The Role of Automation in Instruction

Joseph M. Scandura

Abstract—More and more things that humans used to do can
be automated on computer. In each case, complex tasks have
been automated — not to the extent that they can be done as well
as humans, but better. 1 will draw and develop parallels to
education — showing how and why advances in the Structural
Learning Theory (SLT) and the AuthorIT development and
TutorlT delivery technologies based thereon make it possible not
only to duplicate many of the things that human math tutors can
do but to do them better. Specifically, I will show how and why
TutorlT can now do a better job than most if not all human
tutors in providing more effective and efficient tutoring on
essentially any well defined skill. 1 also will show why this
approach has the potential to also match or exceed human
tutoring on ill-defined learning in the future.

Index
learning.

terms—Automation, instruction, computer-aided

I. INTRODUCTION

Automation involves the use of control and information
systems reducing the need for human intervention. According
to Wikipedia, automation is a step beyond mechanization.
Whereas mechanization provided human operators with
machinery to assist them with the muscular requirements of
work, automation greatly reduces the need for human sensory
and mental requirements as well. Al, for example, was
founded on the claim that a central property of human
intelligence can be so precisely described that it can be
simulated by a machine! Proponents have long claimed that
increases in computational power will eventually overtake the
human mind. IBM’s Big Blue beating Chess masters is often
sighted to support this claim. On the other hand, most Al
research has become increasingly technical and specialized.

Progress is being made in subfields, where solutions to
specific problems can be automated. This is a pattern that has
been replicated in almost every software intensive application
area. Who today would compute taxes using paper and
pencil? Keep records on a rolodex? Today, we have
immediate access to almost any information in databases,
instant communication throughout the world and the ability to
quickly find information on almost any topic — at least if it

Manuscript received August 1, 2010. Manuscript accepted for publication
September 12, 2010.

The author is Director of Research, MERGE Research Institute and
Emeritus Professor, University of Pennsylvania, USA
(JosephScandura@comcast.net).

! This definition derives from John McCarthy’s view of Al “the science
and technology of making intelligent systems”. Early researchers at Carnegie
Mellon (Newell & Simon, 1972) tended to view Al more in terms of
simulating human thought -- as trying to describe human cognition in precise
terms similar to those required to program a computer, believing that doing so
would help to reveal fundamental properties of human intelligence

21

occurred or was documented after the advent of the world
wide web.

Intelligent behavior has not happened, however, except in a
very special sense: More and more things that humans used to
have to do themselves can be automated on computer. In each
case, increasingly complex tasks have been automated — not to
the extent that they can be done as well as humans, but better.

My goal today is to draw and develop parallels to
education. Major attention is being given to immersive, often
game-like environments. Students are placed in various
problem solving situations — and allowed to either explore on
their own or with various kinds of hints (today typically called
“scaffolding”). The big questions here are what kinds of
hints/scaffolding will be of (most) help and when should it be
given?

Other tools such as Texas Instrument’s TI-Nspire tackle the
problem from the other end. Rather than hints, calculators
serve as tools students can use to facilitate problem solving,
serve as prerequisites — as more or less comprehensive
foundational skills on which learners may build.

Scaffolding and prerequisites both play a central role in all
learning systems. The main problem is that good tutoring
systems difficult and expensive to build. Moreover, their
educational benefits are difficult and expensive to evaluate.
Determining effectiveness and efficiency invariably requires
direct (and often expensive) empirical evaluation. The results
are rarely if ever as good as what a human tutor can do, and
comparisons with classroom instruction are often hard to
evaluate.

Instructional design models help. Among other things they
help identify what must be mastered for success and what can
be assumed on entry. Computer Based Instruction (CBI)
systems build on assumed prerequisites and are directed at
what must be learned. After years of effort, beginning with
Control Data’s work (under the leadership of William Norris)
in the early 1960s, the best CBI is limited to providing pretests
to identify areas of weakness, providing instruction aimed at
deficiencies and following up with post tests to determine how
much has been learned.

ALEKS is one of the better commercially available CBI
systems. In ALEKS and other advanced CBI systems (e.g.,
Paquette, 2007, 2009) to-be-acquired knowledge is
represented in terms of relational models.

ITS research goes further, attempting to duplicate or model
what a good tutor can do — by adjusting diagnosis and
remediation dynamically during instruction. ITS focus on
modeling and diagnosing what is going on in learner minds
(e.g., Anderson, 1993; cf. Koedinger et al, 1997; Scandura et
al, 2007). Assumptions are made both about what knowledge

Polibits (42) 2010

Joseph M. Scandura

might be in learner minds and learning mechanisms
controlling the way those productions are used in producing
behavior and learning.

Identifying the productions involved in any given domain is
a difficult task. Specifying learning mechanisms is even
harder. Recognizing these complexities Carnegie Learning
credits Anderson’s evolving ACT theories, but increasingly
has focused on integrating ITS with print materials to make
them educationally palatable (i.e., more closely aligned with
what goes on in classrooms).

The difficulties do not stop there. Ohlsson noted as early as
1987 that specifying remedial actions — what to teach is much
harder than modeling and diagnosis. As in CBI, pedagogical
decisions in ITS necessarily depend on the subject matter
being taught — on semantics of the content. Each content
domain requires its own unique set of pedagogical decisions.
It is not surprising in this context that Ohlsson and Mitrovic
found common cause in developing Constraint Based
Modeling (CBM, 2007). CBM is a simplified alternative to
ITS based on production systems in which the focus is on
constraints that must be met during the course of instruction —
not on the cognitive constructs (productions) responsible (for
meeting those constraints).

From their inceptions, the Holy Grail in CBI and ITS is to
duplicate what good teachers do. As shown by Bloom (1984)
the best human tutors can improve mastery in comparison to
normal instruction by 2 sigmas. This goal has been broadly
influential but never achieved through automation. The
limited success of CBI, combined with the complexities and
cost inefficiencies of ITS have reduced effort and research
support for both CBI and ITS.

I will show that these trends are premature. Advances in
SLT and AuthorlT and TutorIT technologies based thereon
make it possible not only to duplicate human tutors in
many areas but to do better. Today, for example, few doubt
we can build tutoring systems that teach facts as well or better
than humans. “Flash cards”, for example, could easily be
replaced by computers — with more efficiency and certain
results.

Today, I will go further:

a) | will show that AuthorlT makes it possible to create
and that TutorlT now makes it possible to deliver
highly adaptive (and configurable) tutoring systems
that can do as good or better job on well-defined math
skills.

I will show why and in what sense TutorIT tutorials
can guarantee mastery of such skills.

I will show why TutorIT tutorials can be developed
cost effectively — at half the cost of traditional CBI
development.

I will show how TutorIT tutorials can gradually be
extended to support the development and delivery of
higher as well as lower order knowledge.

I will show why TutorlT tutorials can be expected to
produce as good or better learning than most human
tutors.

b)

c)

d)

€)

Polibits (42) 2010

22

My paper is organized as follows:

1) | provide some background and summarize recent
advances in knowledge representation and Structural
Learning Theory (SLT) offering a theoretically
rigorous, empirically sound foundation for building
highly adaptive tutoring systems.

I first show why these advances make it possible to
exceed human tutoring on well defined knowledge.

I then show how AuthorlT makes it possible to develop
highly effective TutorlT tutorials at greatly reduced
cost — even less than commercial development. | will
also demonstrate how TutorlT math tutorials work and
explain why they can do as good if not better job than
most human tutors, how they can be configured at no
additional cost to meet alternative needs — e.g., to serve
as diagnostic systems, and how they can be used to
reliably compare alternative pedagogies.

Finally, I talk about the future: What needs to be done
to support ill-defined domains where higher order
knowledge plays a central role? 1 show how AuthorlT
and TutorlT can be extended to support adaptive
tutoring on higher order learning — and why such
tutoring systems may be expected to do as well, to even
supersede human tutors.

2)

3)

4)

Il. BACKGROUND

In the 1960s, there was a disconnect in educational research
and research in subject matter (math) education. Educational
research focused on behavioral variables: exposition vs.
discovery, example vs. didactic, demonstration vs. discussion,
text vs. pictures, aptitude-treatment interactions, etc. (cf.
Scandura, 1963, 1964a,b). Subject matter variables were
either ignored or limited to such things as simple, moderate,
difficult. Little attention was given to what makes content
simple, moderate or difficult. Conversely, research in subject
matter (e.g., math) education, focused primarily on content
(reading, writing, arithmetic skills, algebraic equations, proof,
etc.).

In same time period, instructional design focused on what
was to be learned and prerequisites for same. Task analysis
focused initially on behavior — on what learners need to do
(Miller, 1959; Gagne, 1966). In my own work, this focus
morphed into cognitive task analysis — on what learners must
learn for success (e.g., Scandura, 1970, 1971, Durnin &
Scandura, 1973). My parallel work in experimental
psychology (Greeno & Scandura, 1966; Scandura &
Roughead, 1967) in the mid 1960s added the critical
dimension of behavior to the equation.

Structural Learning grew out of this disconnect, with the
goal of integrating content structure with human cognition and
behavior. Structural Learning Theory (SLT) was first
introduced as a unified theory in 1970 (published in Scandura,
1971a). SLT’s focus from day one (and the decade of
research on problem solving and rule learning which preceded
it) was on what must be learned for success in complex

domains, ranging from early studies of problem solving and
rule learning (Roughead & Scandura, 1968; Scandura, 1963,
1964a,b, 1973, 1977) to Piagetian conservation (Scandura &
Scandura, 1980), constructions with straight edge and
compass, mathematical proofs and critical reading (e.g.,
Scandura, 1977).

This research was focused on the following four basic
questions [with their evolution from 1970 > Now]:

Content: What does it mean to know something? And

how can one represent knowledge in a way that has

behavioral relevance?

[1970: Directed graphs (flowcharts) - Now: Abstract

Syntax Trees (ASTs) & Structural Analysis (SA)]

Cognition: How do learners use and acquire knowledge?

Why is it that some people can solve problems whereas

others cannot?

[1970: Goal switching > Now: Universal Control

Mechanism (UCM)]

Assessing Behavior: How can one determine what an

individual does and does not know?

[1970: Which paths are known - Now: which nodes in

AST are known (+), -, ?

Instruction; How does knowledge change over time as a

result of interacting with an external environment?

[1970: Single level diagnosis & remediation - Now:

Multi-level inferences about what is known and what

needs to be learned]

Higher order and lower order knowledge played a central
role in this research from its inceptions — with emphasis on the
central role of higher order knowledge in problem solving
(Scandura, 1971, 1973, 1977). Early SLT research also
focused heavily on indentifying what individual learners do
and do not know relative to what needed to be learned (e.g.,
Durnin & Scandura, 1974; Scandura, 1971, 1973, 1977).

Deterministic theorizing was a major distinguishing feature
of this research (Scandura, 1971). | was focused, even
obsessed with understanding, predicting and (in so far as
education is concerned) controlling how individuals solve
problems. Despite considerable training in statistics and
having conducted a good deal of traditional experimental
research (e.g., Greeno & Scandura, 1966; Scandura &
Roughead, 1967; Scandura, 1967), | found unsatisfying
comparisons based on averaging behavior over multiple
subjects. | wanted something better — more akin to what had
been accomplished in physics centuries earlier (cf. Scandura,
1974a).”

SLT was unique when introduced, and raised considerable
interest both in the US and internationally (Scandura, 1971a,
1973, 1977). Literally hundreds of CBI programs based on
SLT were developed later in the 1970s and early 1980s, and
many sold for decades.

% The deterministic philosophy | am proposing represents a major departure
in thinking about how to evaluate instruction — in particular, it calls into
question the usual measures used in controlled experiments. After
understanding how TutorlT works, please see my concluding comments on
this subject.

23

The Role of Automation in Instruction

Nonetheless, ITS largely ignored this research and focused
on later work in cognitive psychology (Anderson et al, 1990,
1993) and especially the Carnegie school of artificial
intelligence based on production systems (esp. Newell &
Simon, 1972).

By the mid-1970s, cognitive psychology also discovered
the importance of content, often equating theory with
alternative ways of representing knowledge. Research
focused largely on what (productions or relationships) might
be in learner minds and comparing fit with observable
behavior. Experimental studies followed the traditional
statistical paradigm.

Similarly, most CBI development was heavily influenced
by Gagne’s work in instructional design (1965), along with
that of Merrill and his students, 1994). The restricted focus of
Reigeluth’s (1983, 1987) influential books on Instructional
Design largely eliminated or obscured some of SLT’s most
Important features, most notably its focus on precise diagnosis
and higher order learning and problem solving. With essential
differences requiring significant study, the long and short of it
is that other than our own early tutorials (which made small
publisher Queue one of Inc Magazine’s 100 fastest growing
small businesses), SLT failed to significantly inform on-going
research in either CBI or ITS. After the interdisciplinary
doctoral program in structural learning | developed at Penn
was eliminated in the early-mid 1970s, SLT became a little
understood historical curiosity.

With recent publications in TICL, depth of understanding in
ITS, CBI and SLT has increased in recent years (Mitrovic &
Ohlsson, 2007; Paquette, 2007; Scandura, 2007), including
their respective advantages and limitations (Scandura,
Koedinger, Mitrovic & Ohlsson, Paquette, 2009). Advances
in the way knowledge is represented in SLT has the potential
of revolutionizing the way tutoring systems are developed,
both now and in the future. SLT rules® were originally
represented as directed graphs (e.g., Scandura, 1971a, 1973).
Directed graphs (equivalent to Flowcharts) make it possible to
assess individual knowledge. They have the disadvantage,
however, of forcing one to make a priori judgments about
level of analysis. They also make it difficult to identify subsets
of problems associated with various paths in those graphs.

Having spent two decades in software engineering (e.g.,
Scandura, 1991, 1994 1995, 1999, 2001), it became increasingly
apparent that a specific form of Abstract Syntax trees (ASTS)
offered a long sought solution. ASTSs are a precise formalism

® | used the term “rule” rather extensively in behavioral research during the
1960s. Adopting the term “production” from the logician Post in the 1930s,
Newell & Simon (1972) introduced the term “production rule” in their
influential book on problem solving. Anderson later used of the term “rule” in
ITS as synonymous with “production rule” (in production systems).
Accordingly, it ultimately seemed best to introduce the term “SLT rule” to
distinguish the two. Distinctive characteristics of SLT rules became even
more important with my introduction of ASTs into SLT. In this context, ASTs
represent a long sought solution to my early attempts at formalization in SLT
(see Scandura, 1973, Chapter 3). The importance of ASTs in SLT, however,
only gradually became clear to me after using the concept for some time in
developing our software engineering tools -- despite the fact that ASTs had
played a central role for years in compiler theory.

Polibits (42) 2010

Joseph M. Scandura

derived from compiler theory and that are widely used in
software engineering. To date, ASTs have had almost no
impact on knowledge representation, ITS or CBI. However,
we will see that they do indeed have very significant
advantages in SLT.

I have recently documented the current form of SLT in
some detail (Scandura, 2007). Readers are encouraged to
review the material therein on Knowledge Representation
along with the published dialog on the subject which followed
(Scandura, Koedinger, Mitrovic & Ohlsson and Paquette,
2009).

I focus in the next section on what is most unique about
knowledge representation in SLT along with why and how it
offers major advantages in developing adaptive tutoring
systems.

IIl. THEORETICAL ADVANCES: WELL-DEFINED KNOWLEDGE

There have been three fundamental advances in SLT in
recent years. First is in the way knowledge is represented.
SLT rules were originally represented as directed graphs
(Flowcharts). They are now represented in terms of Abstract
Syntax Trees (ASTs). Second is formalization of a key step in
Structural (domain) Analysis (SA), enabling the systematic
identification of higher order SLT rules that must be learned
for success in ill-defined domains. Third is the complete
separation of SLT’s control mechanism from higher order
knowledge. These advances distinguish knowledge
representation in SLT from all others, and have fundamental
implications for building adaptive tutoring systems.

In this section we consider the first advance: _SLT rules
have long been used to represent to-be-acquired knowledge in
well-defined domains. While retaining the advantages of
directed graphs, representing SLT rules in terms of Abstract
Syntax Trees (ASTs) offers a number of critically important
benefits.

Not only do they offer a way to assess individual
knowledge (as did directed graphs), but AST-based SLT rules
also provide a perfectly general way to automatically both
generate test problems and the solutions to those test
problems. As we shall see, they also make it possible to
simultaneously represent knowledge at any number of levels
of analysis.

Precision.— The major reason adaptive tutoring systems
have been so difficult and expensive to develop is that
pedagogical decision making has been so time consuming and
expensive. This is equally true whether tutoring systems are
based on traditional CBI (cf. Paquette, 2007) or ITS (cf.
Mitrovic & Ohlsson, 2007).

In CBI the focus is on what must be learned. Better CBI
systems invariably are based on some combination of
hierarchical and/or relational analysis. Hierarchical
representations have an important advantage: Hierarchies
inherently arrange content in the order in which content must
be learned. Content higher in a hierarchy necessarily

Polibits (42) 2010

incorporates lower order content, a fact that has direct and
important implications for both testing and teaching.

The problem is twofold:

(1) not everything can be represented hierarchically using
current decomposition methods (Scandura, 2007) and

(2) informal hierarchical representation is not sufficiently
precise to automate decision making without direct attention
to the meaning of the content.

I don’t want to don’t have time to repeat here what has
already been published. On the other hand, | must call special
attention to one key idea, an idea that makes it possible to
develop adaptive tutoring systems that can both: a) be
developed at lower cost and b) guarantee learning.

Specifically, Structural (domain) Analysis (e.g., Scandura,
2007) makes it possible not only to represent all behavior
hierarchically, but to do so precisely that inherent
relationships are exposed.

It is well know known that many ideas can be refined into
components or categories. Components and categories are
fundamental: Component refinements involve breaking sets
into to their elements. Category refinements involve breaking
sets into subsets. For example, the set of animals can be
refined into elements — individual animals in the set. The set
of animals also can be refined into categories: dogs, cats,
whales, etc.

Consider column subtraction: We begin with a subtraction
problem. Subtraction problems typically are refined first into
elements, the columns that make up a subtraction problem.
(Because the number of columns in a subtraction problem may
vary, | have called this variation a “prototype” refinement,
wherein each prototype, or column, has the same structure.)
Columns, in turn, may be refined into categories, columns
where the top number is greater than or equal to the bottom
number and columns where the top number is less than the
bottom number.

The same idea applies generally: Consider a “house”.
Houses consist of sets of rooms, room elements. Rooms in
turn can be categorized by their size, or their use, or by any
number of other distinctions.

As detailed below, component and category refinements
have direct counterparts in corresponding solution procedures.
Again, consider column subtraction. Here, the initial
procedural refinement is a Repeat-Until loop. Loops in
procedures correspond precisely to Prototype refinements in
data: Compute the answer to each column in turn until there
are no more columns. The next procedural refinement is an
IF.THEN selection. Selection refinements in procedures
correspond to Category refinements in data. In subtraction,
different processes are required when the top number is
greater than or equal to the bottom number and when this is
not the case.

Unfortunately, component and category refinements are not
sufficient. ~ Other kinds of “refinements” involve (more
general) relationships — for example, whether the top digit is
greater than or equal to the bottom digit. Mating involves a
relationship between two animals — male and female.

Simple relationships are fine when they are immediately
understandable and unambiguous. In many cases, however,
they are not. None of us, for example, would any problem
writing the numeral “5”. Ask most four or five year olds,
however, and the story is likely to be very different. Writing
the numeral “5” requires a precise set of constructions
involving straight and curved line segments.

Relational models can easily represent the relationships
between such line segments. Indeed, everything can be
represented in terms of relationships. The problem is twofold.
The number of relationships increases rapidly as domains
become increasingly complex. In complex domains,
relationships on relationships can extend geometrically
without bound.

Relational representations suffer from an additional
problem (beyond the sheer number of relationships). Whereas
component and category refinements may be repeated
indefinitely, this is not possible with (non-unary)
relationships. Every relationship (relational refinement) must
be considered anew. There is no systematic way to represent
given (non-unary) relationships in terms of simpler elements.

Knowledge representation using ASTs solves this problem.
There is a fundamental mathematical equivalence between
relations and functions. Each and every relationship can be
represented by at least one function, or procedure, having its
own inputs and outputs. For example, relationships between
straight and curved line segments comprising the numeral “5”
can be viewed as a procedure operating on such segments.
These procedures in turn can be refined as the originals.

Why is this important? Consider the following. If we
subject Column Subtraction to Structural Analysis, we are
going to end up with terminal elements requiring such things
as the child’s ability to write the numeral “5” (and “0”, “1”,
“2”, ...). No matter what is being learned there will always be
things that learners must know on entry. Young children, for
example, learn early on to do such things as write the numeral
“5”. What is being learned here is not a relationship. Rather,
it is an SLT rule that takes line segments as input and
generates the numeral “5”.

Prerequisite SLT rules, in turn, can be refined as any other.
The refinement process can be repeated indefinitely. No
matter how complex the subject matter, or how naive the
target population, it is always possible to represent the
knowledge necessary for success in hierarchical form. The
introduction of what | have called “dynamic” refinements,
along with component and category refinements, closes the
loop. It is now possible to represent what needs to be learned
in any domain in whatever detail may be necessary (and
desirable).

NOTE 1: It is worth noting incidentally that representing
relationships as functions is equivalent in software
engineering to introducing the notion of a *“callback”. Just as
one may introduce functions operating on parameters in a
dialog box, one can introduce functions generating outputs
from inputs in a relationship.

The Role of Automation in Instruction

NOTE 2: It might appear that arbitrary refinement may be
as, if not more demanding than knowledge engineering in ITS.
Identifying possible (correct and/or error) productions,
however, not to mention learning mechanisms, can be very
challenging and open ended. On the other hand, the process
of Structural Analysis (SA, is highly systematic with a
definitive end point. In addition to learning how to perform SA
using AuthorlIT’s AutoBuilder component (see below), the
main requirements for an author are the ability to perform the
skill in question and reasonable insight into what must be
learned for success. Working under my direction a single
programmer familiar with AuthorIT and TutorIT has been
making TutorIT tutorials ready for field testing at a rate of at
least one per month. Only a small portion of this time has
involved representing to-be-acquired knowledge. Most has
been devoted to laying out interfaces and associated media.

For those not mathematically inclined, all this may seem
like a technical truism with little practical significance. In
fact, however, this technical truism has fundamental practical
significance. AST hierarchies provide a perfectly general way
to define pedagogical decisions. All pedagogical decisions in
SLT can be based entirely on the structure of to-be-learned
SLT rules. This can all be done independently of content
semantics.

Indefinite refinement makes it possible to define what needs
to be learned with whatever precision may be necessary to
make contact with knowledge available to any population of
learners, no matter how naive they might be initially.

Full hierarchical representation makes it possible to quickly
determine the status of any individual’s knowledge at each
point in time (relative to a SLT rule hierarchy), and to provide
the instruction necessary to advance. Given full analysis,
empirical research (e.g., Scandura, 1970, 1971, 1973, 1974a,
1977° Durnin & Scandura, 1973) demonstrates that testing on
a single test item is sufficient to determine whether a learner
has mastered any given sub tree in an SLT rule.

It is not always feasible, however, nor necessary to
undertake complete analysis. Nonetheless, even incomplete
hierarchical analysis is better than none. Incomplete
hierarchies provide a beginning — a starting point that can be
improved incrementally as time, resources and the importance
of any particular tutoring system demands.

NOTE: Curriculum standards specifying prerequisites,
concepts to be learned and the order in which they should be
acquired may serve as a starting point. Generally speaking,
however, our experience is that they do not normally go
nearly far enough in identifying what must be learned for
success.

It is always possible to build effective tutoring systems by
introducing a safety factor (Scandura, 2005) — as engineers do
in designing a bridge. Instead of requiring a single success
corresponding to any terminal node (in an SLT rule hierarchy)
one can require any number of successes. This makes it
possible in principle to guarantee learning.

Efficiency of Development.— A major limitation of adaptive
tutoring systems is that they have been hard to build.

Polibits (42) 2010

Joseph M. Scandura

Identifying knowledge is only one part of the process.
Defining (and implementing) pedagogical decisions in
traditional ITS — what to test or teach and when — is the most
expensive, time consuming and error prone tasks required
(Mitrovic & Ohlsson, 2007; Koedinger & Ohlsson, 2009).
This perhaps is the primary reason so few truly adaptive
tutoring systems exist despite many years of university and
federal support.

By way of contrast, 1 will show how TutorIT makes all
pedagogical decisions automatically —based entirely on the
hierarchical structure of SLT rules representing what is to be
learned.

Hierarchical representation has a further not
inconsequential benefit. It is easy to define any number of
pedagogical theories as to how best to promote learning.
Specifically, | will show how TutorIT can easily be
configured to deliver instruction in accordance with a variety
of pedagogical philosophies. In all cases, TutorIT effectively
eliminates the need to program pedagogical decisions
(Scandura 2005, 2007, 2009). Cost savings have been
estimated at between 40 and 60% (cf. Foshay & Preese, 2005,
2006; Scandura, 2006a,b).

In short, guaranteed results at lower cost — a combination
that should be hard to resist.

IV. CURRENT STATUS OF TUTORIT:
GUARANTEED LEARNING AND LOWER COST

Our AuthorlT authoring and TutorlT delivery systems
currently support the development and delivery of well
defined knowledge (Scandura, 2005). The long term goal,
however, is to realize the full potential of SLT (Fig. 1).

Technologies Based on Structural Learning Theory
Using AuthorIT to Create and TutorIT to Deliver
Instructional Systems

is)
\?itérluctural Analysis Content Knowledge
Representation

M > Problem Domain & Associated

AutoBuilder Lower & Higher Order SLT rules

Blackboard Editor \

TutorIT Options Blackboard Interface

j TutorlT displays & Learner responses
TutorIT

Learner
Content knowledge w/
UCM, capacity/speed
Full diagnostic & tutorial
expertise;
Fully configurable

Universal Control Mechanism
Processing capacity/speed
Individual knowledge

copyright scandura 2001-5 i

Fig. 1. Technologies based on Structural learning theory.

A. Given a well defined problem domain, AuthorlT
includes the following:

Polibits (42) 2010

26

1) AutoBuilder, a tool for systematically representing
knowledge as an SLT rule, including both the
procedural Abstract Syntax Tree (AST) and the AST
data structure on which it operates. Procedural ASTs
in AutoBuilder are visually represented as Flexforms
(below). Each node in a Flexform represents a specific
part of the to-be-acquired knowledge.

Blackboard Editor, a tool for creating and laying out
schemas representing problems in the domain.
Blackboard serves as the interface through which
learners and TutorlIT interact.

AutoBuilder also is used to assign instruction,
questions, positive feedback and corrective feedback to
individual nodes in the Flexform. This information
may include text, graphics, sound and/or other
supporting media.

Options, a dialog (tool) used to define how TutorIT is
to interact with learners. Options include variations on
delivery modes ranging from highly adaptive to
diagnostic, to simulation to practice.

2)

3)

4)

B. TutorIT takes the above produced with AuthorIT and
interacts with learners as prescribed in the Options Tool. |
will show how TutorIT’s adaptive mode works below. But,
first let’s review the development process.

Representing Well defined Knowledge.— TutorlT
development begins by representing to be learned knowledge
as an SLT rule. As required by SLT (Scandura, 2005),
AutoBuilder makes it possible to represent knowledge with
arbitrary degrees of precision.

Each node in the Flexform represents to-be-acquired
knowledge at a specific level of abstraction. For example,

A. “Borrow_and_subtract the current_column” to the
right of the first “ELSE” in Fig. 2 (Appendix A)
represents the knowledge necessary for computing the
difference in any column when the top digit is less than
the bottom digit.

Subordinate nodes like “Borrow_from_next_column”
provide increasingly more specific information.

Parameters of these operations representing data on which
these operations act also are arranged hierarchically.
Operation A, for example, operates on “Prob” and
“CurrentColumn”. “Prob” represents an entire subtraction
problem. “CurrentColumn” represents columns in such
problems. Operation B also includes “ReducedTop”,
“Slashtop”, “CurrentBorrowColumn” and “BorrowedDigit”.

In this context, AuthorlT’s AutoBuilder component
imposes consistency requirements on successive refinements.
These requirements are designed to ensure that the behavior of
children in each refinement is equivalent to the behavior of the
parent. Operation A, for example, operates on each current
column without a computed difference and generates the
current column with the correct difference. The nodes
immediately below Operation A provide more detail as to the
intermediate steps and decisions. Otherwise, however, they
produce the same result. The behavior is equivalent.

B.

In general, higher level nodes may operate on more highly
structured parameters. For example, CurrentColumn
represents entire columns, including the column itself and the
top, bottom, difference and borrow digits in that column.
Corresponding lower level child nodes operate on simpler
parameters, like BorrowedDigit. The behavior of higher and
lower level operations (i.e., nodes), however, is expected to be
equivalent (to produce equivalent results).

Defining Problem Schemas.— Once the Flexform has been
fully implemented (and tested using AuthorlT’s build in
Interpreter/Visual Debugger), the next major step is to define
problem schemas that collectively exercise all nodes in the
Flexform. For example, a subtraction problem with all top
digits greater than or equal to the bottom ones will not
exercise Flexform nodes involving regrouping (or borrowing).
Problem schemas are defined and laid out in AuthorIT’s
Blackboard Editor as shown in Fig. 3 (Appendix A).

TutorIT Options Tool.— The Tutor Options Tool, currently a
dialog in AuthorlT, is used by authors to define/configure
alternative learning modes. The first decision an author must
make is to decide which of the basic TutorlT Delivery Modes
to include: ADAPTIVE, INSTRUCTION, DIAGNOSTIC,
SIMULATION or PRACTICE. The Options Tool in Figure 5
is set to ADAPTIVE mode. Authors also can make
DIAGNOSTIC, INSTRUCTION, SIMULATION, and
PRACTICE modes available in TutorlT by selecting desired
modes for TutorlT Delivery Mode in the dialog. ALLOW
LEARNER CONTROL also is an option. In short, TutorlT
makes it possible to compare different pedagogies on even
terms.

TutorIT.— The Flexform associated with a skill represents
what is to be learned in an arbitrarily precise manner. The
Flexform design (in blue) also includes HLD code (in green)
which is interpretable by TutorIT. The design Flexform acts
like a structured database, including all information needed by
TutorlT to provide a wide variety of delivery modes. In
addition to to-be-learned operations and decisions, Flexforms
include: a) a modular executable implementation of each
terminal (Fig. 2), b) questions, instruction, feedback and
corrective feedback associated with specific nodes in the
Flexform, c) problem schemas (which serve as input to the
Flexform) problem schemas laying out the kinds of problems
to solved (Fig. 3), and d) TutorIT options specifying how
TutorlT is to make its decisions (Fig. 4).

The way TutorIT operates depends on how it is configured
in the Options Tool. | concentrate here primarily on Adaptive
mode. Other options, such as Diagnostic and Instruction, are
special cases or restrictions. TutorlT in Adaptive mode
automatically selects nodes that quickly pinpoint what a
learner does and does not know at each stage of learning.

Learner Model.— TutorlT takes the above Flexform files as
input and first creates a Learner Model representing what the
learner initially knows or is assumed to know about the to-be-
learned Skill. The Learner Model is normally displayed in a
tree view with each leaf marked with a “+”, “-* or “?”

The Role of Automation in Instruction

corresponding to a (blue or actionable) node in the Flexform
(e.g., see Fig. 5, in the Appendix A).

The left side of Figure 5 shows the Blackboard interface
through which TutorlT interacts with the learner. The Learner
Model for a student just beginning Column Subtraction is
shown on the right side of Figure 5.

TutordT Options ==
Tutorl T Options |
Tuterl T Delivery Mode * | ADAPTIVE «| v Include Mode Reset Defaults

v Incl. Naive/Instruction Emphasis W Incl. Undetermined,/Diagnostic Emphasis
I -

Leamer Model: Show (Hide ' Leamer choice

General

rd v ALLOW LEARMER CONTROL
ri [CUMULATIVE DISPLAY

v ‘#pply to Individual AST Designs (when project [prj] Problems Failed)
[~ Select pii Problems Randomly Randomly Select between Problems

[~ Test Conditions ’D_ and ID_

Prerequisites Test File |

Leaming {No. successes/node) |3_
%TestMastery [0 Start Problem [17
Diagnostic-Tutor Strategic Options =

Sequence: % Execution Top-Down { Bottom-Up (" from Middle
Tutor Strateqy:

Mo. Post-Test W

" Require Prerequisites % Ignore Prerequisites

Diagnostic Strateqy: ™ Require Prerequistes © lgnore Prerequisites
Start all Modes w/ Leamer Status: & 2 v - O+ 1 Asis
Leamer Response Options

300 Mae. Time For Leamer Response {in Seconds)

[Send Leamer Response Immediately (Submit button/Retum Not Required)
[Auto Construct {Insert Selection Object as Last Child)
Cther Diagnostic Options

[V Present Cortext (Node 10) ¥ Present Question

v Present +/- Feedback after Leamer Answer (assumes Diagnosis)

Cther Tutor Cptions
[v Present Cortext (Node D) ¥ Present Instruction,/Solution Hint
[+ Show Solution {during Instruction & Feedback)
I~ Immediate Practice (n Tutoring)
Aash Problem Select: ¢ Defaut (¢ Match ScméBxample © Use Next

* Selecting Authorl T Delivery Modes (Adaptive, Instruction, Diagnostic, Simulate,
Practice) automatically sets relevant options. Selections that are not grayed out
may be changed as desired.

** Various strategies can be set with these options. A setting for adanced leamers
might be Top, lgnore Prerequisites, Starting w/ design AST nodes set to "+".

o]

Fig. 4. TutorIT Options Tool used by authors to define/configure alternative
learning modes. Currently set to ADAPTIVE mode. Other choices allow for
further customization.

Cancel Help

Given the above information, TutorIT operates as follows.
All decisions are based entirely on the structure of the content
to be learned, independently of content semantics.

1. TutorlT selects a problem.

2. TutorlT then selects a (blue) node in the Flexform (or

Learner Model). Only nodes that are exercised by the

Polibits (42) 2010

Joseph M. Scandura

selected problem are eligible for selection. Selections
otherwise are made according to priorities set in
TutorIT’s Options Tool (Fig. 4).

TutorlT executes the Flexform using its built in
interpreter. The subtree defined by the selected node
(in the Flexform) automatically generates a sub-
problem of the problem schema and also its solution.

NOTE: As below, we will want TutorlT to also support the
case where TutorlT must generate (new) solution Flexforms
from higher and lower order SLT rules. SLT’s UCM will play
a central role in this context. Currently, TutorIT only
supports chaining two or more SLT rules as in current expert
systems.

4. TutorlT displays the sub-problem on TutorlT’s

blackboard (see the left side of Fig. 5).
If a node is marked “-”, TutorIT provides instruction.
If marked “?”, TutorIT presents a question to determine
its status. TutorlT skips nodes marked “+” unless the
node is an automation node. Automation nodes require
a faster response (higher level of expertise).

NOTE: These questions and instructions, as well as positive
and corrective feedback, may consist of simple text, voice
and/or media consisting of Flash, audio-visual or other files.

6. TutorlT compares the learner’s response with the
correct answer, which is automatically generated by
TutorlT.

a. If the status was “?” and the learner gets the

correct answer, positive feedback is given and
the node is marked correct (assigned a “+”).
If incorrect, TutorlT provides corrective
feedback and the node is marked with a minus
().
If the status was “-”, instruction is given and
the node is marked “?”. After instruction, it is
impossible for TutorlT to know for sure that
the learner has actually learned what was
taught.

NOTE: The learner must meet timing requirements if the
node is an automation node requiring a higher level of skill.

7. In addition to determining the learner’s status on
individual nodes, TutorIT also infers what the leaner
knows with respect to nodes dependent on the current
one:

a.

If the learner gives an incorrect response,
TutorlT reliably assumes that any (higher
level) node dependent on it also should be
marked unknown. TutorlT marks such nodes
accordingly.

Conversely, if the learner gives the correct
response, TutorlT reasonably assumes that the
learner also knows those lower level nodes on
which it depends. In short, TutorIT not only
compares learner responses on sub-problems
corresponding to individual nodes but also
quickly infers what the learner knows about
nodes dependent on it.

Polibits (42) 2010

28

TutorIT can be configured with various “safety factors” to
ensure learning. For example, one can set the Options Tool to
require learners to demonstrate mastery on every node, not
just once but any specified number of times (see “Learning
(No. successes/node”). After learning, TutorlT can be set to
require any specified level of success on practice problems.

To date, we have developed TutorIT tutorials for Column
Addition, Column Subtraction, Column Multiplication and
Long and Short Division along with five levels for each of the
Basic Facts: Addition, Subtraction, Multiplication and
Division. Operations on Fractions also are in progress.
Please see www.TutorlTmath.com for latest availabilities.

In each case, TutorIT takes problem schemas as laid out in
the Blackboard Editor as input. It automatically generates
problems, actually sub-problems, as needed for diagnosis and
remediation. Nodes are selected so as to enable TutorIT to
quickly pinpoint what each individual does and does not know
at each point in time, and to provide precisely the information
(instruction) needed when needed to progress in optimal
fashion.

All this is done dynamically during the course of instruction
as might a human tutor. The main difference is that TutorlT
does this in a highly disciplined manner. All decision making
is done automatically based entirely on the structure of the to-
be-acquired knowledge. Semantic independence dramatically
reduces the effort required to create adaptive tutoring systems.

The hierarchical representation of knowledge (in
Flexforms) has important implications for both efficiency and
effectiveness. As above, TutorlT makes direct inferences not
only with respect to individual nodes but to dependent nodes
as well. For example, if a student gets a problem associated
with one node correct, then TutorIT can reliably assume that
the student also knows all of the lower level nodes on which it
depends. For example, if a child can subtract columns
involving borrowing or regrouping, one can reasonably
assume that the child can also subtract successfully when there
is no regrouping. On the other hand, if a child cannot subtract
a column that does not involve regrouping, one can be quite
certain, he or she cannot subtract when regrouping is required.
In short, success on a node implies success on all subordinate
nodes. Failure implies failure on all superordinate nodes. The
result is very efficient diagnosis and instruction.

Unlike most teachers, TutorlT can be unusually effective
because it benefits from careful pre-analysis. We have put a
considerably amount of effort into our TutorlT Math skill
tutorials — far more than what goes into writing a text book for
example. The level of analysis in our current prototypes can
and will be further improved as a result of field testing. Even
in their current state, however, TutorlT Math skill tutors
benefit from considerably more analysis than most teachers
are capable. And, this analysis can further be improved
incrementally.

On the other hand, of course, a good human tutor generally
will be more attuned to motivational factors. We expect
TutorlT tutorials to get better and better over time as a result
of feedback. Nonetheless, they are designed for specific

purposes and may never achieve the flexibility of a good
human tutor who has spent years both learning math and how
to motivate children to learn in a wide variety of real world
situations. In short, there likely will always be some things
that a good human can do better than TutorlT — as well as the
converse. Having said this, the choice is not one of either or.
Rather it is a question of how best to use both to maximize
learning.

Importance of Prerequisites— One might argue that just
because a student solve one subproblem (associated with a
given node) does not necessarily imply that he or she can do
this with all such subproblems. Indeed, this is correct. As
pointed out in my earlier description of TutorlT (Scandura,
2005) a single test will only be sufficient when analysis is
complete — when all terminal nodes are as we say atomic.
Success on one instance in this case implies success on all
instances of the same type with unusually high degrees of
reliability (cf. Scandura, 1971a, 1973, 1977). Having said,
this just as a good bridge designer builds in a safety factor, an
author can easily do the same with TutorlT. TutorIT can be
required to demand a higher level of performance by simply
changing a setting in the Options Tool to require any number
of successes on each node (before mastery is assumed).

Criteria may be set so as to actually guarantee learning.
Any learner who enters with pre-specified prerequisites, and
who completes a given TutorlT tutorial will be definition have
mastered the skill in question. There is no other way a student
can complete a TutorIT tutorial. He or she must meet pre-
specified criteria set by the author or TutorlT tutoring will
continue until they are met.

Notice that prerequisites play an essential role in the
process. Prerequisites correspond precisely to atomic or
terminal nodes in Flexform knowledge representations. Some
prerequisites are so simple that they can safely be assumed on
entry. For example, the ability to read and write numerals.
Entry with respect to other prerequisites, however, may be
less certain. Any child presumed to be ready for long division
would almost certainly have to know the multiplication tables
and how to subtract. Similarly, no would want to teach
column subtraction unless a child already knew how to count.

The basic question in this context is how one make contact
with learner’s who have not mastered such prerequisites? For
example, how to teach column subtraction to a child who
cannot write or recognize numerals (e.g., “5”, “3”). SLT
support for indefinite refinement offers a unique solution to
this problem. One is not forced to introduce non-
decomposable relationships. Instead, each such prerequisite
can be represented as an equivalent SLT rule with its own
domain and range. As above, for example, the numeral “5”
can be viewed as an SLT rule for constructing the numeral
from more basic line segments. Most important, SLT rules
representing prerequisites can be refined further just as any
other.

One further point. Let’s turn this argument on its head.
The difficulty of any task, or to be learned skill depends not
on just the skill itself. Rather, it depends on the nature of the

29

The Role of Automation in Instruction

prerequisites that may be assumed available. We hear a lot,
for example, about the benefits of using sophisticated
calculators in education (e.g., TI’s Nspire family). Clearly, if
one has a calculator, computational issues take a back seat. It
is far easier to learn to evaluate arithmetic computations with a
calculator than without.

NOTE: Along with most mathematics educators | would
argue nonetheless that computational abilities are essential
irrespective of the presence or absence of a calculator.

On the one hand mastering Nspire can be can subjected to
the same kind of analysis we are talking about here. And,
TutorIT could equally well be used to provide the necessary
instruction. On the other side of the coin, one can start with
the assumption that learners can already use of such tools as
Nspire — as prerequisites on entry. In this context, to-be-
analyzed problem domains will be very different.

Instead of computational skills, the focus is more likely to
be on problem analysis. Given a description of a situation, for
example, how can it be formulated in terms of mathematical
expressions? Having created such an expression, one can
plug in the numbers and click to get the solution. In a similar
manner, the more comprehensive the skills one can assume
the more sophisticated the knowledge one can teach. The
general truism to be taken from this analysis is not whether
basic skills are important but rather that the more basic skills
one has mastered, the more one has to build one. This is true
whether in mathematics or in any other subject.

NOTE: Representing reality in terms of mathematical
expressions is one of six basic process abilities in
mathematics. These were first introduced in Chapter 1 of my
book on Mathematics: Concrete Behavioral Foundations
(Scandura, 1971b, pp. 3-64). The six abilities were organized
as three bidirectional pairs: Detecting regularities and its
opposite of constructing examples of regularities,
understanding mathematical representations (e.9.,
expressions) and its opposite of creating mathematical
expressions and deduction and its opposite axiomatization.

Configuring TutorlT.— The ease with which TutorIT can be
customized adds another important dimension. In addition to
ADAPTIVE mode, the Options Tool also supports
DIAGNOSTIC, INSTRUCTION, SIMULATION and
PRACTICE modes. Authors may also allow learner Control,
in which case the learner may decide on which items to be
questioned or to receive instruction.

Each basic delivery mode comes with some mandatory
settings. Other options enable authors to better control the
way content is delivered.

At the most basic level, for example, a student might
already have been exposed in varying degrees to the
knowledge being taught. In this case, TutorIT cannot know
what the learner knows on entry. In so far as TutorlT is
concerned, the learner enters essentially as a blank slate.
Conversely, if a student has had no exposure to the content,
TutorlT might start with nodes marked “-““-”, or unknown.
In this case, TutorlT will initially be biased toward
instruction.

Polibits (42) 2010

Joseph M. Scandura

In this case, “Start all Nodes with the Learner Status” in
AuthorlIT’s Options Tool (see Fig. 4) might be set to “?” or “-
*“ depending on prior student exposure to the content,. The
author also has the choice of allowing teachers or students to
make the choice for individual students or to require it for all.

In the undetermined state, TutorlT starts tutoring each child
by marking each node in the Learner Model (see below) with
a “?”. This signifies that TutorI T does not (yet) know whether
or not a learner has mastered the knowledge associated with
that node. After the learner responds, TutorlT provides
corrective or positive feedback as appropriate — and updates
the Learner Model as above — “+” for success or “-* for
failure.

Other options provide finer levels of control. For example,
an author might require that instruction be given only when
ALL prerequisite nodes have been mastered (marked “+”).
Alternatively, the author might want to place more emphasis
on self-discovery. Here, the author might choose the Ignore
Prerequisites option for Tutor Strategy. In this case TutorlT
will provide hints/scaffolding (i.e., instruction) even when the
learner’s status on lower level nodes is unknown.

More generally, the author has a wide variety of options
making it possible to accommodate a wide variety of
pedagogical biases — or should | say “instructional theories”.
Available options support a wide variety of instructional
philosophies — ranging from highly directive instruction to
open ended discovery including completely self directed
learning.

Comparison and Benefits.— Like other ITS or CBI, TutorlT
Math tutors are highly reliable. They never tire. They never
make mistakes — excepting bugs one may have missed.

Unlike other CBI (or ITS), however, TutorlT Math tutors
are designed so that any learner who enters with pre-specified
prerequisites and who completes a given tutorial will
necessarily have mastered the skill in question.

Whether these results are realized with actual students
depends on the following assumptions: a) that we have in fact
identified an SLT rule for correctly performing a ranges of
basic math skills with sufficient precision to have identified
essential prerequisite skills (terminals in Flexform used to
represent SLT rules), b) that learners demonstrate mastery of
those prerequisites on entry and c) that students complete the
TutorlT tutorial — the only way a student can do this is to have
demonstrated mastery on the skill being taught to whatever
criterion the author has prescribed (in the Options Tool).

In effect, what the student learns and whether or not a
student who completes a tutorial actually learns the skill is not
a question to be determined empirically. Rather, the proof
will be in such things as how long it takes, whether students
are sufficiently motivated to complete the tutorial, and
generally what might be done to make the tutorial even better
(e.g., more efficient and/or motivating for students, etc.).
Given the way TutorlT tutorials are developed, improvement
will occur incrementally as feedback suggests and as
resources allow.

Polibits (42) 2010

Toward this end, we are just now beginning field testing by
offering free trials. Anyone, a school, tutoring center, or
home can get free individualized tutoring on whatever skills
are currently available (now 5 levels for reach of the basic
facts and the basic whole number algorithms for addition,
subtraction, multiplication and division).

At the same time, the AuthorlT/TutorlT system
dramatically reduces development costs. As above, we have
already developed a range of TutorlT tutorials at a fraction of
the costs of ITS development. These tutorials focus on very
specific identifiable skills. Guaranteed learning is restricted
specifically to those skills. Nonetheless, TutorIT tutorials
developed to date also include instruction pertaining to
meaning. | refer here to the kinds of instruction commonly
included in textbooks and classroom instruction.*

There is no guarantee having gone through a given TutorIT
tutorial that students will necessarily also master this
supplemental material — material that is normally included
(but also not guaranteed) in classroom instruction. The
question of whether and to what extent this supplemental
instruction benefits students is an empirical one. Given
TutorlT’s focus on doing what it can do better and more
efficiently than a human (or any other means of transmittal),
this question also is of secondary importance. Current
TutorIT tutorials are designed to support classroom instruction
not to replace what a good teacher can (or should) do.

How can that be — better results at lower cost? The answer
lies in the very close relationship between knowledge
representation, on the one hand, and diagnostic and remedial
actions on the other. On the one hand, arbitrary refinement
allows for indefinite precision. Tutoring can be guaranteed.
Learners who enter with predetermined prerequisites and who
complete a given TutorlT tutorial will by definition
demonstrate mastery of defined skills.

The same structural relationships that make it possible to
provide efficient, highly targeted adaptive instruction also
eliminate the need to program pedagogical decisions. While
estimates may be based on slightly different assumptions, the
bottom line is that roughly half of all development costs can
be eliminated (cf. Foshay & Preese, 2005, 2006; Scandura,
2006a,b). It is not necessary to independently program

“ It is not that one could not target meaning as such. It is simply that doing
so would require further analysis. For example, TutorIT Column Subtraction
is based on a detailed analysis of what must be learned to perform column
subtraction — with learning guaranteed when a student completes the tutorial.
This tutorial also includes instruction describing and graphically illustrating a
concrete model of what is being done step by step (e.g., when one borrows
during subtraction). The difference is that we have not undertaken a
systematic analysis of what would need to be learned to ensure that a student
is able to demonstrate the meaning associated with any given problem, or the
reverse to construct a physical model corresponding to any given subtraction
problem. We could! We just haven’t, nor has any text book we know of as
well. “Dienes blocks” developed in the 1960s by an old colleague of mine
were designed precisely for this purpose.
® While TutorIT Math is not sufficiently complete to cover all that is in a
typical textbook. Other than background reading and the like, it is an open
question as to whether there are specific skills in a math textbook that could
not be done as well (or better) in TutorIT.

diagnostic and instructional logic as in developing other
adaptive tutoring systems.

In comparison with other approaches, AuthorlT and
TutorlT offer three major benefits:

a) Better results on well defined tasks than even human
tutors due both to more complete analysis (than most
humans are capable of) and to highly effective and
efficient tutoring. The latter derives from TutorlT’s
optimized pedagogical decision making. More
complete analysis and optimized decision make it
possible under carefully prescribed conditions to
actually guarantee learning. The way things are set up
there is essentially no way a student can complete a
TutorlT math tutorial without mastering the skill. The
question is not learning as such but whether a student is
motivated to complete a given tutorial, a very different
question requiring a very different answer.

Greatly reduced development costs because all TutorIT
decision making is predefined. All diagnosis and
testing is automatic and based entirely on the structure
of the to-be-learned knowledge. While we have not
kept actual figures on development costs, they are by
definition an order of magnitude less than that required
in ITS development. TutorIT tutorials ready for field
testing have been completed by myself with the
assistance of approximately one full time person for a
year. With an experienced team and further maturity
of AuthorIT and TutorIT, development costs may be
expected to go down gradually.

Furthermore, pedagogical decision making is fully
configurable. TutorlT can easily be configured to
provide adaptive tutoring customized for different
learners both individually and by population. TutorIT
also can be configured to provide highly adaptive
diagnosis, to provide practice or to serve as a
performance aid. Configuration consists entirely of
making selections in an Options dialog — all without
any programming or change in the knowledge
representation.

NOTE: The notion of (content) domain independent
instructional systems is not entirely new. It is not difficult, for
example, to construct CBI systems that support specific
categories of learning, such as those defined by Gagne
(1985). The closest analog is probably Xaida (e.g., see
Dijkstra, Schott, Seel & Tennyson,1997). TutorIT takes a
major step forward in this regard by providing tutoring
support for ANY well defined content. This not only includes
all Gagne’s categories of learning, for example, but any
combination thereof.

The bottom line is that TutorIT is another significant step
forward in automation. TutorIT provides another case where
computers can do things better than a human — this time in
adaptive tutoring. As more and more tutorials are developed
TutorlT can gradually taking over tasks previously done by
humans — not just in math skills but ultimately with any well
defined skill. TutorIT tutorials will gradually take over for

b)

31

The Role of Automation in Instruction

one reason: Not because they are approaching what humans
can do but because they can do some jobs better than humans.
TutorIT, of course, will not eliminate the need for good
teachers any more that good computational tools have
eliminated the need for people who use them. TutorlT
tutorials will enable teachers to concentrate on things they can
do better. TutorlT automation will be an on-going and
continuing process. Our children and our country will be the
main beneficiaries. If you might be interested in contributing
to this effort please let me know at scandura@scandura.com.

V. CRITICAL ADVANCES IN CURRENT SLT THEORY

Analyzing Complex Domains.— It might seem we are done!
Given any domain, we can always use AuthorlT’s
AutoBuilder component to systematically identify what needs
to be learned for success — with whatever degree of precision
may be necessary or desired. The rest follows automatically.
TutorlT takes the representation produced (including display
layouts and associated media) as input and automatically
delivers instruction as prescribed.

While theoretically possible, identifying what must be
learned as an SLT rule is not necessarily easy. It can be very
difficult, practically impossible to identify a single, integrated
SLT rule that represents the knowledge needed to master
complex domains. This is not simply having to compromise
as regards completeness.

It would be impractical if not impossible to directly identify
what must be learned to prove all known theorems in
mathematics, or to specify how to write a beautiful poem
(given some topic or idea). As those engaged in ITS
development know, identifying what needs to be learned in
high school algebra already poses a difficult task (Ritter,
2005).

By way of contrast, high level relational models are
relatively easy to create (cf., Scandura, 1973; Hoz, 2008).
Relational models, however, lack precision — and complexity
increases rapidly. Both constraints place significant limits on
effective tutoring. Equally important, pedagogical decisions
based on relational models can be very difficult. Pedagogical
decision making depends inextricably on content semantics,
thereby increasing both development and evaluation costs.

In SLT, it might appear that one can avoid this problem by
simply introducing a finite set of SLT rules. For example,
instead of one SLT rule as above, why not simply add new
SLT rules? Certainly, one can do this. Doing so, however,
does not solve the fundamental problem. Given any non-
trivial domain, it is impossible to directly identity everything a
learner should know. This fact has been a central tenet in SLT
from its inceptions (cf. Scandura, 1971a). It was the primary
motivation for introducing higher order rules.

ITS systems approach this problem from a very different
perspective. Beginning with Newell & Simon’s (1972)
influential work on problem solving, the focus has been on
identifying sets of productions corresponding to what might
be in human brains. ITS knowledge engineers work with

Polibits (42) 2010

Joseph M. Scandura

subject matter experts to identify condition-action pairs, or
productions representing relevant knowledge. Productions
collectively are expected to be sufficient for solving arbitrary
problems in a given domain.

Identifying productions, however, is not sufficient in itself.
Give a computer a problem and a set of productions, and what
happens? Nothing! As Newell & Simon (1972) recognized
early on some kind of control mechanism is necessary to

(3) The ability to formulate SLT’s Universal Control
Mechanism (UCM) in a way that is completely
independent of the rules and higher order rules necessary
for success in any given domain.

I summarize each of these advances and their importance
below. Then, | describe how AuthorlT and TutorlT can be
extended to support each advance.

Structural (cognitive domain) Analysis (SA) of Complex

activate the productions.

From a theoretical perspective the fewer mechanisms
needed the better. With this in mind, Newell & Simon (1972)
originally proposed “means-ends” analysis as a universal
control mechanism: Given a problem, select (and apply)
productions that will reduce the difference between the goal
and the current problem state. Mean-ends analysis seemed
reasonable and gradually morphed into chaining (of
productions). Empirical results later suggested that other
mechanisms also are commonly involved in learning and
problem solving: Variations on generalization, abstraction,
analogy and other mechanisms have been proposed.

A further limitation of learning mechanisms, as used in
production systems, is that they impose essential constraints
on implementation. One can add or remove individual
productions without fundamentally changing the operation of
an ITS. Learning mechanisms, however, necessarily come
“hard wired”. They cannot be added or removed without
fundamentally effecting operation of a production system.

Ohlsson (2009) suggested no end to the number of learning
mechanisms that might be needed or desired. The
impracticability of identifying all potentially relevant
mechanisms is one of the reasons that he and Mitrovic
introduced Constraint Based Modeling as a means of reducing
complexity in ITS development (e.g., Mitrovic & Ohlsson,
2007).

Quite independently, Polya’s (1960) early analyses of
mathematical problem solving further suggest that learning
mechanisms are, in fact, domain dependent. Polya identified a
number of domain specific “heuristics” like the pattern of
“two-loci” or “similar figures”. Such heuristics are formally
equivalent to learning mechanisms, but are more similar in
nature to higher order rules in SLT (cf. Ehrenpreis &
Scandura, 1974; Wulfeck & Scandura, Chapter 14 in
Scandura, 1977). Higher order SLT rules are domain
dependent and play a direct role in how new SLT rules are
acquired and used.

NOTE: While influential in mathematics education, Polya’s
(1960) work is not widely known in TICL circles.

SLT Solutions.— SLT takes this analysis further. Existing
SLT theory offers a detailed road map going forward, a road
map that builds directly on current AuthorlT and TutorlT
technologies.

Consider the second or third major advances mentioned
earlier:

(2) The ability to systematically identify the higher as
well as lower order SLT rules required for success in any
given domain, no matter how complex.

Polibits (42) 2010

Domains.— SA takes a fundamentally different approach to
the problem. The focus here is on identifying both the higher
and lower order SLT rules that must be learned for success.
Unlike productions (condition-action pairs), SLT rules are not
assumed to be in human minds — nor are higher order rules
viewed as hard wired mechanisms. Rather, higher as well as
lower order SLT rules (like relational models) are both
operationally defined in terms of observable behavior with
respect to criterion tasks.

All SLT rules represent what must be learned for success.
They provide an explicit basis for both diagnosis and
remediation.

Historically, Structural (cognitive domain) Analysis (SA)
has been used to systematically identify higher as well as
lower order SLT rules. As detailed above, the use of ASTs to
replace directed graphs has played an important role enabling
automation in the development and delivery of adaptive
tutoring systems (cf. Scandura, 1971a, 1973, 1977 where SLT
rules are represented as directed graphs or flowcharts and
Scandura, 2005, 2007 where SLT rules are represented in
terms of ASTs). The process by which higher order SLT rules
were constructed, however, was largely subjective.

The way higher order SLT rules were constructed was fine
for paper and pencil courseware development (e.g., a
workbook by Scandura et al, 1971c) and for experimental
research (e.g., 1974a). But it was not sufficiently systematic
or precise for automation.

As SA was originally defined, the analyst, typically but not
necessarily a subject matter expert or instructional designer,
was asked to:

a. define a complex problem domain informally,

b. select a finite set of prototypic problems in that
domain,

c. construct an SLT solution rule for solving each
prototype problem,

d. construct a higher order SLT rule operating on
other SLT rules (for constructing each solution
rule),

e. eliminate redundant SLT rules (which can be
derived by application of higher order rules to
others), and

f. repeat the process as desired, each time resulting in
a set of SLT rules that were at once simpler and
collectively more powerful in generating power.

SA was continued until the SLT rules and higher order
rules identified provide sufficient coverage of the domain (cf.
Scandura et al 1974 and Wulfeck & Scandura, 1977).

Analysis of various complex domains (e.g., Scandura et al,
1974, Scandura, 1977, Scandura & Scandura, 1980) shows
that as SA proceeds two things happen: The individual rules
become simpler but the generating power of the rule set as a
whole goes up dramatically, thereby expanding coverage in
original domain (esp. see Scandura, et al, 1977; Wulfeck &
Scandura, 1977).

NOTE: There is no loss of generality because domains can
be incrementally expanded without loss by building
successively on prior analyses. For details, see Scandura
(2007) for the most complete coverage of the basic theory.

Choosing the appropriate level of analysis in Step ¢ was
originally ad hoc. This difficulty was solved as above by the
introduction of ASTs. Each individual SLT rule can now be
refined successively in whatever degree of precision may be
necessary or desirable. .

Step d of constructing higher order rules, however, was still
a bottle neck — too subjective for full automation. The key to
solution was the following missing link between steps ¢ and d:

Convert each SLT solution rule in Step c into a higher
order problem.

Once a higher order problem has been constructed, higher
order SLT rules can be constructed in exactly the same way as
all other SLT rules.

Given any problem domain, no matter how complex, the
goal of Structural Analysis is to identify a finite set of higher
and lower order SLT rules — rules that collectively make it
possible to solve a sufficiently broad range of problems in the
domain. Unlike production systems, where the focus is on
identifying ingredients that might be in human brains, the
focus in Structural Analysis is on identifying what must be
learned for success.

Consider the following example of SA applied to a Number
Series domain (adapted from Example 3 in Scandura (2007)).
I have selected this example because it illustrates not only
higher order SLT rules that generate new SLT solution rules
but also how higher order selection rules come into play. (See

Appendix B for other examples.).

Number Series Domain — consisting of sums of whole numbers
from 1 up. (Step a above)

1. SME Selects Prototypic Problems (one of potentially many) (Step
b above)

1+3+5 - ?sum

2. Construct (multiple) SLT Solution Rules (2A, 2B, 2C) for
Prototypic Problem (each rule can be refined where desired as above)
(Step c above, but wherein each solution rule may systematically be
refined as in Fig. 2 above)

2A 1+3+5 2>3x3> 9
2B 1+3+5 >3x(1+5)/2> 9
2C 1+3+5 ->successive addition> 9
3. Convert each SLT Rule into a Higher Order Problem (This is a
critical new Step in identifying higher order SLT rules)
(Construct Goal & Given of Higher Order Problem)
Higher Order Problem 3A:
1+3+5 >3x3> 9
1+3+5+7+ ... >nxn> Sum
Higher Order Problem 3B:
1+3+5 2>3(1+5)/2> 9
a+atd+ ... + L=a+(n-1)d ->n(atL)/2> Sum
Higher Order Problem 3C:
1+3+5 2>1+3+5> 9

33

The Role of Automation in Instruction

al+a2+a3+..+an -successive addition> Sum
4. Alternative SLT Higher Order Rules for Solving Higher Order
Problems 3A, 3B, 3C (Step d above)
Higher Order Rule 3A: -replace 3 terms by n>
Higher Order Rule 3B: —>replace 1 by a, 5 by |, 3 terms by n>
Higher Order Rule 3C: >replace each term by a variable, three
terms by n>

The process of SA can be repeated (indefinitely). Step e
(above) makes it possible (optionally) to eliminate redundant
SLT rules —e.g., rules like 4x4, 5x5, ..., 50x50 can be derived
by applying higher order rule 3A, for example, to 3x3. Higher
order rules make it possible to derive any number of new SLT
rules from basic rules.

Notice that each alternative higher order SLT rule has a
different domain of applicability. Higher order rule 3A is
very efficient but only works with arithmetic series beginning
with 1 and having a common difference of 2 — for example, 1
+3+5+ ... +99 >50x50> 2500. Rule 3B is reasonably
efficient and works with all arithmetic series. Rule 3C is
relatively inefficient (especially with long series) but works
with all number series, arithmetic or otherwise.

(NOTE: For early empirical research on the subject see
Scandura, Woodward & Lee 1967; Scandura 1967.)

In effect, three higher order rules are applicable rules in this
example. At this stage of SA, an analyst may eliminate
redundant rules (as in Step e above). Alternatively, deciding
which SLT rule to use is essentially what one must do in many
design problems. The acquisition of multiple ways of solving
any given problem and of knowing which to select when is a
key characteristic of expertise®

In our example, the selection process represents a still
higher order problem (so SA is repeated as in the original Step
f). The given in the higher order problem consists of the three
alternative rules. The goal is to select exactly 1. One higher

order SLT selection rule that works can be summarized as:
Case Type-of- Number Series:
a) Starts with 1 with a common difference of 2 > select rule N2
b) Common difference - select rule N(A+L)/2
c) Else —>select successive addition

A more general but error-prone selection rule is to simply
choose the simplest rule. Domain of applicability was largely
ignored in early research. Defining the domain structures
associated with higher order SLT rules is essential.
Automatically perceived structures play a decisive role in
determining which rules to use under what circumstances.

THEORETICAL NOTE FOR THOSE INTERESTED IN
TRAINING EXPERTISE: For those who have read my recent
monograph (Scandura, 2007) | would like to add one general
remark: In that monograph | introduced the notion of higher
order SLT automation rules as the mechanism by which more
efficient (automated) rules are derived from other rules.
Irrespective of how they are learned | suspect that most
expertise is gained via the gradual acquisition of efficient,
increasingly specialized solution rules. Apparently effortless

® The above is a form of what is commonly referred to as knowledge
engineering. The main difference is that Structural (domain) Analysis is far
more systematic with partially automated tools to support the process.

Polibits (42) 2010

Joseph M. Scandura

expert behavior results when previously learned, more
efficient SLT rules are selected (via higher order selection
rules) for use in more and more situations. In accordance
with SLT’s Universal Control Mechanism (UCM), these more
efficient rules are selected by applying higher order
(selection) rules as in all other behavior. The result is
increasingly efficient, apparently automated behavior.

The Need for Learning (often called Control) Mechanisms.—
All knowledge in SLT is strictly relative: What a person
knows is defined by that person’s behavior relative to what
must be learned for success. This relativistic view of
knowledge holds whether the knowledge in question is of a
higher or lower order. Whereas lower order SLT rules

U.S. Patent, 6,275,976). Again, | won’t repeat here what is
already in print (see Scandura, 2007, for specifics).

In retrospect, one can see why expert systems run into
trouble. One reason is that knowledge engineering turned out
to be very hard, slow and expensive and that experts couldn’t
always articulate what they were doing. We have seen above
how Structural Analysis, while it certainly does trivialize the
problem, at least makes it more tractable. More directly
relevant in the present context, the original hope was that
there were only a small number of basic learning mechanisms
— preferably one. Alas, “means-ends analysis” as originally
proposed by Newell & Simon (1972) turned out not to be that
mechanism.

correspond to productions in expert systems, higher order SLT

SLT’s Universal Control Mechanism (UCM), on the other

rules correspond to learning mechanisms.

The question then is what controls the use of SLT rules?
History makes it clear that neither means-ends analysis,
chaining, nor any other expert system mechanism is sufficient.
Furthermore, experience with Structural Analysis makes two
things clear

a) All mechanisms that have been proposed MAY play a

hand, serves this role in unique fashion (Scandura, 2007; cf.
Scandura, 1971a, 1973, 1974a,b). UCM is completely
independent of SLT rules and higher order rules. More
important, and unlike means-ends analysis, chaining and other
mechanisms proposed in the expert system world, UCM
serves as a common denominator completely independent of
any particular problem domain.

role in problem solving and

b) Variations on all such rules can systematically be derived
via Structural Analysis.

Any automated system capable of solving problems must
include some kind of control mechanism. The system must
know what SLT rule to use and when. 1 first proposed Goal
Switching for this purpose in an invited talk where I first
introduced SLT at AERA in 1970 (published in Scandura,
1971a). Unlike chaining and the like, SLT’s goal switching
was originally modeled on a very easy to state but very hard to
implement truism: Given a problem for which no solution is
immediately available, the problem solver must necessarily
first derive a procedure for solving the problem. Indeed, this
truism was so general, and so commonsensical that it took
considerable convincing to get supporting experimental
research on UCM published in the traditionally very rigorous
Journal of Experimental Psychology (Scandura, 1974a).

Goal Switching obviously differed from Newell & Simon’s
(1972) means-ends analysis. Indeed, Newell served as a
reviewer and proposed rejecting several of my articles during
this time period, including to one above in the Journal of
Experimental Psychology (Scandura 1974a) and another in
Artificial Intelligence (Scandura et al, 1974). Fortunately, my
counter arguments and other reviews led to their eventual
publication.

In fact, however, a major limitation of Goal Switching had
nothing to do with validity or relevance. A series of formal
experiments (Scandura, 1967), as well as more informal pilot
research with subjects as young as 4 years old, demonstrated
its (near) universal availability to all learners. The difficulty
was in attempts to formally implement Goal Switching in a
way that was completely independent of ANY higher order
rule (cf. Wulfeck & Scandura, 1977). This was finally
accomplished with formalization of SLT’s Universal Control
Mechanism (UCM) in the early 2000s (see Scandura, 2007,

Polibits (42) 2010

34

An overview of UCM follows (for details see Scandura
2007.):
— Check available rules to see which SLT rules have

structures that match the given problem

Unless exactly one SLT Rule matches, control goes to a

deeper level looking for rules whose ranges contain

structures that match the given problem (a recursive
process)

Once exactly one SLT rule is found, that rule is applied &

a new rule generated

Control reverts to the previous level & the process

continues with checking at the previous level of

embedding

Eventually, the process halts because the problem is

solved or processing capacity is exceeded (alternatively a

predetermined recursion limit may be set in automated

systems)
Measuring knowledge relative to behavior in one form or
another is not new. However, being able to explain and
predict the behavior of individuals in specific instances
distinguishes SLT. This is true even more so where a problem
solver does not already know a solution procedure — but must
derive one. UCM plays an essential role in the latter process.

NOTE: A historical analogy to Relativity Theory is
interesting in this regard. Without assigning more
significance than warranted, introduction of UCM in SLT
plays a role analogous to constancy of the speed of light in
Relativity Theory.

Measuring speed of an object relative to an observer was
not especially new or interesting. Add in the constant speed of
light, however, and the situation changes. As Einstein showed
in 1905 funny things happen when one accounts for the time
light takes to reach an observer.

Knowledge is strictly relative in a similar sense. What
counts as knowledge is not absolute but necessarily relative to
observable behavior.

Behavior with respect to complex domains may be
explained via finite sets of higher and lower order SLT rules.
But, these SLT rules depend on analyst.

UCM is what holds things together. Together with the SLT
rules and higher order rules associated with any given
domain, UCM allows explicit predications regarding problem
solving behavior in specific instances (Scandura, 1974a).

VI. NEEDED AUTHORIT AND TUTORIT EXTENSIONS

To date, AuthorIT/TutorIT tutorials have only been used to
develop tutorials for well-defined math skills. TutorlT does,
however, support “chaining” although this technologies has
not been put to serious use. The only example to date involves
a simple railroad crossing, where TutorIT is fed two simple
rules: a) one for turning a signal red or green depending on the
location of a train (near or out of a crossing) and b) one for
raising or lowering a railroad crossing gate depending on the
color of the signal (red-down and green-up). TutorlT is not
explicitly told that the gate must go down when the train
approaches the crossing and up when it is not.

TutorIT is able to generate correct answers by chaining
known rules, where the output of one serves as input to the
next as required to generate the correct answer. The answers
TutorlT generates are used in turn to evaluate learner
responses. Chaining is a small step forward and akin to what
is done in contemporary ITS systems.

As outlined above (and detailed in Scandura, 2007
Scandura et al, 2009), however, SLT goes much further. Two
objectives are on the near term agenda.

1. In order to teach higher order SLT rules we must be
able to systematically identify and precisely represent
them. The behavioral equivalent of all other learning
mechanisms that have been proposed or used in
Intelligent Tutoring Systems (ITS). Or expert systems
generally, can be represented as higher order SLT
rules.” These higher order SLT rules are derived
directly via Structural (domain) Analysis (SA) from the
problem domain itself.

2. In order for TutorIT to generate solutions to ill-defined
problems, we must also be able to formalize and
implement SLT’s Universal Control Mechanism
(UCM).

Both AuthorIT and TutorIT will both have to be extended.
First, AuthorlT must support the construction of SLT rules
that operate on nodes that are themselves SLT rules.

This can already be done using AuthorlT’s SoftBuilder
component. SoftBuilder is a fully general development

" The same is true in case based reasoning (CBR), wherein higher order
rules involve analogical thinking. From a SLT perspective, CBR involves
higher order rules that map solutions (SLT rules) for one kind of task into
solutions for analogous ones (e.g., mapping counting up in addition to
counting down in subtraction, or repeated addition in multiplication to
repeated subtraction in division).

The Role of Automation in Instruction

system. It supports the construction of any kind of SLT rule.
Any SLT rule, whether of a higher or lower order, can be
represented as a Flexform. While sufficient in principle,
however, it is extremely complex to construct higher order
SLT rules. The basic task is hard enough. But, there is no
automated support for refining higher order operations (or
data) as is currently the case with AutoBuilder.

SA in SLT does provide the necessary rigor. The major
work needed is to add support for what are called dynamic
structural refinements and corresponding interaction
procedural refinements (e.g., see Scandura, 2007, esp. pp.
195-198). As detailed on pages 194-216, Structural Analysis
so extended would make it possible to construct arbitrary
higher order SLT rules as needed.

The second major improvement requires replacing
TutorIT’s current chaining mechanism with SLT’s Universal
Control Mechanism (UCM). Fortunately, the chaining
mechanism is a separable module so its replacement and
integration should be straight forward. Furthermore, the UCM
design has been detailed in a recent patent. The main
challenge is to implement, test and refine as necessary to
ensure that all work as designed ready for prime time.

I will not than attempt to detail here either the extended
form of Structural Analysis or the UCM (Scandura, 2007),
and | certainly don’t want to imply that this will be a trivial
undertaking. The risks are high. For details | encourage you
to study my recent monograph (Scandura, 2007, for SA — esp.
pp.216-231 and UCM — esp. 216-231).

What is important here is to understand that extension of
AuthorlT and TutorIT will do two major things for us:

1. AuthorlT’s AutoBuilder component will fully support
Structural (domain) Analysis (SA), enabling it to
identify and detail higher as well as lower order SLT
rules associated with any given domain.

2. TutorlT enhanced with UCM will be able to solve
novel problems in domains, even where it is not
explicitly given a SLT solution rule.

Given a complex domain, extension of AutoBuilder will
more fully support Structural (domain) Analysis (SA). In
addition to arbitrary refinement, AutoBuilder will be able to
systematically identify finite but sufficient sets of higher as
well as lower order SLT rules. Sufficiency means that
collectively these SLT rules will provide what the analyst
considers to be “adequate coverage” of the given domain. By
“adequate coverage” | mean that the rules collectively provide
sufficient coverage in the domain — that solutions can be
generated for sufficient numbers and varieties of problems in
the domain.

Armed with the UCM and a sufficient set of higher (and
lower) order SLT rules associated with a problem domain,
TutorlT will be able to dynamically derive new solution rules
as needed. TutorlT will also be able to provide systematic
tutoring on all requisite higher as well as lower order SLT
rules.

Given any domain, TutorIT’s ability to generate solutions
will depend on adequacy of requisite Structural Analysis

Polibits (42) 2010

Joseph M. Scandura

(SA). In this context, it should be emphasized that SA can be
applied iteratively. An analyst may build on the results of SA
without starting over. SA is a strictly cumulative. The SLT
rules deemed sufficient at one point in time may
systematically be superseded later on.

Although TutorIT’s interface may have to be enhanced,
tutoring on higher order SLT rules will take place exactly as
any other SLT rule. Knowledge will still be represented
hierarchically, and TutorIT decision making will follow the
same rules. Critically important from an implementation
perspective, theoretical parsimony is matched by the current
AuthorlT and TutorlT technologies. It would be fool hardy to
underestimate the effort required, but we do not envision
major unknowns.

The extended form of TutorlT will select and present
problems. The learner will respond, and TutorIT will see if it
is correct and provide feedback. If a response is incorrect,
TutorIT will provide diagnostic and remediation as detailed
above on each of the rules required to solve the problem.

Notice the efficiencies. Suppose the learner is given a
complex problem. Instead of having to pinpoint inadequacies
in this complex context, it will be sufficient to identify the
individual SLT rules and higher order rules necessary for
success. Once this has been done, one can treat each
individual SLT as before. AIll SLT rules, higher as well as
lower order, have precisely the same formal structure. Hence,
diagnosis and remediation can be carried out in modular
fashion.

Comparison with ITS.— Given their dominance, comparison
with ITS may be helpful to understand the significance of
what all this means. AuthorIT can be used to identify what
must be learned for success with arbitrary degrees of
precision. No longer does one have to worry about individual
learner models as such. The author need be concerned only
with identifying what higher and lower order SLT rules must
be learned for success. This may be done with arbitrary
degrees of precision, either initially or in cumulative fashion
as experience and development resources dictate. More
important perhaps, AuthorlT is not limited in the same way by
the complexity of the domain being analyzed. The sheer
complexity of some domains makes them inaccessible to
traditional ITS methodology. Traditional ITS development
requires coming up de novo with: a) a sufficient set of
productions, b) assumptions as to what learning mechanisms
to use and c) finally data supporting validity of the analysis.

Structural Analysis does not have the same limitations.
What one identifies is whatever an expert in the field believes
is necessary and sufficient for success in that domain.
Certainly, experts may differ as to what they believe should or
might be learned. That is not the point. There is nothing to
constrain SA to a single point of view. Complications in
supporting multiple perspectives include introducing higher
order selection rules for deciding which of the alternative
solution rules to use under what conditions. In short, anything

simply and with TutorIT in conjunction with higher and lower
order SLT rules.

Given a representation of what needs to be learned, whether
of just lower order as at present or including higher order
knowledge as proposed, TutorlT can quickly and easily
construct individual learner models, and maintain them
dynamically during the course of tutoring. Most important, an
extended TutorlT would be able to address diagnosis and
remediation on each SLT rule in strictly modular fashion. The
result would be orders of magnitude reduction in
(pedagogical) decision making complexity. This is simply not
possible in a production systems environment.

As above, TutorIT will work even in the face of incomplete
analysis. Even a small amount of analysis is better than little
or none. Given its complexity, ITS research can only go so
far.

None of this means that we should give up on
fundamentals. Most TICL research today is limited to general
models or frameworks. Some even come with fancy names. |
believe we can do more, however, than introduce acronyms in
our research.

We need to concentrate more heavily on identifying what
needs to be learned. Fifty years of basic and applied research
in the field convinces me that the more precisely one
understands what needs to be learned the better job one can do
of teaching it. This holds whether one is talking about
automated tutorials or human teachers. The only difference is
that the former can be automated and are more readily subject
to incremental improvement.®

Comparison with Contemporary TICL Research.— Compare
the above also with what is currently done in contemporary
tutoring and simulation systems. In such systems, so-called
scaffolding is typically indirect, or at best imprecise. We used
to call them “Hints”. Hints can certainly encourage, indeed
require involvement of the learner. If successful, they may
also exercise the learner’s cognitive abilities.

The problem here is that existing systems of this type have
never achieved results comparable to what a skilled human
tutor might do. Given increasingly precise representations of
what must be learned for success, on the other hand, TutorlT
will be capable of providing arbitrarily precise instruction.

Encouraging learners to exercise whatever they may (or
may not know) is a good thing. Nonetheless, two points need
to be emphasized.

1. There is nothing that forces TutorIT to be as precise as

may be possible.

® One might think that we already know what needs to be learned in school
math. Although analyses in school math tend to be more complete than in
other areas, the analyses we have undertaken show that those used for
planning textbooks, lessons, CBI programs and even ITS are invariably
incomplete. It is not sufficient to simply list the kinds of problems to be
solved, to name the particular skills required or even to identify all of the
productions that might be involved in solution. Complete analysis requires
full systematic analysis of what needs to be learned at all meaningful levels of

that can be done with production systems can be done more

Polibits (42) 2010

abstraction. Without full analysis, an automated tutorial will necessarily be
incomplete, and cannot reliably guarantee mastery (at least not without
including a lot of redundancy).

2. There will inevitably learners for which typical

scaffolding is insufficient.

AuthorlT’s support for arbitrarily precise representation,
extended to include higher order knowledge, will make it
possible to reach those who are unable to succeed on their
own. By design, the proposed extension of TutorlT would be
capable of precise diagnosis and remediation on higher as well
as lower order knowledge.

In this regard, | call attention to an early piece of research
on math learning (e.g., Roughead & Scandura, 1968) in which
we were able to explicitly identify the higher order rules
necessary for success in math problems solving (number
series). Once identified, we found that students could be
taught those higher order rules directly by exposition.
Furthermore, it was impossible to tell the difference between
those who were taught the higher order rules by exposition
and those who discovered them on their own.

I do believe that student’s who discover rules on their own
and students who are taught those rules secondarily exercise
and may learn additional skills. Students who discover higher
order rules may in the process also exercise still higher level
skills. Conversely, students who learn by exposition gain
more experience understanding complex instruction. The
essential point is that being able to identify such higher order
knowledge (with arbitrary degrees of precision) inevitably
makes it easier for more children to learn such higher order
skills. Here, we have another example of where computers
might eventually take over tasks that they can do better than
humans.

One other point deserves emphasis. TutorlT’s commitment
to deterministic thinking (cf. Scandura, 1971, 2007) requires a
significant change in how one goes about evaluating
instruction. In particular, it calls into question the usual
measures used in controlled experiments, and specifically, the
need for controlled experiments focusing on how much is
learned. Well designed and suitably refined TutorIT tutorials
build on what students already know and automatically adapt
to individual needs during the course of (individualized)

tutoring. By its very nature, TutorlT requires learners to
demonstrate mastery of what is being taught. IF a learner
enters with the necessary prerequisites (which can

systematically be identified) AND completes such a tutorial
that learner will necessarily have demonstrated mastery of
what is being taught. This may sound like a tautology, but it
is not. Automated instruction that adapts to individual needs,
as does TutorlT, requires a different focus. Rather than
comparing what or how much various groups of students
learn, the critical issues are whether or not a child is motivated
to complete a given tutorial, and how long it takes. Similarly,
rather than comparing TutorlT with alternative treatments
(e.g., classroom learning), one can easily control and compare
alternative delivery (i.e., tutoring) modes without confounding
content with methodologies.

Further Extensions.—Although discussion is beyond the
current scope, it is worth noting that these ideas have
implications far beyond tutoring systems. As discussed in

The Role of Automation in Instruction

Scandura (2007) essentially all expert systems are based on
deriving implications from sets of productions governed by
learning mechanisms of one sort or another. It would be
interesting to compare results of expert systems based on
productions + mechanisms versus SLT + UCM. Similarly, it
would be nice to compare benefits in automatic problem
solving. For that matter, it would be interesting to apply the
above approach based on KR in SLT and UCM in areas as
diverse as robotics and manufacturing

Where do we go from here? Supporting complex domains
will not come without a price. Although our current research
makes viability clear, the time and effort required with
complex domains will almost certainly be greater than with
well-defined domains. Mastery in such domains requires the
acquisition of higher as well as lower order knowledge.
Identifying such knowledge is not always easy. But as early
research demonstrates, this can be done (Roughead
&Scandura, 1968; Scandura, 1974, 1977; Scandura et al,
1971c; Scandura & Scandura, 1980). Moreover, the process
is now far more systematic and it is a task that is long
overdue. | leave the position of TICL Chair this year, and am
perhaps at the stage of my career where the term “senior
advisor” takes on a double meaning.

That said we have already developed a core of TutorlT
math skill tutorials covering the basic facts, whole number
algorithms and fractions. We plan to add pre-algebra skills in
the near term. These tutorials represent only a beginning, but
point the way toward a whole new generation of automated
(and highly adaptive) tutorials. They also open heretofore-
unavailable research opportunities, making it possible to better
understand the benefits and limitations of various pedagogies.
(As above, measurement should be more in terms of learning
efficiencies as opposed to skills being learned.)

More generally, TutorIT technologies have the potential of
revolutionizing the way adaptive tutorials are developed,
delivered and evaluated. Not only can they be used to develop
math skill tutors but highly adaptive tutorials in essentially
any area: mathematics, reading, science or otherwise.

While currently supporting development ourselves, we can
only go so far alone. Accordingly, | invite those of you who
may be interested to join us in the effort. You can help either
by making others aware of TutorlT Math tutorials and/or by
joining in future development. If interested in developing
TutorlIT tutorials in your own field of expertise, feel free to
contact me at scandura@scandura.com .

Together, | believe we can make a real difference. In
addition to AuthorIT and TutorlIT technologies themselves, we
now have in place a unique means of distribution. Anyone
can get free TutorlT tutoring time by going to
www.TutorlTmath.com. Furthermore, users can earn more free
time by referring others — who will also get free time. It will
be exciting to see the results of half a century of research
finally making a difference.

REFERENCES
[1] Anderson, J. R., Rules of the mind. Hillsdale, NJ: Erlbaum, 1993.

Polibits (42) 2010

Joseph M. Scandura

[2]

(31

[4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

Anderson, J. R., Boyle, C. F., Corbett, A. T. and M.W. Lewis,
“Cognitive modeling and intelligent tutoring,” Artificial Intelligence, 42,
pp. 7-49, 1990.

Bloom, B. S., “The 2 Sigma Problem: the Search for Methods of Group
Instruction as Effective as On-to-One Tutoring,” Educational
Researcher, 13, 6, pp.4-16.

Dijkstra, S., Schott, F., Seel, N., Tennyson, R. D. Mahwah, NJ,
Instructional Design: Direct Instruction. Erlbaum, 1997 (Routledge,
1985).

Durnin, J.H. & Scandura, J.M., “An algorithmic approach to assessing
behavior potential: Comparison with item forms and hierarchical
analysis,” Journal of Educational Psychology, 65, pp. 262-272, 1973.
Ehrenpreis, W. & Scandura, J.M., “Algorithmic approach to curriculum
construction: A field test,” Journal of Educational Psychology, 66, pp.
491-498, 1974.

Foshay, R. & Preese, F., “Do We Need Authoring Systems? A
Commercial Perspective,” Technology, Instruction, Cognition &
Learning (TICL), 2, 3, pp. 249-260, 2005.

Foshay, R. & Preese, F., “Can We Really Halve Development Time:
Reaction to Scandura’s Commentary,” Technology, Instruction,
Cognition & Learning (TICL), 3, 1-2, pp. 191-194, 2006.

Gagne, R. M., Conditions of Learning. NY: Holt, Rinehart & Winston,
1965 (First Edition).

Greeno, J. G. & Scandura, J. M., “All-or-none transfer based on
verbally mediated concepts,” Journal of Mathematical Psychology, 3,
pp. 388-411, 1966.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. and M.A. Mark,
“Intelligent Tutoring Goes to School in the Big City,” Int. J. Artificial
Intelligence in Education, 8, pp. 30-43, 1997.
Merrill, M. D., Principles of Instructional
Technology Publications, 1994, 465 p.

Mitrovic, A., Koedinger, K. and B. Martin, “A Comparative Analysis of
Cognitive Tutoring and Constraint-Based Modeling,” in P. Brusilovsky,
A. Corbett, F. de Rosis (eds) Proc. 9th Int. Conf. User Modeling,
Springer-Verlag, LNAI 2702, 2003, pp. 313-322.

Murray, T., “An Overview Of Intelligent Tutoring System Authoring
Tools: Updated Analysis of the State of the Art,” in T. Murray, S.
Blessing & S. Ainsworth (Eds.), Authoring tools for advanced
technology learning environments, Chapter 17, The Netherlands:
Kluwer, 2003.

Newell, A. & Simon, H.A., Problem Solving. Englewood Cliffs, NJ:
Prentice Hall, 1972.

Ohlsson, S. & Mitrovic, A., “Fidelity and Efficiency of Knowledge
Representations for Intelligent Tutoring Systems,” Technology,
Instruction, Cognition & Learning (TICL), 4, 2-4, pp. 101-132, 2007.
Paquette, G., “Graphical Ontology Modeling Language for Learning
Environments,” Technology, Instruction, Cognition & Learning, 5, 2-4,
pp. 133-168, 2007.

Polya, G., Mathematical discovery (Volume I). NY: Wiley, 1962.
Reigeluth, C. M., Instructional Design Theories and Models. Mahwah,
NJ: Erlbaum, 1983.

Reigeluth, C. M., Instructional Design Theories in Action. Mahwah, NJ:
1987.

Ritter, S., “Authoring model-tracing tutors,” Technology, Instruction,
Cognition & Learning, 2, pp. 231-247, 2005.

Roughead, W.G. & Scandura, J.M., “ “What is learned’ in mathematical
discovery,” Jr. Educational Psychology, 59, pp. 283-298, 1968.
Scandura, J. M. “The teaching-learning process; an exploratory
investigation of exposition and discovery modes of problem solving
instruction,” Dissertation Abstracts, 23, No. 8, 2798, 1963,.

Scandura, J. M., “Abstract card tasks for use in problem solving
research,” Journal of Experimental Education, 33, pp. 145-148, 1964
@).

Scandura, J. M., “An analysis of exposition and discovery modes of
problem solving instruction,” Journal of Experimental Education, 33,
pp. 149-159, 1964 (b).

Scandura, J.M., Woodward, E., & Lee, F., “Rule generality and
consistency in mathematics learning,” American Educational Research
Journal, 4, pp. 303-319, 1967.

Scandura, J.M., “Learning verbal and symbolic statements of
mathematical rules,” Journal of Educational Psychology, 58, pp. 356-
364, 1967.

Design. Educational

Polibits (42) 2010

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Scandura, J. M. & Roughead, W. G., “Conceptual organizers in short-
term memory,” Journal of Verbal Learning and Verbal Behavior, 6, pp.
679-682, 1967.

Scandura, J.M., “Concept dominance in short term memory,” Journal of
Verbal Learning and Verbal Behavior, 6, pp. 461-469, 1967.

Scandura, J.M. & Durnin, J.H., “Extra-scope transfer in learning
mathematical rules,” Journal of Educational Psychology, 59, pp. 350-
354, 1968.

Scandura, J.M., “The role of rules in behavior: Toward an operational
definition of what (rule) is learned,” Psychological Review, 77, pp. 516-
533, 1970,2

Scandura, J.M., “The role of higher-order rules in problem solving,”
Journal of Experimental Psychology, 120, pp. 984-991, 1974.

Scandura, J. M., “Deterministic Theorizing in Structural Learning: Three
levels of empiricism,” Journal of Structural Learning, 1971 (a).
Scandura, J. M., Mathematics: Concrete Behavioral Foundations.
Harper & Row, 1971 (b).

Scandura, J. M., Durnin, J.H. & Ehrenpreis, W. N., Algorithmic
approach to Mathematics: Concrete Behavioral Foundations. NY:
Harper & Row, 1971 (c).

Scandura, J. M., Structural Learning 1: theory and Research.
London//NY: Gordon & Breach Sci. Pub., 1973.

Scandura, J. M., “The role of higher-order rules in problem solving,”
Journal of Experimental Psychology, 120, pp. 984-991, 1974 (a).
Scandura, J.M., Durnin, J.H., & Waulfeck, W.H., “Higher-order rule
characterization of heuristics for compass and straight-edge
constructions in geometry,” Artificial Intelligence, 5, pp. 149-183, 1974
(b).

Scandura, J.M., Problem Solving: a Structural / Process Approach with
Instructional Implications. New York: Academic Press, 1977.
Scandura, J.M. & Scandura, A.B., Structural Learning and (Piagetian)
Concrete Operations. NY: Praeger Sci. Pub., 1980.

Scandura, J.M., “A cognitive approach to software development: The
PRODOC environment and associated methodology,” in D. Partridge
(Ed.) Artificial Intelligence and Software Engineering. Norwood, NJ:
Ablex Pub., 1991, Chapter 5, pp. 115-138.

Scandura, J.M., “Automating renewal and conversion of legacy code
into ada: A cognitive approach,” IEEE Computer, pp. 55-61, April
1994.

Scandura, J.M., “Cognitive analysis, design and programming:
generalization of the object oriented paradigm,” in Proceedings of the
National Ada Conference, Valley Forge, PA, March 1995.

Scandura, J.M. and Scandura, Alice B., “Improving RAM in Large
Software System Development and Maintenance,” Journal of Structural
Learning and Intelligent Systems, 13, pp. 227-294, 1999.

Scandura, J.M., “Structural (Cognitive Task) Analysis: An Integrated
Approach to Software Design and Programming,” Journal of Structural
Learning and Intelligent Systems (a special monograph), 14, 4, pp. 433-
458, 2001.

Scandura, J. M., “AuthorIT: Breakthrough in Authoring Adaptive and
Configurable Tutoring Systems?” Technology, Instruction, Cognition &
Learning (TICL), 2, 3, pp. 185-230, 2005.

Scandura, J.M., “How to Cut Development Costs in Half: Comment on
Foshay & Preese,” Technology, Instruction, Cognition & Learning
(TICL), 3, 1-2, pp. 185-190, 2006 (a).

Scandura, J.M., “Reaction to Foshay & Preese Reaction,” Technology,
Instruction, Cognition & Learning (TICL), 3, 1-2, PP. 195-197, 2006
(b).

Scandura, J. M., “AST Infrastructure in Problem Solving Research,”
Technology, Instruction, Cognition & Learning (TICL), 3, 3-4, pp. 1-13,
2006 (c).

Scandura, J. M., “Learning Objects: Promise versus Reality,”
Technology, Instruction, Cognition & Learning (TICL), 3, 3-4, pp. 25-
31, 2006 (d).

Scandura, J. M., “Converting Conceptualizations into Executables:
Commentary on Web-based Adaptive Education and Collaborative
Problem Solving,” Technology, Instruction, Cognition & Learning
(TICL), 3, 3-4, pp. 345-354, 2006 (e).

Scandura, J. M., “Knowledge Representation in Structural Learning
Theory and Relationships to Adaptive Learning and Tutoring Systems,”
Technology, Instruction, Cognition & Learning (TICL), Vol. 5, pp. 169-
271, 2007.

NY:

[53] Scandura, J. M., “Introduction to Knowledge Representation,
Construction Methods, Associated Theories and Implications for
Advanced Tutoring/Learning Systems,” Technology, Instruction,
Cognition & Learning (TICL), Vol. 5, pp. 91-97, 2007.

Scandura, J. M., Koedinger, K, Mitrovic, T, Ohlsson, S. & Paquette, G.,
“Knowledge Representation, Associated Theories and Implications for
instructional Systems: Dialog on Deep Infrastructures,” Technology,
Instruction, Cognition & Learning (TICL), 6. pp.125-149, 20009.

[54]

Software Engineering Publications:

[55] Scandura, J.M., “Cognitive technology and the PRODOC re/NuSys
Workbench™: a technical overview,” Journal of Structural Learning
and Intelligent Systems, 11, pp. 89-126, 1992.

Scandura, J.M., “A cognitive approach to software development: The
PRODOC environment and associated methodology,” in D. Partridge
(Ed.), Artificial Intelligence and Software Engineering. Norwood, NJ:
Ablex Pub., 1991, Chapter 5, pp. 115-138.

Scandura, J.M., “Automating renewal and conversion of legacy code.
Software Engineering Strategies,” NY: Auerbach Publications, 1994,
March/April, pp. 31-43. (Reprinted in Handbook of Systems
Management, Development and Support, Auerbach, 1995. Similar
version in Scuola estiva: Engineering of existing software. Bari, Italy:
Dipartimento di Informatica Universita degli Studi di Bari, 1994, pp.
179-192.)

[56]

[57]

The Role of Automation in Instruction

[58] Scandura, J.M., “Automating renewal and conversion of legacy code
into ada: A cognitive approach,” IEEE Computer, pp. 5-61, April 1994,
Scandura, J.M., “Cognitive analysis, design and programming: next
generation OO paradigm,” Journal of Structural Learning and
Intelligent Systems, 13, 1, pp. 25-52, 1997.

Scandura, J.M., “A cognitive approach to reengineering,” Crosstalk,
The Journal of Defense Software Engineering, 10, 6, pp. 26-31, June
1997.

Scandura, J.M. and Scandura, Alice B., “Improving RAM in Large
Software System Development and Maintenance,” Journal of Structural
Learning and Intelligent Systems, 13, pp. 227-294, 1999.

Scandura, J.M., “Structural (Cognitive Task) Analysis: An Integrated
Approach to Software Design and Programming,” Journal of Structural
Learning and Intelligent Systems (a special monograph), 14, 4, pp. 433-
458, 2001.

[59]

[60]

[61]

[62]

Key Patent & Pending:

[63] Scandura, J.M., U.S. Patent No. 6,275,976. Automated Methods for
Building and Maintaining Software Based on Intuitive (Cognitive) and
Efficient Methods for Verifying that Systems are Internally Consistent
and Correct Relative to their Specifications. August 14, 2001.

[64] Scandura, J.M., Method for Building Highly Adaptive Instruction. US
Patent pending.

APPENDIX A

{» ColumnSubtraction.dsn

Fle ABEdt Node AutoBulder Help

File

Icommands; Arrows, 1 .{9,+,b,a,,Rl,r,s,t,w,p,ﬁlt+lf2.f3ja;’ejdmg,fn.fo p,l‘r,t’u,"t

(0 ColumnSubtraction.dsn

ABEdt Node AutoBuider Help

=10/]
1

ColumnSubtraction (minus, underine: Prob)

[ColumnSubtraction dsn)-ColumnSubtraction;Dlibrany; [procedure];
ColumnSubtiaction imiaus, undeiline Prob.)

Comands Arrows,1..9,+,b,e,ikL1,s,tw p,A!t+1!2!3fa!eﬂd!H0.ano!

ColumnSubtraction (minus, underline: Prob)

REPEAT [

THEN Bubtrad_the_tument_column (CunentColumn: ; Currentt

ow_and_regroup (Prob: C
Curentl op)

UNTIL N

Subtiaet_the_surment_column {CurrandCaly

UNTIL Nobe

kI8

Columns

: ;COﬂﬂ'ﬂ'dSI Arrows, 1. 9,4 bye, kilrys;t wp, Ak Lf2]: SIQfg.fﬁffj;[n'folj'pM UJA’:JA"'J"‘-JALAV;
Eolurnnﬂuhmdim (minus, uncerline: Prob)

4

Fig. 2. Successive levels of procedural refinement in Column Subtraction. This Flexform shows all levels refinement, from the highest levels of abstraction to
the point where terminal nodes correspond to presumed prerequisites. In column subtraction these prerequisites include basic subtraction facts, ability to compare
numbers as to size, etc. Students are tested on entry to ensure that they have mastered these prerequisites.

39

Polibits (42) 2010

Joseph M. Scandura

AT Blackboard - [Design_C:\pro\ Tutor T\ TutorContent\ Algorithms_ColumnSubtraction\Algorithms_ColumnSubtraction.dsn]
File Edit View Insert Object Visual Properties

Update Content

Options Help

5 _|
tep |

=e/EE

-8 703-325:[703-325)
5.0 GIVENS]:GIVENS)

underling]
-8 GOALS}:GOALS]

=140 TENSJTENS)
oD Topl]
3@: Bottom]:2]
10 :[Difference]

INSTRUCTIONTHINT WL

APPEAR WHERELYQU
] :

s

Name |Boll0m

Coordinates 41 ’ﬁ i W 82 ’ﬂ y2 ﬁ
Target Region »1 l_ nl ’_ v l_ v T

Wl
-0 Prob]:Prob] e |2
ONES]:OMES] Display Properties
. [Don't request response when testing

[Don't request response during Automation

Lonstant [value checked when
matching prablem & knawledge|

[Send Response Immediately

: 1B :[HigherTop] ! r =
.10 :[HigherHigherT: ROBOT ‘ Display Type [TEXT -
#+-48 HUNDREDS]:HUNDF APPEAR WHERE 77~
!) YOU POSITION THIS.- Font [~ Use Fil Color or Background for Test
[R Colar | Color Range | Width of Border |1 JZI
Fill Color | Fill Color Range| Rotate Test | | degr
Hespanse Type |EDIT-BOX -

Evaluation Type >

FHesponse Chaice [Press Retum/Del to Add/Delete]

Mo. Characters in Response ’1_
ALTERMATIVE Feedback./Status

(] I

L

« | >» | (4399]

Fig 3. The left panel in AuthorIT’s Blackboard Editor (BB) Editor is used to define individual problems. The center pane is used to layout the interface through
which TutorIT and the learner are to interact. It also shows where instruction, questions, positive and corrective feedback are to appear (some appear in the same
position, but not at the same time). The right panel is used to assign attributes to individual nodes (elements) in the problem. These attributes include Display
types (e.g., Text, Flash, Animation, Sound, Picture, OLE), Response types (Edit Box, Click, Combo Box, Construction) and corresponding Evaluation types

(Match_text, Within_region, Structure, Debug).

— -

Flash

Delivery Mode

Intro Summar

Screen Help

Feedback Contest for FREE Time

Problems

Name |Ims =

Package | Algorithms hd

Skill | ColumnSubtractior =

InstalllUpdate Package I

Additional Order

=]

tral J I Time Limit| 300 sec

Tell Others About TutorIT

Sign Off

(NS |

N O
o~

]—__] - Total Time: 0 hrs 3 min
Time Left: 29 hrs 40 min

[~ Debug ON

‘[

Submit
Learner Analysis (on sub-problems)
Mastery: Total || Automated
Learning Practice (after learning) TotalNo. % 0ll1
NO. PROBLEMTYPES: 20 NO. PROBLEMS TESTED: o Known {+): 0 0
PERCENT CORRECT: 0 PERCENT CORRECT: 0 Undetermined (7): 20 100
Unknown (-): 0 0

Learner Model

-+ 2(27) Have you finished subtraction?

2 () Click on the current column.

1 3

Polibits (42) 2010

Fig. 5. Learner Model for a student just beginning TutorIT Column Subtraction.
The initial status on each node is set to “?” because TutorlIT the student has had some exposure to column subtraction.

40

The Role of Automation in Instruction

APPENDIX B

Steps 1-6 are illustrated in the following three examples,
with emphasis on steps 3 & 4 — which are essential in
dealing with higher order knowledge. These examples
illustrate how higher order SLT rules are derived using
three simple domains: Measure Conversion, Proofs in

Example 1: Measure Conversion

1.SME Selects Prototypic Problems
3yd - ?in
2 gallon—?pints

Trigonometry and Number Series. Only top level SLT
rules are shown below: Once a top level SLT rule has been
constructed, refinement proceeds as above with all SLT
rules, whether higher or lower order.

2. Construct Solution Rules for Prototypic Problems

236_times 2 in
gallons 28 times=> pints

yd

3. Convert SLT (solution) Rule to Higher Order Problem
(Construct Goal & Given of Higher Order Problem)

Givens: yd 2n1_times 2 xxx
XXX 2no_times= in
Goal: blug 2n_times> clug

4. Construct SLT Higher Order Rule Composition Problem

(Domain/Range Structure of H. O. Rule is Un-initialized Version of Higher Order Problem)

DOMAIN*: blug [n_times] xxx
XXX [n_times]) clug

RANGE: blug (n_times) clug

Construct Procedure for Higher Order SLT (Composition) Rule

PROCEDURE: compose rules so output of first matches input to second

Example 2: Proving Trigonometry Identities

1. SME Selects Prototypic Problem (one of many)

sinA + cos?A =1 — ?proof

2. Construct Solution Rules for Prototypic Problems

sin2A + cos2A =1

> divide a2 + b2 = ¢2 by c, substitute sin, cos definitions>

Proof is resulting steps

3. Convert SLT Rule to Higher Order Problem (Replace Semantic-specific Nodes in Solution Rule with

Abstractions & Select Rule(s)

Given

4. Construct H.O. SLT Generalization Rule

sin2A + cos2A =1 > divide a2 + b2 = c2 by ¢, substitute sin, cos definitions>

Proof is resulting steps

Trig Identity - divide a2 + b2 = ¢2 by side, substitute trig. fn. Definitions>

Proof is resulting steps

>Replace Specific Values (e.g., c, sin) with Generalizations=>

(e.g., c2>side; sin=2>trig fns)

Higher order rules make it possible to derive any number of
new SLT rules from basic rules. A wide variety of conversion
problems, for example, can be solved by combining a small
number of basic volume, weight, currency, etc. equivalents.
Repeating the process (step f in SA) increases the generative
power of the SLT rules and higher order rules associated with
the ill-defined domain. Analysis of several complex domains
(e.g., Scandura et al, 1974, Scandura, 1977, Scandura &
Scandura, 1980) shows that as SA proceeds two things
happen: The individual rules become simpler but the

41

generating power of the rule set as a whole goes up
dramatically, thereby expanding coverage in original domain
(esp. see Scandura, et al, 1977; Wulfeck & Scandura, 1977).
To summarize, the Measure Conversion domain in Example
1 includes any number of (known & unknown) conversion
problems, all solvable by chaining one known role after
another. Example 2 outlines a method (higher order SLT rule)
for deriving trigonometric identities as generalizations of the
Pythagorean theorem (similar to Case Based Reasoning).
Example 3 (in the main text) illustrates an ill-defined domain

Polibits (42) 2010

Joseph M. Scandura

where alternative SLT solution rules are commonly taught (or
otherwise learned). As above, this leads to identification of
higher order SLT selection rules. It is exactly these kinds of
selection rules that must be learned to make sound decisions,
whether it be in solving verbal problems in mathematics, or
otherwise.

Polibits (42) 2010

42

