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Abstract—The authors have previously described an approach 
for medical diagnostic reasoning based on the ST (Select and 
Test) model introduced by Ramoni and Stefanelli et al. This 
paper extends the previous approach by introducing the required 
algorithm for medical expert system development. The algorithm 
involves a bottom-up and recursive process using logical 
inferences, abduction, deduction, and induction. Pseudocode for 
the algorithm, and the data structures involved, are described, 
and the algorithm’s implementation using a small sample 
knowledgebase and programmed in Java is included in 
appendixes. Implementation of a successful expert system is a 
challenging process; development of the necessary algorithm for 
its inference engine, and definition of a knowledgebase structure 
that models expert diagnostic reasoning and knowledge, only 
fulfils the initial step. Challenges associated with the remaining 
steps of the development process can be identified and dealt with 
using the CLAP software process model.

Index Terms—Medical diagnostic reasoning, medical expert 
systems, ST model.

I. In t r o d u c t i o n

REALISATION of medical expert systems has been one of 
the earliest goals of the AI community. Unfortunately, 

attempts by major projects such as INTERNIST-I and 
CADUCEUS have not been successful [1].

one of the reasons for this failure can be understood in 
relation to the lack of models that capture the depth and 
complexity of expert medical diagnostic reasoning. Models 
previously proposed for medical diagnostic reasoning include: 
scheme-inductive reasoning [2]; hypothetico-deductive 
reasoning [3]; backward and forward reasoning [4]; pattern 
recognition [5]; Parsimonious Covering Theory [6]; 
Information Processing Approach [7]; Process Model for 
diagnostic reasoning [8]; Certainty Factor model [9]; models 
based on Bayes Theorem [10-12]; and models based on Fuzzy 
logic [13-15]. The authors have previously described the 
limitations of some of these approaches, and proposed an 
approximate reasoning model for medical diagnostic 
reasoning [16]. This previously proposed model was based on
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the epistemological framework (also known as Select and Test 
(ST) model) for medical diagnostic reasoning proposed by 
Ramoni and Stefanelli et al. [17].

This paper complements the authors’ previous approach by 
introducing the required algorithm for diagnostic inference. 
The previously proposed reasoning model requires of at least 
three layers of knowledgebase entities, namely diagnoses, 
symptoms and symptom attributes, together with mathematical 
functions to quantify those entities. In order to improve 
readability, the algorithm described in this paper has been 
deliberately simplified by restricting its application to the first 
two layers only. Extension of the algorithm to incorporate the 
full model is explained in the Discussion section of this paper.

The remainder of the paper begins with an introduction to 
the ST Model followed by formalisation of the knowledgebase 
as a graph consisting of symptoms and diagnoses. Then, the 
algorithm’s pseudocode and the data structures, and its 
implementation, are described using a sample knowledgebase. 
Before the paper is concluded, other challenges that are faced 
in developing successful medical expert systems are briefly 
outlined, and the CLAP software process model [18] is 
described as a framework for addressing these challenges in a 
systematic manner.

II. Se l e c t  An d  Te s t  (ST) Mo d e l

The ST Model describes a cyclical process (Fig. 1), which 
uses the logical inferences, abduction, deduction, and 
induction that were described by Charles Peirce [19]. Usually, 
diagnostic reasoning in clinical contexts begins when a patient 
reports a symptom or symptoms to their clinician. Whilst these 
symptoms are well-defined entities in the clinician’s mind, 
patients may use various descriptive terms to describe their 
symptoms. For example, a patient may use the descriptive 
term ‘a dark cloud over me’ to describe the symptom ‘low 
mood’.

The process of mapping these descriptive terms understood 
by patients onto well-defined symptom entities used in the 
knowledgebase is known as abstraction. The next step, known 
as abduction, involves determining all likely diagnoses related 
to the reported symptoms. Then, for each likely diagnosis, it is 
necessary to determine if the patient is experiencing other 
expected symptoms. This is known as deduction. These three 
steps repeat cyclically until all the required symptoms and 
diagnoses have been explored. once this cycle is ended, the 
final step, induction, occurs.
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Fig. 1. The ST Model.

Fig. 2. Simplified knowledgebase representing diagnoses and symptoms only.

Induction involves matching the elicited symptoms with the 
expected symptoms for each likely diagnosis, thus determining 
whether the patient is suffering from any of the likely 
diagnoses. More details of the ST model can be found in the 
paper published by Ramoni and Stefanelli et al [17].

III. Fo r m a l  Mo d e l  Fo r  Kn o w l e d g e b a s e

By way of formalising the process described above, let us 
represent all the diagnoses and symptoms in our 
knowledgebase as sets D = {d i,d2, . . .,dn} and S = {S1,S2, . . .sm} 
respectively. The relationship representing ‘given a symptom 
Si how likely is diagnosis dj' is represented as a two-layer 
graph (Fig. 2), in which each arc is associated with a value 8 j  
representing the likelihood (L) that Si implies dj; note 
0 < dj <1 . This can also be represented using the notation L(dj 
| Si) = 8 j. By way of example, in Fig. 2 the arc connecting di 
and S3 would have associated likelihood 8 3 1. The 
knowledgebase consisting of the two layers, symptoms and 
diagnoses, can be represented as a matrix [8j].

IV. Se l e c t  An d  Te s t  Al g o r it h m  

Medical diagnostic reasoning involves two main steps:

1. search for symptoms,
2. arrive at diagnoses based on the symptoms found in 

the previous step.

Because of the vastness of the knowledgebase, one of the 
most challenging aspects of diagnostic reasoning is the 
symptom search process. It is therefore not uncommon that 
even an experienced clinician can at times miss a diagnosis 
because of failure to elicit a key symptom that would have 
provided an important clue to a diagnosis. If all the symptoms 
are known, arriving at a diagnosis is relatively easy 
computationally, depending on the commonly agreed or 
established diagnostic criteria used in different medical 
specialities. For example, in psychiatry, if all the symptoms 
are known, the second step involves matching the elicited 
symptoms with the diagnostic criteria described in a standard 
diagnostic manual such as DSM-V [20]. In the ST algorithm, 
abstraction, abduction and deduction are involved in the first 
step, and induction is involved in the second step.

The proposed algorithm uses five dynamic data structures, 
namely symptomsFound, symptomsToBeElicited, 
symptomsAlreadyElicited, diagnosesToBeElicited and 
diagnosesAlreadyElicited, which are implemented as linked 
lists. Also, in order to describe how the algorithm works, a 
static data structure patientProfile, which an artificial entity 
that encapsulates all the symptoms actually present in a 
patient, is used. The nature of the real world diagnostic 
problem is that the symptoms a patient actually has are 
initially unknown to the clinician. Symptom searching (the 
first step) in real world diagnostic reasoning can be 
conceptualised as an endeavour to find all the content, or at 
least all the clinically important symptoms, stored in 
patientProfile. In real world situations patientProfile is a 
virtual entity because it represents the patient’s actual 
symptoms, which need to be discovered by the clinician when 
the patient is interviewed.

Details of the abstraction step have also been simplified in 
this paper. Whilst, in the real world setting, abstraction 
involves mapping the patient’s symptom descriptions to 
defined knowledgebase entities, this largely mechanical 
matching process is omitted. Rather, it is assumed that the 
symptom descriptions stored in patientProfile correspond to 
the symptom descriptions used in the knowledgebase.

Implementation of abstraction in a real world application 
would require, for example, the patient informing symptoms 
by answering closed-ended questions using check boxes in a 
very basic human computer interface, or via an actual dialog 
between patient and expert system using natural language 
capabilities.

The data structures used in a computer-based 
implementation of the algorithm are described in Fig. 3, and 
the algorithm itself is shown in Fig. 6.

The ST Algorithm starts when a patient reports a set of 
initial symptoms that are stored in symptomsFound and 
diagnosesAlreadyElicited.

Abduction then begins, returning all the diagnoses 
connected to each symptom stored in symptomsFound. A 
threshold value likelihoodThreshold in relation to the con­
nection strength between any symptom and related diagnosis 
can be used to determine which diagnoses are to be retrieved.
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relationships between these diagnoses and symptoms (i.e. 6 $ 
as described previously) are described in the matrix shown in 
Fig. 5. Java implementations of this knowledgebase and the 
algorithm are presented in Appendices 1 and 2, respectively.

diagnosesAlreadyElicited patientProfile

Fig. 3. Data structures used in the ST algorithm.

Accordingly, for any given symptom Si the system will 
retrieve all the diagnoses dj for which the likelihood that the 
symptom is caused by the diagnosis is in accordance with 6 p > 
likelihoodThreshold.

These diagnoses are stored in the linked list 
diagnosesToBeElicited; before storing each diagnosis the 
system checks if it has already been stored in 
diagnosesAlreadyElicited because of association with a 
previous symptom, thus avoiding the possibility of duplicate 
diagnoses.

Next, deduction begins by returning all the expected 
symptoms connected with each diagnosis stored in 
diagnosesToBeElicited, after which the diagnosis is 
removed from diagnosesToBeElicited and transferred into 
diagnosesAlreadyElicited. All the expected symptoms that 
are returned for each diagnosis are transferred into 
diagnosesToBeElicited unless they are already stored in 
diagnosesAlreadyElicited.

Abstraction then commences, eliciting each symptom 
stored in symptomsToBeElicited by searching 
patientProfile. Then the elicited symptom is removed from 
symptomsToBeElicited and transferred into 
symptomsAlreadyElicited . If the elicited symptom is found 
in patientProfile it is stored in symptomsFound.

Finally, induction involves matching diagnostic criteria 
(i.e. symptoms expected for each diagnosis in 
diagnosesAlreadyElicited) with the symptoms stored in 
symptomsFound. If the diagnostic criteria are met, 
depending on the expected symptoms and the symptoms in 
symptomsFound then the respective diagnosis is accepted. 
otherwise the respective diagnosis is excluded.

V. An  Ex a m p l e  An d  It s  Im p l e m e n t a t i o n

In order to elaborate the proposed algorithm, let us 
consider a small knowledge base consisting of twelve 
symptoms and six diagnoses as described in Fig. 4. The

*1 Depressed mood
S 2 Loss of motivation
S 3 Weight loss
s 4 Fatigue
s 5 Chest discomfort

Worrying thoughts
S 7 Low self-esteem
S8 Headache
Sg Loss of appetite

S10 Hand tremors
S11 Hypertension
S12 Gastrointestinal bleeding

'h Major Depression 0.5
d2 Generalized Anxiety Disorder 0.2
d-3 Hyperthyroidism 0.6
d4 Pheochromocytoma 0.7
d5 Anaemia 0.7
d6 Ischaemic Heart Disease 0.9

Fig. 4. Symptoms and diagnoses to be included in sample knowledgebase.

Details of the induction step are omitted in the 
implementation; the implementation of this step depends on 
the diagnostic criteria that are used to match the elicited 
symptoms with the expected symptoms of diagnoses. In its 
simplest form, the induction step can be implemented by one 
to one matching of the expected symptoms with the elicited 
symptoms. Nonetheless, depending on the diagnosis, it may 
not be necessary to have all the expected symptoms to make 
that diagnosis. In such situations, logical expression 
constructed using AND and OR operators can be used to 
formulate diagnostic rules by connecting different 
combination of symptoms. These diagnostic rules can be 
enhanced by allowing quantification of the severity of the 
symptoms elicited in the patient, as described elsewhere [16].

d1 d% d4 d 5 d6
% 0.9 0 0.3 0 0.3 0.3

s2 0.9 0 0 0 0.3 0

s3 0.6 0 0.7 0 0 0

s4 0.6 0.7 0.6 0 0.8 0.3

s5 0 0.6 0 0 0 0.8

s6 0 0.9 0 0 0 0

s7 0.6 0.4 0 0 0 0

Sq 0 0.6 0 0.5 0 0

s9 0.7 0 0 0 0 0

s10 0 0.6 0.8 0 0 0

Sll 0 0 0 0.9 0 0.4

s12 0 0.4 0.3 0 0.6 0.6

Fig. 5. Representation o f  the knowledgebase as a matrix, [d ijj.
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1. //D eclare  dynamic data structures as linked lists
2. symptomsFound;
3. symptomsToBeElicited;
4. symptomsAlreadyElicited
5. diagnosesToBeElicited;
6. diagnosesAlreadyElicited;

7. / /  Declare the threshold value f o r  the likelihood o f  diagnoses
8. UkelihoodThreshold;
9. BEG IN

11. Store the symptoms initially reported in symptomsFound;
12 .

13. / /  ABDUCTION: ge t all the diagnoses related to symptoms
14. / / - ...................................................... - ............................... - ........................................
15. FOR EACH symptom in symptomsFound DO
16. declare diagnoses as a  temporary linked list
17. Get a ll the diagnoses related to symptom above the UkelihoodThreshold and store in diagnoses;
IS. FOR EACH diagnosis in diagnoses DO
19. IF  diagnosis is N O T  already’ in (diagnosesToBeElicited OR diagnosesAlreadyElicited) THEN
20. Store diagnosis in diagnosesToBeElicited
21. END-IF
22. END-FOR

24. / / DED UC TION: get a ll the symptoms related to diagnoses
25. //- .................................................... -.............................................................................................................................
26. WHILE diagnosesToBeElicited is N O T  empty DO
2 7. declare symptoms as a  temporary linked list
28. Get a ll the symptoms relatedto the current diagnosis in diagnosesToBeElicited above the UkelihoodThreshold and  store in symptoms;
29. FOR EACH  symptom in symptoms DO
30. IF  symptom is N O T already in ( symptomsFound OR symptomsAlreadyElicited) THEN
31. Store symptom in symptomsToBeElicited;
32. END-IF
33. END-FOR
34. Remove the current diagnosis from  diagnosesToBeElicited and store it in diagnosesAlreadyElicited;
35. Next diagnosis in diagnosesToBeElicited becomes the current diagnosis
36. END- WHILE

38. //ABSTRACTION; Check i f  the expected symptoms in likely diagnoses are fo u n d  in patient
39. //-........................................................................ ............................... .....................................................
40. WHILE symptomsToBeElicited is N O T empty DO
41. IF  the current symptom in symptomsToBeElicited is fo u n d  in patientProfile THEN
42. store the current symptoms in symptomsFound;
43. END-IF
44. Store the current symptom in symptomsAlreadyElicited;
45. Remove the current symptom from  symptomsToBeElicited;
46. N ext symptom in symptomsToBeElicited becomes the current symptom;
47. END-WHILE

50. END-FOR EACH

52. //INDUCTION: Check i f  the likely diagnoses meet their diagnostic criteria
53. //- ........................................................................................................................................~ ....
54. FOR EACH diagnosis in diagnosesAlreadyElicited DO
55. IF  the diagnostic criteria o f  diagnosis are met based on the symptoms stored in symptomsFound THEN
56. diagnosis is included;
57. ELSE
58. diagnosis is excluded;
59. END-IF
60. END-FOR

62. END

Fig. 6. ST algorithm.
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For example, consider the diagnosis d 1 = Major 
Depression, s 1 = Depressed Mood, and the related 
symptoms s 1 = Depressed Mood, s2 = Loss o f Motivation, 
s3 = Weight Loss, and s7 = Low Self Esteem .

Suppose we have a patient who presents with the above 
symptoms, each with a different level of severity. Let us 
assume that the severity of these symptoms (i.e. 
quantification) corresponds to q?, q2 , q3 and q7 respectively. 
Using threshold values t??, t i2 , t ?3 and t i7 respectively for each 
of these symptoms in relation to d?, an example of a 
diagnostic rule is as follows:

IF(q?>t?? AND q2 >t?2 AND q3>t?3 AND q7>t?7) THEN
accepted(d?) = TRUE

where accepted(d?) indicates whether the diagnostic criteria 
for d? is met, resulting in its acceptance (or rejection) as a 
diagnosis. It may require several such diagnostic rules for each 
diagnosis, and some of the rules may also require the logical 
operator OR in addition to AND. Developers may have to 
consult standard diagnostic manuals (for example, DSM V 
[20] in psychiatry) when formulating the diagnostic rules.

VI. Di s c u s s i o n

The knowledgebase model and algorithm presented above 
represent a simplified version of what it is required for 
effective diagnostic inference in real world settings. 
Nonetheless, they encapsulate the essential basic 
characteristics of the reasoning process. This basic structure 
can be extended and customised according to the 
characteristics of clinical knowledge in various medical 
subspecialties (i.e. subdomains). For example, in psychiatry, 
the knowledgebase may require addition of an extra layer 
known as clinical phenomenon between the symptoms and 
diagnoses layers [21]. Also, an extra layer of symptom 
attributes can be added below the symptoms layer, and each 
symptom can be quantified using the values associated with 
the related symptom’s attributes using mathematical functions 
that approximate their relationships, as described 
elsewhere [16].

In addition to searching for diagnoses related to a given 
symptom based on likelihood, as described in the algorithm, 
diagnostic reasoning in the real world setting also involves 
searching for more critical (i.e. associated with relatively 
worse consequences if undetected) diagnoses even though 
their likelihoods seem low based on the patient’s reported 
symptoms. The ST algorithm does an exhaustive search, and 
therefore can be useful in ruling out more critical diagnoses 
that can present with rather atypical symptoms. It is possible 
to enhance ST by introducing a critical value 5j associated 
with each diagnosis dj that determines the level of criticality 
of the diagnosis. Similarly to the likelihoodThreshold 
described previously, a threshold value criticalityThreshold 
can be used to select diagnoses for which 
5j>criticalityThreshold.

The next significant challenge to implementing the 
algorithm in a practically useful expert system is developing 
and maintaining a sufficiently large knowledgebase. Because 
of the vastness of the knowledgebase and the amount of 
manpower and commitment required to develop and maintain 
it, a sufficient database has been very difficult to achieve using 
traditional development methods [22]. For example, despite 
expending nearly 25-30 person years of work, it has still not 
been able to complete the knowledgebase of INTERNIST-I, 
an expert diagnostic system in Internal Medicine [1].

Even if the required knowledgebase were implemented, 
there are yet more challenges. An important challenge is 
engaging clinicians, who may often feel threatened by medical 
expert systems on the grounds they may be intended to 
duplicate and replace some of their skills [23]. The authors 
have previously discussed these challenges, and introduced a 
software process model known as a Collaborative and Layered 
Approach (CLAP) as a strategy to deal with these challenging 
issues [18].

The main layers and the activities within each layer of 
CLAP are shown in Fig. 7, and the reader is encouraged to 
refer to the main paper on this model for more details [18]. 
The form of ST algorithm introduced in this paper can be 
considered as the main product of the conceptual layer, which 
primarily deals with conceptualising the expert medical 
reasoning process and the knowledgebase, and then translating 
into a formal model. The societal layer then deals with 
engaging clinicians in a collaborative development process, 
and defining the role of the under-development expert system 
within the complex modern day organisational structure of 
healthcare services in which it will be used. Finally, the 
computational layer deals with software and hardware 
implementation of the expert system. As an important strategy 
to overcome the difficulty of developing and maintaining the 
knowledgebase, the CLAP model suggests use of an online 
collaborative approach [24], which can be realised due to 
advancement of Internet-based social networking platforms.

VII. Co n c l u s i o n

Whilst acknowledging the challenges in developing 
successful medical expert systems, this paper introduced a 
simplified version of the algorithm and data structures 
required for implementing an inference engine and 
knowledgebase, based on a previously introduced diagnostic 
reasoning model [16]. Even though there are many diagnostic 
reasoning models that have been previously introduced, the 
authors claim that the reasoning model on which the algorithm 
introduced in ST this paper is designed, is more 
comprehensive in relation to the overall expert diagnostic 
reasoning process.

Furthermore, the algorithm closely models the recursive 
steps that are involved in real world diagnostic reasoning, 
using logical inferences. Because of the complexity and the 
space required to describe the full algorithm and its 
implementation, it was necessary in this paper to simplify the
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algorithm and knowledgebase described. However, the paper 
still provides the core structure on which, the full model can 
be built. As a means to identifying and resolving other 
challenges associated with the development process, the 
authors suggest use of the CLAP software process model for 
developing medical expert systems [18].

Ap p e n d i c e s

Appendix 1. Java representation o f  the knowledgebase
package diagnosticalgorithm; 
im port java.util.ArrayList;
/ *  *
* @author Irosh Fernando 
* /
public class Knowledgebase {

/ /  Declare one-dimensional array of symptoms
static String symptoms[]= {

Depressed mood", /* 1 * /
Loss of m otivation", /* 2 * /
Weight loss", /* 3 * /
Fatigue" , / * 4 * /
Chest discomfort", / * 5 * /
W orrying thoughts", / * 6 * /
Low self-esteem", /* 7 * /
Headache", /* 8 * /
Loss of appetite", / * 9 * /
Hand trem ors", /* 10 * /
Hypertension", /* 11 * /
Dizzinesse" /* 12 * /

};

/ /  Declare one dimensional array of diagnoses
static String diagnoses[]= {

'Major Depression", /* 1 * /
'Generalised Anxiety Disorder", / * 2 * /
Hyperthyroidism", /* 3 * /

'Paechromocytoma", /* 4 * /
Anaemia", /* 5 * /
'Ischaemic Heart Disease", /* 6 * /

};

/ /  Declare the knowledgebase as a tw o dimensional array

static double diag_symp[][]={
/ *  symptoms index: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 * /
/ *  diagnosis index: 1 * /  { 0.9, 0.9, 0.6, 0.6, 0.0, 0.0, 0.6, 0.0, 0.7, 0.0, 0.0, 0.0 }
/ *  diagnosis index: 2 * /  { 0.0, 0.0, 0.0, 0.7, 0.6, 0.9, 0.4, 0.6, 0.0, 0.6, 0.0, 0.4 }
/ *  diagnosis index: 3 * /  { 0.3, 0.0, 0.7, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.3 }
/ *  diagnosis index: 4 * /  { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.9, 0.0 }
/ *  diagnosis index: 5 * /  { 0.0, 0.3, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6 }
/ *  diagnosis index: 6 * /  { 0.3, 0.0, 0.0, 0.3, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }
};

/ /  return the index o f a given symptom
static public int getSymptomIndex(String symptom){

/ /  return -1 if not found 
int index=-1;
fo r ( int i=0; i<symptoms.length; i++){

if( symptoms[i].equalsIgnoreCase(symptom)) 
index=i;

}
re tu rn  index;

}

/ /  return the index of a given diagnosis
static public int getDiagnosisIndex(String diagnosis){

/ /  return -1 if not found 
in t index=-1;
fo r ( in t i=0; i<diagnoses.length; i++){

if( diagnoses[i].equalsIgnoreCase(diagnosis)) 
index=i;

}
re tu rn  index;

}

/ /  return all diagnoses related a given symptom above a given threshold 
static public ArrayList getDiagnoses(String symptom, double threshold){ 

ArrayList<String> diagnosesList = new ArrayList<>(); 
in t index= getSymptomlndex(symptom); 
fo r ( in t i=0; i< diagnoses.length; i++){ 

if(diag_symp[i][index]> threshold ) 
diagnosesList.add(diagnoses[i]);

}
re tu rn  diagnosesList;

}

/ /  return all symptoms related a given diagnosis above a given threshold 
static public ArrayList getSymptoms(String diagnosis, double threshold){ 

ArrayList<String> symptomList = new ArrayList<>(); 
in t index= getDiagnosislndex(diagnosis); 
fo r ( in t i=0; i< symptoms.length; i++){ 

if(diag_symp[index][i]> threshold ) 
symptomList.add(symptoms[i]);

}
return symptomList;

}
}
Appendix 2. Java representation o f  the algorithm
package diagnosticalgorithm; 
import java.util.ArrayList; 
import java.util.List;
/ *  *
* @author Irosh Fernando
* @Date 30th of June 2013 
* /
public class STAlgorithm { 

static Knowledgebase KB; 
static PatientProfiles Patient;

static List<String> symptomsFound = new ArrayList<>(); 
static List<String> symptomsToBeElicited = new ArrayList<>();

/ /  To store both symptoms found and not found
static List<String> symptomsAlreadyElicited = new ArrayList<>();

/ /  store diagnose of which symptoms are to be explored 
static List<String> diagnosesToBeElicited = new ArrayList<>();

/ /  Store diagnoses of which symptoms have already been explored 
static List<String> diagnosesAlreadyElicited = new ArrayList<>();

/ /  set the likelihood threshold 
static double likelihoodThreshold=0.5;

/ /  Initialise the symptoms reported by patient at the beginning 
static private void initialise(){ 

symptomsFound.add("Depressed M ood");
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symptomsAlreadyElicited.add("Depressed M ood");
//...add more symptoms as necessary

}

/ /  Abduction 
static private void doAbduction(){ 

fo r (int i=0; i<symptomsFound.size();i++){
ArrayList<String> diagList;
diagList = KB.getDiagnoses(symptomsFound.get(i), 

likelihoodThreshold);
/ /  insert each diagnosis into likelyDiagnoses if not already in 
fo r ( int j=0; j< diagList.size();j++){

if (!diagnosesAlreadyElicited.contains(diagList.get(j)) ) 
diagnosesToBeElicited.add(diagList.get(j));

}
doDeduction();
doAbstraction();

}
}

/ /  Deduction
static private void doDeduction(){ 

fo r ( int i=0; i<diagnosesToBeElicited.size();i++){
ArrayList<String> sympList;
sympList = KB.getSymptoms(diagnosesToBeElicited.get(i), 

likelihoodThreshold);
/ /  insert each expected symptom into symptomsToBeElicited if not already in 

fo r ( int j=0; j< sympList.size();j++){
if (!symptomsAlreadyElicited.contains(sympList.get(j))) 

symptomsToBeElicited.add(sympList.get(j));
}
/ /  store alrady found symptoms in symptomsAlreadyElicited 
diagnosesAlreadyElicited.add(diagnosesToBeElicited.get(i));

}
/ /  Empty the diagnosesToBeElicited after eliciting all the diagnoses 
diagnosesToBeElicited.clear();

}

/ /  Abstraction 
static private void doAbstraction(){ 

fo r (int i=0; i<symptomsToBeElicited.size();i++){

if(!symptomsAlreadyElicited.contains(symptomsToBeElicited.get(i)) ){ 
i f(Patient.symptomPresent(symptomsToBeElicited.get(i))){ 

symptomsFound.add(symptomsToBeElicited.get(i));
}
symptomsAlreadyElicited.add(symptomsToBeElicited.get(i));

}
}

/ /  Empty the symptomsToBeElicited after eliciting all the expected symptoms 
symptomsToBeElicited.clear();

}
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