the estimate of the 
maximum area expected to be burned in each state or 
region; 2) the expected burned area at the beginning of 
the season and which can be used as an early warning 
approach and a tool for planning fire prevention 
and control activities; 3) the prioritization of regions 
according to their risk to suffer large damage, which 
is a tool for budgeting of central planners; and  4) the 
estimation of priorities for fire prevention and fire 
management activities, which results from the potential 
that IPSeR has for estimating fuel accumulation. 

The analysis of frequency distributions of fire sizes 
is an area of study that can provide more information 
about the dynamics of these events and their impact 
on the environment and society. Topics such as the 
dynamics of joint distributions of surface and number 
of fires or the analysis of the spatial and temporal 
distribution of such distributions, undoubtedly, open 
up a wide space for research.

Conclusions

The distribution of the sum of areas affected by forest 
fires year on year in a state can be modeled with an 

misma variable (suma de superficies incendiadas en 
una temporada). 

La SeR aproxima la ocurrencia de eventos muy grandes 
con un nivel de probabilidad, por lo que es un indicador 
de una posible afectación de gran escala. El indicador es 
relevante dado que los eventos grandes constituyen 
menos de 5 % de ocurrencia (Taylor et al., 2013); sin 
embargo, son los que ocasionan daños mayores 
(Strauss et al., 1989). La SeR no considera factores como 
intensidad del evento o los efectos del incendio sobre 
la estructura o composición de la vegetación afectada; 
variables que están más ligadas a los índices de riesgo 
de corto plazo y de aplicación local como los definidos 
por Adab et al. (2015), Ager et al. (2010), Keeley et al. 
(1999), Podur et al. (2009) y Preisler et al. (2004). No 
obstante, un estimador de la ocurrencia de eventos 
extremos en una unidad territorial resulta útil para 
estimar un escenario presupuestal en presencia de 
eventos atípicos (grandes), así como estimar el costo 
de oportunidad de la falta de protección de un área 
forestal. Hasta donde se tiene conocimiento, no hay 
indicadores de riesgo similares a los propuestos en este 
estudio que hayan sido reportados en la literatura. El 
más cercano es el de Jiang y Zhuang (2011), quienes 
usaron distribuciones de valor extremo para estimar 
los periodos de retorno de grandes incendios forestales 
con datos de incendios individuales. Como se señaló 
anteriormente, el periodo de retorno se relaciona con 
la SeR en tanto se estima la distribución de tamaños y 
se identifican los valores extremos. El otro estimador 
cercano es el de Podur, Martell, y Knight (2002), quienes 
usaron la distribución de la suma de áreas incendiadas 
anualmente (área quemada anualmente), para evaluar el 
cambio en los daños derivados de incendios en Canadá; 
su aproximación usa momentos de la distribución para 
identificar diferencias en las áreas quemadas, pero no 
estimaron una probabilidad de ocurrencia de áreas 
quemadas en grandes extensiones.  

La PSeR es un indicador especialmente útil para un 
planificador central, como podría ser la CONAFOR, 
ya que brinda información para priorizar regiones 
o estados ante la posibilidad de tener un evento 
(superficie total incendiada) atípico de gran magnitud. 
El conocimiento de las regiones o entidades que 
podrían tener más riesgo de presentar un evento 
de estas características mejora la planeación de las 
necesidades de equipo, recursos humanos y financieros 
que deberán apostarse en cada entidad para enfrentar 
las contingencias.  

Varios autores señalan que los eventos atípicos 
grandes están más relacionados con la cantidad de 
combustible disponible que con las condiciones 
meteorológicas, aunado al manejo deficiente de 
incidentes (Fernandes et al., 2016; Taylor et al., 2013). 
Por ello, las recomendaciones recurrentes para evitar 
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asymmetric distribution. The lognormal model was the 
model that best adjusted such distributions. The area 
at risk (SeR) approximates the forest area potentially 
affected by forest fires with a certain level of probability. 
The SeR can be transformed in proportion of the area 
potentially affected (PSeR) by forest fires and both 
indicators are useful for the annual planning of fire 
prevention and suppression activities. In addition, the 
study showed that the SeR and its trend indicator (ISeR) 
are good predictors of the area expected to be burned 
in the next year. This makes SeR not only an indicator 
of risk, but also an approximate variable of a short-
term hazard index.
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