
ST Algorithm
for Medical Diagnostic Reasoning

Irosh Fernando and Frans A. Henskens

Abstract—The authors have previously described an approach
for medical diagnostic reasoning based on the ST (Select and
Test) model introduced by Ramoni and Stefanelli et al. This
paper extends the previous approach by introducing the required
algorithm for medical expert system development. The algorithm
involves a bottom-up and recursive process using logical
inferences, abduction, deduction, and induction. Pseudocode for
the algorithm, and the data structures involved, are described,
and the algorithm’s implementation using a small sample
knowledgebase and programmed in Java is included in
appendixes. Implementation of a successful expert system is a
challenging process; development of the necessary algorithm for
its inference engine, and definition of a knowledgebase structure
that models expert diagnostic reasoning and knowledge, only
fulfils the initial step. Challenges associated with the remaining
steps of the development process can be identified and dealt with
using the CLAP software process model.

Index Terms—Medical diagnostic reasoning, medical expert
systems, ST model.

I. In t r o d u c t i o n

REALISATION of medical expert systems has been one of
the earliest goals of the AI community. Unfortunately,

attempts by major projects such as INTERNIST-I and
CADUCEUS have not been successful [1].

one of the reasons for this failure can be understood in
relation to the lack of models that capture the depth and
complexity of expert medical diagnostic reasoning. Models
previously proposed for medical diagnostic reasoning include:
scheme-inductive reasoning [2]; hypothetico-deductive
reasoning [3]; backward and forward reasoning [4]; pattern
recognition [5]; Parsimonious Covering Theory [6];
Information Processing Approach [7]; Process Model for
diagnostic reasoning [8]; Certainty Factor model [9]; models
based on Bayes Theorem [10-12]; and models based on Fuzzy
logic [13-15]. The authors have previously described the
limitations of some of these approaches, and proposed an
approximate reasoning model for medical diagnostic
reasoning [16]. This previously proposed model was based on

Manuscript received August 6, 2013; accepted for publication on
September 30, 2013.

D. A. I. P. Fernando is with the School o f Electrical Engineering and
Computer Science, University o f Newcastle, NSW 2308, Australia (phone:
+61 423 281 664; e-mail: irosh.fernando@uon.edu.au).

F. A. Henskens is with the School o f Electrical Engineering and Computer
Science, University o f Newcastle, NSW 2308, Australia (e-mail:
frans.henskens@newcastle.edu.au).

the epistemological framework (also known as Select and Test
(ST) model) for medical diagnostic reasoning proposed by
Ramoni and Stefanelli et al. [17].

This paper complements the authors’ previous approach by
introducing the required algorithm for diagnostic inference.
The previously proposed reasoning model requires of at least
three layers of knowledgebase entities, namely diagnoses,
symptoms and symptom attributes, together with mathematical
functions to quantify those entities. In order to improve
readability, the algorithm described in this paper has been
deliberately simplified by restricting its application to the first
two layers only. Extension of the algorithm to incorporate the
full model is explained in the Discussion section of this paper.

The remainder of the paper begins with an introduction to
the ST Model followed by formalisation of the knowledgebase
as a graph consisting of symptoms and diagnoses. Then, the
algorithm’s pseudocode and the data structures, and its
implementation, are described using a sample knowledgebase.
Before the paper is concluded, other challenges that are faced
in developing successful medical expert systems are briefly
outlined, and the CLAP software process model [18] is
described as a framework for addressing these challenges in a
systematic manner.

II. Se l e c t An d Te s t (ST) Mo d e l

The ST Model describes a cyclical process (Fig. 1), which
uses the logical inferences, abduction, deduction, and
induction that were described by Charles Peirce [19]. Usually,
diagnostic reasoning in clinical contexts begins when a patient
reports a symptom or symptoms to their clinician. Whilst these
symptoms are well-defined entities in the clinician’s mind,
patients may use various descriptive terms to describe their
symptoms. For example, a patient may use the descriptive
term ‘a dark cloud over me’ to describe the symptom ‘low
mood’.

The process of mapping these descriptive terms understood
by patients onto well-defined symptom entities used in the
knowledgebase is known as abstraction. The next step, known
as abduction, involves determining all likely diagnoses related
to the reported symptoms. Then, for each likely diagnosis, it is
necessary to determine if the patient is experiencing other
expected symptoms. This is known as deduction. These three
steps repeat cyclically until all the required symptoms and
diagnoses have been explored. once this cycle is ended, the
final step, induction, occurs.

ISSN 1870-9044; pp. 23-29 23 Polibits (48) 2013

mailto:irosh.fernando@uon.edu.au
mailto:frans.henskens@newcastle.edu.au

Irosh Fernando, Frans A. Henskens

1. Abstraction

\ A

3. Deduction 2. Abduction
- -

4. Induction

Fig. 1. The ST Model.

Fig. 2. Simplified knowledgebase representing diagnoses and symptoms only.

Induction involves matching the elicited symptoms with the
expected symptoms for each likely diagnosis, thus determining
whether the patient is suffering from any of the likely
diagnoses. More details of the ST model can be found in the
paper published by Ramoni and Stefanelli et al [17].

III. Fo r m a l Mo d e l Fo r Kn o w l e d g e b a s e

By way of formalising the process described above, let us
represent all the diagnoses and symptoms in our
knowledgebase as sets D = {d i,d2, . . .,dn} and S = {S1,S2, . . .sm}
respectively. The relationship representing ‘given a symptom
Si how likely is diagnosis dj' is represented as a two-layer
graph (Fig. 2), in which each arc is associated with a value 8 j
representing the likelihood (L) that Si implies dj; note
0 < dj <1 . This can also be represented using the notation L(dj
| Si) = 8 j. By way of example, in Fig. 2 the arc connecting di
and S3 would have associated likelihood 8 3 1. The
knowledgebase consisting of the two layers, symptoms and
diagnoses, can be represented as a matrix [8j].

IV. Se l e c t An d Te s t Al g o r it h m

Medical diagnostic reasoning involves two main steps:

1. search for symptoms,
2. arrive at diagnoses based on the symptoms found in

the previous step.

Because of the vastness of the knowledgebase, one of the
most challenging aspects of diagnostic reasoning is the
symptom search process. It is therefore not uncommon that
even an experienced clinician can at times miss a diagnosis
because of failure to elicit a key symptom that would have
provided an important clue to a diagnosis. If all the symptoms
are known, arriving at a diagnosis is relatively easy
computationally, depending on the commonly agreed or
established diagnostic criteria used in different medical
specialities. For example, in psychiatry, if all the symptoms
are known, the second step involves matching the elicited
symptoms with the diagnostic criteria described in a standard
diagnostic manual such as DSM-V [20]. In the ST algorithm,
abstraction, abduction and deduction are involved in the first
step, and induction is involved in the second step.

The proposed algorithm uses five dynamic data structures,
namely symptomsFound, symptomsToBeElicited,
symptomsAlreadyElicited, diagnosesToBeElicited and
diagnosesAlreadyElicited, which are implemented as linked
lists. Also, in order to describe how the algorithm works, a
static data structure patientProfile, which an artificial entity
that encapsulates all the symptoms actually present in a
patient, is used. The nature of the real world diagnostic
problem is that the symptoms a patient actually has are
initially unknown to the clinician. Symptom searching (the
first step) in real world diagnostic reasoning can be
conceptualised as an endeavour to find all the content, or at
least all the clinically important symptoms, stored in
patientProfile. In real world situations patientProfile is a
virtual entity because it represents the patient’s actual
symptoms, which need to be discovered by the clinician when
the patient is interviewed.

Details of the abstraction step have also been simplified in
this paper. Whilst, in the real world setting, abstraction
involves mapping the patient’s symptom descriptions to
defined knowledgebase entities, this largely mechanical
matching process is omitted. Rather, it is assumed that the
symptom descriptions stored in patientProfile correspond to
the symptom descriptions used in the knowledgebase.

Implementation of abstraction in a real world application
would require, for example, the patient informing symptoms
by answering closed-ended questions using check boxes in a
very basic human computer interface, or via an actual dialog
between patient and expert system using natural language
capabilities.

The data structures used in a computer-based
implementation of the algorithm are described in Fig. 3, and
the algorithm itself is shown in Fig. 6.

The ST Algorithm starts when a patient reports a set of
initial symptoms that are stored in symptomsFound and
diagnosesAlreadyElicited.

Abduction then begins, returning all the diagnoses
connected to each symptom stored in symptomsFound. A
threshold value likelihoodThreshold in relation to the con­
nection strength between any symptom and related diagnosis
can be used to determine which diagnoses are to be retrieved.

Polibits (48) 2013 24 ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

relationships between these diagnoses and symptoms (i.e. 6 $
as described previously) are described in the matrix shown in
Fig. 5. Java implementations of this knowledgebase and the
algorithm are presented in Appendices 1 and 2, respectively.

diagnosesAlreadyElicited patientProfile

Fig. 3. Data structures used in the ST algorithm.

Accordingly, for any given symptom Si the system will
retrieve all the diagnoses dj for which the likelihood that the
symptom is caused by the diagnosis is in accordance with 6 p >
likelihoodThreshold.

These diagnoses are stored in the linked list
diagnosesToBeElicited; before storing each diagnosis the
system checks if it has already been stored in
diagnosesAlreadyElicited because of association with a
previous symptom, thus avoiding the possibility of duplicate
diagnoses.

Next, deduction begins by returning all the expected
symptoms connected with each diagnosis stored in
diagnosesToBeElicited, after which the diagnosis is
removed from diagnosesToBeElicited and transferred into
diagnosesAlreadyElicited. All the expected symptoms that
are returned for each diagnosis are transferred into
diagnosesToBeElicited unless they are already stored in
diagnosesAlreadyElicited.

Abstraction then commences, eliciting each symptom
stored in symptomsToBeElicited by searching
patientProfile. Then the elicited symptom is removed from
symptomsToBeElicited and transferred into
symptomsAlreadyElicited . If the elicited symptom is found
in patientProfile it is stored in symptomsFound.

Finally, induction involves matching diagnostic criteria
(i.e. symptoms expected for each diagnosis in
diagnosesAlreadyElicited) with the symptoms stored in
symptomsFound. If the diagnostic criteria are met,
depending on the expected symptoms and the symptoms in
symptomsFound then the respective diagnosis is accepted.
otherwise the respective diagnosis is excluded.

V. An Ex a m p l e An d It s Im p l e m e n t a t i o n

In order to elaborate the proposed algorithm, let us
consider a small knowledge base consisting of twelve
symptoms and six diagnoses as described in Fig. 4. The

*1 Depressed mood
S 2 Loss of motivation
S 3 Weight loss
s 4 Fatigue
s 5 Chest discomfort

Worrying thoughts
S 7 Low self-esteem
S8 Headache
Sg Loss of appetite

S10 Hand tremors
S11 Hypertension
S12 Gastrointestinal bleeding

'h Major Depression 0.5
d2 Generalized Anxiety Disorder 0.2
d-3 Hyperthyroidism 0.6
d4 Pheochromocytoma 0.7
d5 Anaemia 0.7
d6 Ischaemic Heart Disease 0.9

Fig. 4. Symptoms and diagnoses to be included in sample knowledgebase.

Details of the induction step are omitted in the
implementation; the implementation of this step depends on
the diagnostic criteria that are used to match the elicited
symptoms with the expected symptoms of diagnoses. In its
simplest form, the induction step can be implemented by one
to one matching of the expected symptoms with the elicited
symptoms. Nonetheless, depending on the diagnosis, it may
not be necessary to have all the expected symptoms to make
that diagnosis. In such situations, logical expression
constructed using AND and OR operators can be used to
formulate diagnostic rules by connecting different
combination of symptoms. These diagnostic rules can be
enhanced by allowing quantification of the severity of the
symptoms elicited in the patient, as described elsewhere [16].

d1 d% d4 d 5 d6
% 0.9 0 0.3 0 0.3 0.3

s2 0.9 0 0 0 0.3 0

s3 0.6 0 0.7 0 0 0

s4 0.6 0.7 0.6 0 0.8 0.3

s5 0 0.6 0 0 0 0.8

s6 0 0.9 0 0 0 0

s7 0.6 0.4 0 0 0 0

Sq 0 0.6 0 0.5 0 0

s9 0.7 0 0 0 0 0

s10 0 0.6 0.8 0 0 0

Sll 0 0 0 0.9 0 0.4

s12 0 0.4 0.3 0 0.6 0.6

Fig. 5. Representation o f the knowledgebase as a matrix, [d ijj.

ISSN 1870-9044 25 Polibits (48) 2013

Irosh Fernando, Frans A. Henskens

1. //D eclare dynamic data structures as linked lists
2. symptomsFound;
3. symptomsToBeElicited;
4. symptomsAlreadyElicited
5. diagnosesToBeElicited;
6. diagnosesAlreadyElicited;

7. / / Declare the threshold value f o r the likelihood o f diagnoses
8. UkelihoodThreshold;
9. BEG IN

11. Store the symptoms initially reported in symptomsFound;
12 .

13. / / ABDUCTION: ge t all the diagnoses related to symptoms
14. / / - .. - - ..
15. FOR EACH symptom in symptomsFound DO
16. declare diagnoses as a temporary linked list
17. Get a ll the diagnoses related to symptom above the UkelihoodThreshold and store in diagnoses;
IS. FOR EACH diagnosis in diagnoses DO
19. IF diagnosis is N O T already’ in (diagnosesToBeElicited OR diagnosesAlreadyElicited) THEN
20. Store diagnosis in diagnosesToBeElicited
21. END-IF
22. END-FOR

24. / / DED UC TION: get a ll the symptoms related to diagnoses
25. //- .. -...
26. WHILE diagnosesToBeElicited is N O T empty DO
2 7. declare symptoms as a temporary linked list
28. Get a ll the symptoms relatedto the current diagnosis in diagnosesToBeElicited above the UkelihoodThreshold and store in symptoms;
29. FOR EACH symptom in symptoms DO
30. IF symptom is N O T already in (symptomsFound OR symptomsAlreadyElicited) THEN
31. Store symptom in symptomsToBeElicited;
32. END-IF
33. END-FOR
34. Remove the current diagnosis from diagnosesToBeElicited and store it in diagnosesAlreadyElicited;
35. Next diagnosis in diagnosesToBeElicited becomes the current diagnosis
36. END- WHILE

38. //ABSTRACTION; Check i f the expected symptoms in likely diagnoses are fo u n d in patient
39. //-..
40. WHILE symptomsToBeElicited is N O T empty DO
41. IF the current symptom in symptomsToBeElicited is fo u n d in patientProfile THEN
42. store the current symptoms in symptomsFound;
43. END-IF
44. Store the current symptom in symptomsAlreadyElicited;
45. Remove the current symptom from symptomsToBeElicited;
46. N ext symptom in symptomsToBeElicited becomes the current symptom;
47. END-WHILE

50. END-FOR EACH

52. //INDUCTION: Check i f the likely diagnoses meet their diagnostic criteria
53. //- ..~
54. FOR EACH diagnosis in diagnosesAlreadyElicited DO
55. IF the diagnostic criteria o f diagnosis are met based on the symptoms stored in symptomsFound THEN
56. diagnosis is included;
57. ELSE
58. diagnosis is excluded;
59. END-IF
60. END-FOR

62. END

Fig. 6. ST algorithm.

Polibits (48) 2013 26 ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

For example, consider the diagnosis d 1 = Major
Depression, s 1 = Depressed Mood, and the related
symptoms s 1 = Depressed Mood, s2 = Loss o f Motivation,
s3 = Weight Loss, and s7 = Low Self Esteem .

Suppose we have a patient who presents with the above
symptoms, each with a different level of severity. Let us
assume that the severity of these symptoms (i.e.
quantification) corresponds to q?, q2 , q3 and q7 respectively.
Using threshold values t??, t i2 , t ?3 and t i7 respectively for each
of these symptoms in relation to d?, an example of a
diagnostic rule is as follows:

IF(q?>t?? AND q2 >t?2 AND q3>t?3 AND q7>t?7) THEN
accepted(d?) = TRUE

where accepted(d?) indicates whether the diagnostic criteria
for d? is met, resulting in its acceptance (or rejection) as a
diagnosis. It may require several such diagnostic rules for each
diagnosis, and some of the rules may also require the logical
operator OR in addition to AND. Developers may have to
consult standard diagnostic manuals (for example, DSM V
[20] in psychiatry) when formulating the diagnostic rules.

VI. Di s c u s s i o n

The knowledgebase model and algorithm presented above
represent a simplified version of what it is required for
effective diagnostic inference in real world settings.
Nonetheless, they encapsulate the essential basic
characteristics of the reasoning process. This basic structure
can be extended and customised according to the
characteristics of clinical knowledge in various medical
subspecialties (i.e. subdomains). For example, in psychiatry,
the knowledgebase may require addition of an extra layer
known as clinical phenomenon between the symptoms and
diagnoses layers [21]. Also, an extra layer of symptom
attributes can be added below the symptoms layer, and each
symptom can be quantified using the values associated with
the related symptom’s attributes using mathematical functions
that approximate their relationships, as described
elsewhere [16].

In addition to searching for diagnoses related to a given
symptom based on likelihood, as described in the algorithm,
diagnostic reasoning in the real world setting also involves
searching for more critical (i.e. associated with relatively
worse consequences if undetected) diagnoses even though
their likelihoods seem low based on the patient’s reported
symptoms. The ST algorithm does an exhaustive search, and
therefore can be useful in ruling out more critical diagnoses
that can present with rather atypical symptoms. It is possible
to enhance ST by introducing a critical value 5j associated
with each diagnosis dj that determines the level of criticality
of the diagnosis. Similarly to the likelihoodThreshold
described previously, a threshold value criticalityThreshold
can be used to select diagnoses for which
5j>criticalityThreshold.

The next significant challenge to implementing the
algorithm in a practically useful expert system is developing
and maintaining a sufficiently large knowledgebase. Because
of the vastness of the knowledgebase and the amount of
manpower and commitment required to develop and maintain
it, a sufficient database has been very difficult to achieve using
traditional development methods [22]. For example, despite
expending nearly 25-30 person years of work, it has still not
been able to complete the knowledgebase of INTERNIST-I,
an expert diagnostic system in Internal Medicine [1].

Even if the required knowledgebase were implemented,
there are yet more challenges. An important challenge is
engaging clinicians, who may often feel threatened by medical
expert systems on the grounds they may be intended to
duplicate and replace some of their skills [23]. The authors
have previously discussed these challenges, and introduced a
software process model known as a Collaborative and Layered
Approach (CLAP) as a strategy to deal with these challenging
issues [18].

The main layers and the activities within each layer of
CLAP are shown in Fig. 7, and the reader is encouraged to
refer to the main paper on this model for more details [18].
The form of ST algorithm introduced in this paper can be
considered as the main product of the conceptual layer, which
primarily deals with conceptualising the expert medical
reasoning process and the knowledgebase, and then translating
into a formal model. The societal layer then deals with
engaging clinicians in a collaborative development process,
and defining the role of the under-development expert system
within the complex modern day organisational structure of
healthcare services in which it will be used. Finally, the
computational layer deals with software and hardware
implementation of the expert system. As an important strategy
to overcome the difficulty of developing and maintaining the
knowledgebase, the CLAP model suggests use of an online
collaborative approach [24], which can be realised due to
advancement of Internet-based social networking platforms.

VII. Co n c l u s i o n

Whilst acknowledging the challenges in developing
successful medical expert systems, this paper introduced a
simplified version of the algorithm and data structures
required for implementing an inference engine and
knowledgebase, based on a previously introduced diagnostic
reasoning model [16]. Even though there are many diagnostic
reasoning models that have been previously introduced, the
authors claim that the reasoning model on which the algorithm
introduced in ST this paper is designed, is more
comprehensive in relation to the overall expert diagnostic
reasoning process.

Furthermore, the algorithm closely models the recursive
steps that are involved in real world diagnostic reasoning,
using logical inferences. Because of the complexity and the
space required to describe the full algorithm and its
implementation, it was necessary in this paper to simplify the

ISSN 1870-9044 27 Polibits (48) 2013

Irosh Fernando, Frans A. Henskens

algorithm and knowledgebase described. However, the paper
still provides the core structure on which, the full model can
be built. As a means to identifying and resolving other
challenges associated with the development process, the
authors suggest use of the CLAP software process model for
developing medical expert systems [18].

Ap p e n d i c e s

Appendix 1. Java representation o f the knowledgebase
package diagnosticalgorithm;
im port java.util.ArrayList;
/ * *
* @author Irosh Fernando
* /
public class Knowledgebase {

/ / Declare one-dimensional array of symptoms
static String symptoms[]= {

Depressed mood", /* 1 * /
Loss of m otivation", /* 2 * /
Weight loss", /* 3 * /
Fatigue" , / * 4 * /
Chest discomfort", / * 5 * /
W orrying thoughts", / * 6 * /
Low self-esteem", /* 7 * /
Headache", /* 8 * /
Loss of appetite", / * 9 * /
Hand trem ors", /* 10 * /
Hypertension", /* 11 * /
Dizzinesse" /* 12 * /

};

/ / Declare one dimensional array of diagnoses
static String diagnoses[]= {

'Major Depression", /* 1 * /
'Generalised Anxiety Disorder", / * 2 * /
Hyperthyroidism", /* 3 * /

'Paechromocytoma", /* 4 * /
Anaemia", /* 5 * /
'Ischaemic Heart Disease", /* 6 * /

};

/ / Declare the knowledgebase as a tw o dimensional array

static double diag_symp[][]={
/ * symptoms index: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 * /
/ * diagnosis index: 1 * / { 0.9, 0.9, 0.6, 0.6, 0.0, 0.0, 0.6, 0.0, 0.7, 0.0, 0.0, 0.0 }
/ * diagnosis index: 2 * / { 0.0, 0.0, 0.0, 0.7, 0.6, 0.9, 0.4, 0.6, 0.0, 0.6, 0.0, 0.4 }
/ * diagnosis index: 3 * / { 0.3, 0.0, 0.7, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.3 }
/ * diagnosis index: 4 * / { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.9, 0.0 }
/ * diagnosis index: 5 * / { 0.0, 0.3, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6 }
/ * diagnosis index: 6 * / { 0.3, 0.0, 0.0, 0.3, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 }
};

/ / return the index o f a given symptom
static public int getSymptomIndex(String symptom){

/ / return -1 if not found
int index=-1;
fo r (int i=0; i<symptoms.length; i++){

if(symptoms[i].equalsIgnoreCase(symptom))
index=i;

}
re tu rn index;

}

/ / return the index of a given diagnosis
static public int getDiagnosisIndex(String diagnosis){

/ / return -1 if not found
in t index=-1;
fo r (in t i=0; i<diagnoses.length; i++){

if(diagnoses[i].equalsIgnoreCase(diagnosis))
index=i;

}
re tu rn index;

}

/ / return all diagnoses related a given symptom above a given threshold
static public ArrayList getDiagnoses(String symptom, double threshold){

ArrayList<String> diagnosesList = new ArrayList<>();
in t index= getSymptomlndex(symptom);
fo r (in t i=0; i< diagnoses.length; i++){

if(diag_symp[i][index]> threshold)
diagnosesList.add(diagnoses[i]);

}
re tu rn diagnosesList;

}

/ / return all symptoms related a given diagnosis above a given threshold
static public ArrayList getSymptoms(String diagnosis, double threshold){

ArrayList<String> symptomList = new ArrayList<>();
in t index= getDiagnosislndex(diagnosis);
fo r (in t i=0; i< symptoms.length; i++){

if(diag_symp[index][i]> threshold)
symptomList.add(symptoms[i]);

}
return symptomList;

}
}
Appendix 2. Java representation o f the algorithm
package diagnosticalgorithm;
import java.util.ArrayList;
import java.util.List;
/ * *
* @author Irosh Fernando
* @Date 30th of June 2013
* /
public class STAlgorithm {

static Knowledgebase KB;
static PatientProfiles Patient;

static List<String> symptomsFound = new ArrayList<>();
static List<String> symptomsToBeElicited = new ArrayList<>();

/ / To store both symptoms found and not found
static List<String> symptomsAlreadyElicited = new ArrayList<>();

/ / store diagnose of which symptoms are to be explored
static List<String> diagnosesToBeElicited = new ArrayList<>();

/ / Store diagnoses of which symptoms have already been explored
static List<String> diagnosesAlreadyElicited = new ArrayList<>();

/ / set the likelihood threshold
static double likelihoodThreshold=0.5;

/ / Initialise the symptoms reported by patient at the beginning
static private void initialise(){

symptomsFound.add("Depressed M ood");

Polibits (48) 2013 28 ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

symptomsAlreadyElicited.add("Depressed M ood");
//...add more symptoms as necessary

}

/ / Abduction
static private void doAbduction(){

fo r (int i=0; i<symptomsFound.size();i++){
ArrayList<String> diagList;
diagList = KB.getDiagnoses(symptomsFound.get(i),

likelihoodThreshold);
/ / insert each diagnosis into likelyDiagnoses if not already in
fo r (int j=0; j< diagList.size();j++){

if (!diagnosesAlreadyElicited.contains(diagList.get(j)))
diagnosesToBeElicited.add(diagList.get(j));

}
doDeduction();
doAbstraction();

}
}

/ / Deduction
static private void doDeduction(){

fo r (int i=0; i<diagnosesToBeElicited.size();i++){
ArrayList<String> sympList;
sympList = KB.getSymptoms(diagnosesToBeElicited.get(i),

likelihoodThreshold);
/ / insert each expected symptom into symptomsToBeElicited if not already in

fo r (int j=0; j< sympList.size();j++){
if (!symptomsAlreadyElicited.contains(sympList.get(j)))

symptomsToBeElicited.add(sympList.get(j));
}
/ / store alrady found symptoms in symptomsAlreadyElicited
diagnosesAlreadyElicited.add(diagnosesToBeElicited.get(i));

}
/ / Empty the diagnosesToBeElicited after eliciting all the diagnoses
diagnosesToBeElicited.clear();

}

/ / Abstraction
static private void doAbstraction(){

fo r (int i=0; i<symptomsToBeElicited.size();i++){

if(!symptomsAlreadyElicited.contains(symptomsToBeElicited.get(i))){
i f(Patient.symptomPresent(symptomsToBeElicited.get(i))){

symptomsFound.add(symptomsToBeElicited.get(i));
}
symptomsAlreadyElicited.add(symptomsToBeElicited.get(i));

}
}

/ / Empty the symptomsToBeElicited after eliciting all the expected symptoms
symptomsToBeElicited.clear();

}

Re f e r e n c e s

[1] D. A. Wolfram, "An appraisal o f INTERNIST-I," Artificiallntelligence
in Medicine, vol. 7, pp. 93-116, 1995.

[2] H. Mandin, A. Jones, W. Woloschuk, and P. Harasym, "Helping
students learn to think like experts when solving clinical problems,"
Academic Medicine, vol. 72, pp. 173-179, 1997.

[3] A. S. Elstein, L. S. Shulman, and S. A. Sprafka, Medical Problem­
Solving: an Analysis o f Clinical Reasoning: Cambridge, MA: Harvard
University Press 1978.

[4] E. Hunt, "Cognitive Science: Definition, Status, and Questions " Annual
Review o f psychology, vol. 40, pp. 603-629 1989.

[5] G. R. Norman, C. L. Coblentz, L. R. Brooks, and C. J. Babcook,
"Expertise in visual diagnosis - a review o f the literature.," Academic
Medicine, vol. 66(suppl), pp. s78-s83, 1992.

[6] J. A. Reggia and Y. Peng, "Modeling diagnostic reasoning: a summary
o f parsimonious covering theory," Computer Methods and Programs in
Biomedicine, vol. 25, pp. 125-134, 1987.

[7] P. M. Wortman, "Medical Diagnosis: An Information-Processing
Approach," Computers and Biomedical Research, vol. 5, pp. 315-328,
1972.

[8] J. Stausberg and M. Person, "A process model o f diagnostic reasoning
in medicine," International Journal o f Medical Informatics, vol. 54, pp.
9-23, 1999.

[9] E. H. Shortliffe and B. G. Buchanan, "A model o f inexact reasoning in
medicine," Mathematical Biosciences, vol. 23, pp. 351-379, 1975.

[10] S. Andreassen, F. V. Jensen, and K. G. Olesen, "Medical expert systems
based on causal probabilistic networks," International Journal o f Bio­
Medical Computing, vol. 28, pp. 1-30, 1991.

[11] T. Chard and E. M. Rubenstein, "A model-based system to determine
the relative value o f different variables in a diagnostic system using
Bayes theorem," International Journal o f Bio-Medical Computing, vol.
24, pp. 133-142, 1989.

[12] B. S. Todd, R. Stamper, and P. Macpherson, "A probabilistic rule-based
expert system," International Journal o f Bio-Medical Computing, vol.
33, pp. 129-148, 1993.

[13] K. Boegl, K. P. Adlassnig, Y. Hayashi, T. E. Rothenfluh, and H.
Leitich, "Knowledge acquisition in the fuzzy knowledge representation
framework o f a medical consultation system," Artificial Intelligence in
Medicine, vol. 30, pp. 1-26, 2004.

[14] L. Godo, R. L. de Mantaras, J. Puyol-Gruart, and C. Sierra, "Renoir,
Pneumon-IA and Terap-IA: three medical applications based on fuzzy
logic," Artificial Intelligence in Medicine, vol. 21, pp. 153-162, 2001.

[15] T. Vetterlein and A. Ciabattoni, "On the (fuzzy) logical content o f
CADIAG-2," Fuzzy Sets and Systems, vol. 161, pp. 1941-1958, 2010.

[16] I. Fernando, F. Henskens, and M. Cohen, "An Approximate Reasoning
Model for Medical Diagnosis," in Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. vol. 492,
R. Lee, Ed., ed: Springer International Publishing, 2013, pp. 11-24.

[17] M. Ramoni, M. Stefanelli, L. Magnani, and G. Barosi, "An
epistemological framework for medical knowledge-based systems "
IEEE Transactions on Systems, Man and Cybernetics, vol. 22, pp.
1361-1375, 1992.

[18] I. Fernando, F. Henskens, and M. Cohen, "A Collaborative and Layered
Approach (CLAP) for Medical Expert System Development: A Software
Process Model," in IEEE/ACIS 11th International Conference on
Computer and Information Science (ICIS12), 2012, pp. 497-502.

[19] C. S. Peirce, "Illustrations o f the logic o f science, sixth paper-deduction,
induction, hypothesis," The Popular Science Monthly, vol. 1, pp. 470­
482, 1878.

[20] American Psychiatric Association, Diagnostic and Statistical Manual
o f Mental Disorders: DSM-5: American Psychiatric Publishing
Incorporated, 2013.

[21] I. Fernando, M. Cohen, and F. Henskens, "A systematic approach to
clinical reasoning in psychiatry," Australasian Psychiatry, vol. 21, pp.
224-230, 2013.

[22] E. L. Kinney, "Medical Expert Systems - Who needs them ?," CHEST,
vol. 91, pp. 3-4, 1987.

[23] A. K. Das, "Computers in Psychiatry: A Review o f Past Programs and
an Analysis o f Historical Trends," Psychiatric Quarterly, vol. 73, pp.
351-365, 2002.

[24] D. Richards, "Collaborative Knowledge Engineering: Socialising Expert
Systems," in 11th International Conference on Computer Supported
Cooperative Work in Design, 2007.

ISSN 1870-9044 29 Polibits (48) 2013

