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Propiedades de transporte de una superred de grafeno tipo sinusoidal  

Resumen 
En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de 

los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con 

potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por 

medio de sustratos mixtos junto con la aplicación de un campo perpendicular sobre el sustrato de 

Óxido de Silicio (SiO2), la otra por medio de potenciales alternados aplicados 

perpendicularmente sobre la sábana de grafeno. Calculamos las propiedades de transmisión, 

transporte y estructura electrónica, variando diferentes parámetros como ángulo de incidencia, 

anchos de pozos y barreras y diferente número de barreras. Se encontró (1) el importante papel 

que juega el efecto Klein en tales estructuras, (2) las propiedades de transmisión y transporte 

presentan cierta simetría respecto del origen de la energía, y (3) el carácter sinusoidal del sistema 

trae consigo una baja en el nivel de energía de las subbandas en el espectro de estados acotados, 

además las degenera y origina que la apertura-cierre de las minibandas sea en el mismo nivel de 

energía.  
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Abstract 
 

We used the transfer-matrix method to study the tunneling of Dirac eletrons through graphene 

superlattices. We have considered two types of sinusoidal superlattices: (1) electrostatic-barrier 

structures created by application of electrostatic potentials and (2) susbtrate-barrier structures, 

obtained by alternating susbtrates that open and non-open a bandgap on graphene. 

We found the transmission, transport and electronic structure properties for different set of 

parameters such as well and barriers widths, energy and angle of incident as well as barriers 

number. We find: (1) the important role of Klein tunneling, (2) the transmission and transport 

properties have certain symmetry about the origin of the energy, and (3) the sinusoidal character 
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of the system entails a decrease in the level of the subbands in the spectrum of bound states, and 

degenerates and causes the opening and closing of minibands in the same energy level. 

 

Keywords: Graphene, superlattices, transfer matrix, bound states 
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Introducción 

El grafeno fue descubierto en el año 2004 por investigadores de la Universidad de Manchester, 

encabezados por los físicos Andre K. Geim y Kostia Novoselov (Novoselov 2004, 666; 

Novoselov 2005, 197). La estabilidad de una monocapa de este material abrió un nuevo camino 

en el estudio de las propiedades de transmisión y transporte en sistemas bidimensionales. El 

grafeno es un material bidimensional constituido por una sola capa de átomos de carbono 

formando una red bidimensional, cuyo espesor es de un único átomo. La estructura cristalina del 

grafeno consiste en dos subredes triangulares con dos átomos por celda unitaria, esto proviene del 

hecho de que la red hexagonal original del grafeno no es una red de Bravais. Su estructura de 

bandas es simétrica con respecto a 𝐸𝐸 = 0,  por lo que el salto entre subredes produce la 

formación de dos bandas de energía y su interacción cerca de los bordes de la zona de Brillouin 

nos lleva a una relación de dispersión lineal en los puntos K y K', es decir  que se conocen como 

puntos de Dirac. 

El grafeno posee propiedades electrónicas relevantes, es un semiconductor con una banda 

prohibida de energía de tamaño cero,  en la cual las cuasipartículas obedecen una relación de 

dispersión lineal a bajas energías, y que formalmente pueden ser descritas por el hamiltoniano de 

Dirac, 

                        𝐻𝐻� = ℏ𝑣𝑣𝐹𝐹 �
0 𝑘𝑘𝑥𝑥 − 𝑖𝑖𝑘𝑘𝑦𝑦

𝑘𝑘𝑥𝑥 + 𝑖𝑖𝑘𝑘𝑦𝑦 0 � = ℏ𝑣𝑣𝐹𝐹(𝝈𝝈 ∙ 𝒌𝒌),                       (1) 

donde 𝒌𝒌 es el momento de la cuasipartícula, 𝝈𝝈 son las matrices de Pauli en 2D y 𝑣𝑣𝐹𝐹 es la 

velocidad de Fermi independiente de 𝒌𝒌 y juega el papel de la velocidad de la luz. Por lo tanto, la 

ecuación tipo Dirac es consecuencia directa de la simetría cristalina del grafeno, y más aún las 

cuasipartículas en el grafeno deben de ser descritas por la ecuación de Dirac para fermiones sin 

masa. Esto nos lleva a tomar como camino la electrodinámica cuántica (Katsnelson 2007, 3) para 

medir y describir algunos efectos relativistas y encontrar más propiedades electrónicas del 

grafeno, tales como efecto Hall cuántico anómalo, conductividad mínima y el efecto Klein 

(Zhang 2005, 201; Katsnelson 2006, 620).  

El efecto Klein (Katsnelson 2006, 620), fenómeno relativista en el cual una partícula 

puede atravesar cualquier barrera de energía potencial sin importar su ancho o su altura, se ha 

observado en muchas investigaciones y muchos científicos recurren a él para explicar fenómenos 
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encontrados en sus mediciones. Una observación importante es la aparición de oscilaciones en 

mediciones de conductancia para barreras electrostáticas en grafeno (Bai 2007, 075430, Young 

2009, 222, Rodríguez-Vargas, 2012, 073711). Este fenómeno presentado en las propiedades de 

transporte se ha encontrado no sólo en casos para una barrera de potencial, sino que se ha 

observado en casos donde el caso se extiende a un número finito de barreras y pozos de potencial, 

tanto así que en la actualidad se hacen investigaciones sobre las propiedades de transporte de los 

portadores de carga en superredes de grafeno, ya sea tanto en monocapas o bicapas de grafeno 

(Bai 2007, 075430, Briones-Torres 2014, 98, Barbier 2009, 155402, Sinha 2011, 155439). 

Los pioneros en el tema de las superredes fueron Esaki y Tsu, en la década de los setenta, 

marcaron el inicio del desarrollo de nuevas estructuras artificiales periódicas y su aplicación a 

nuevos dispositivos (Esaki 1970, 61, Tsu, 1973, 562). Una superred es un compuesto artificial en 

donde se depositan películas de dos o más materiales formando una estructura periódica, la 

mayoría de sus propiedades dependen en gran parte del espesor de los materiales y de su 

interacción entre sí. Entre las propiedades que presentan tales estructuras se encuentran las 

oscilaciones de Bloch, el tunelaje resonante, la localización de Winnier-Stark, efectos exitónicos 

y transporte de minibandas, muchas de las cuales están relacionadas con la estructura de 

minibandas (Esaki 1970, 61, Tsu, 1973, 562, Grahn 1995).  

Recientemente, el grafeno ha sido objeto de investigación especialmente por las 

propiedades únicas que presenta. Una de las tareas es observar que sucede con tales propiedades 

al aplicar una modulación periódica, especialmente en sistemas multicapas de una, dos o más 

barreras. Las propiedades de transporte de materiales semiconductores y de las estructuras 

formadas por ellos son tan importantes para la creación de dispositivos electrónicos más 

eficientes, y en el grafeno se han encontrado diferencias en tales propiedades respecto a lo 

encontrado en semiconductores convencionales. Una de las más importantes es que la 

conductividad puede ser controlada cambiando los parámetros principales del sistema, como el 

potencial de las barreras y pozos o el número de períodos. Una de las cosas más relevantes 

encontradas actualmente es que las propiedades de transporte en los sistemas multicapas 

presentan ciertas peculiaridades, como lo es el carácter oscilante de la conductancia. En uno de 

nuestros trabajos publicados recientemente encontramos que tal carácter oscilante de una 

superred periódica puede ser explicado con el uso de la estructura electrónica, encontrando que 
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existe una conexión directa entre los picos de conductancia y la apertura –cierre de las 

minibandas de energía (Briones-Torres 2014, 98).  

Con base a lo anterior, la razón del presente trabajo es encontrar que sucede con la 

conductancia utilizando una superred tipo sinusoidal y si de igual manera podemos encontrar la 

relación entre los picos de conductancia y las minibandas de energía. Para eso consideraremos 

dos tipos de superredes sinusoidales en grafeno, construidas de dos maneras: usando campos 

electrostáticos y empleando sustratos mixtos. Haremos una comparación de las propiedades de 

transmisión, transporte y estructura electrónica de ambas superredes, la elección de esto dos 

sistemas es porque son sistemas opuestos, para el caso electrostático se da la aparición del efecto 

Klein, lo que no sucede  para el caso de sustratos.  

 

Método 

El método de cálculo que usamos es el método de la matriz de transferencia (Yeh 2005), para la 

propagación de ondas electromagnéticas en medios multicapas, este método puede ser aplicado a 

electrones de Dirac, con algunas especificaciones particulares que estos acarrean. Para dejar más 

claro este método, empezaremos por suponer que tenemos un sistema multicapas de Grafeno 

(SMG) como el mostrado en la Figura 1. Estos sistemas pueden ser formados colocando una 

sábana de grafeno ya sea sobre un sustrato mixto de 𝑆𝑆𝑆𝑆𝑂𝑂2 y 𝑆𝑆𝑆𝑆𝑆𝑆, o bien alternando potenciales 

electrostáticos. 

 

Para nuestros cálculos, se han tomado ambas formas de crear un SMG, antes de enunciar 

formalmente el método de la matriz de transferencia, haremos un breve análisis para encontrar el 

hamiltoniano y la función de onda para cada SMG (tanto para el formado por un sustrato mixto 

como para el caso electrostático) (Viana 2008, 325221). 

 

 
Figura 1.  Diagrama de un sistema multicapas de grafeno con N barreras de potencial, con sus matrices dinámicas y 
de propagación correspondientes a cada región del sistema. 
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Para el caso de SMG formado por un sustrato mixto, es bien sabido que es posible 

controlar el tamaño del gap del grafeno modificando la interacción de éste con el sustrato sobre el 

cual es depositado, que será SiC o SiO2. Con esto se logran tener regiones donde el grafeno tendrá 

gap con un ancho finito y otras donde no tendrá gap, y esto hace posible formar un SMG (Zhou 

2007, 770). Entonces tendremos dos regiones, que aparecen periódicamente en el SMG, la región 

𝑘𝑘 donde la sábana de grafeno es colocada sobre el sustrato SiO2, región donde no existe gap en el 

grafeno y con función de onda 𝜓𝜓𝑘𝑘, y la región 𝑞𝑞 en la cual se deposita la sábana de grafeno y que 

induce un gap de ancho finito 2𝑡𝑡′ (𝑡𝑡′ es el término de masa, prácticamente es el alto de la 

barrera), en esta región se tiene una función de onda 𝜓𝜓𝑞𝑞. 

 

Para la región 𝑘𝑘, los electrones de Dirac poseen un comportamiento relativista, idéntico al 

de las partículas relativistas con masa cero, entonces el hamiltoniano estará dado por 

𝐻𝐻� = 𝑣𝑣𝐹𝐹(𝝈𝝈 ∙ 𝒑𝒑),                                              (2) 

donde la 𝑣𝑣𝐹𝐹 es la velocidad de Fermi de los electrones de Dirac en grafeno, con un valor de 𝑣𝑣𝐹𝐹 =

𝑐𝑐/300, que para el caso de sustratos mixtos esta dada por 𝑣𝑣𝐹𝐹 = 3𝑡𝑡𝑡𝑡/(2ℏ), donde 𝑡𝑡 se define 

como el factor de medida de interacción de los átomos carbono-carbono en el grafeno, con un 

valor de aproximadamente de 2.7 eV, 𝑎𝑎 es la distancia carbono-carbono, que en para grafeno es 

igual a 1.42 Å, las componentes del pseudoespín 𝝈𝝈 = (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦) son las matrices de Pauli y 𝒑𝒑 =

(𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦) es el operador de momento.  

Con esto, la solución general a la ecuación de Dirac para la región 𝑘𝑘, será 

 

𝜓𝜓𝑘𝑘
± = 1

√2
�

1
𝑢𝑢±
� 𝑒𝑒±𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥+𝑖𝑖𝑘𝑘𝑦𝑦𝑦𝑦,                                            (3) 

donde  

 

𝑢𝑢± = ±𝑠𝑠𝑒𝑒±𝑖𝑖𝑖𝑖,                                                 (4) 

 

con  𝑠𝑠 = sign(𝐸𝐸) y 𝜃𝜃 = arctan (𝑘𝑘𝑦𝑦/𝑘𝑘𝑥𝑥), por lo tanto la energía correspondiente es 

𝐸𝐸 = ±ℏ𝑣𝑣𝐹𝐹�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 = ±ℏ𝑣𝑣𝐹𝐹𝑘𝑘,                                             (5) 
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que es una relación de dispersión lineal. 

 

Por otro lado, para la región 𝑞𝑞, como ya existe un gap, los electrones de Dirac ahora tendrán masa 

y el hamiltoniano será, 

𝐻𝐻�𝑆𝑆 = 𝑣𝑣𝐹𝐹(𝝈𝝈 ∙ 𝒑𝒑) + 𝑡𝑡´𝜎𝜎𝑧𝑧,                                                    (6) 

donde 𝑡𝑡′ = 𝑚𝑚𝑣𝑣𝐹𝐹2, aquí 𝑚𝑚 juega el papel de la masa efectiva, producto de la apertura del gap 

generado por el SiC, para nuestros cálculos numéricos 𝑡𝑡′ = 0.13 eV. Entonces la solución 

general para la ecuación de Dirac en la región 𝑞𝑞 es 

𝜓𝜓𝑞𝑞± = 1
√2
�

1
𝑣𝑣±
� 𝑒𝑒±𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥+𝑖𝑖𝑞𝑞𝑦𝑦𝑦𝑦,                                                 (7) 

donde  

𝑣𝑣± = 𝐸𝐸−𝑡𝑡´
ℏ𝑣𝑣𝐹𝐹�±𝑞𝑞𝑥𝑥−𝑖𝑖𝑞𝑞𝑦𝑦�

,                                                          (8) 

 

por lo tanto la energía correspondiente a esta región está dada por 

 

𝐸𝐸 = ±�(𝑞𝑞𝑥𝑥2 + 𝑞𝑞𝑦𝑦2)(ℏ𝑣𝑣𝐹𝐹)2 + 𝑡𝑡´2,                                            (9) 

esta relación de dispersión ya no es lineal sino de tipo parabólico. 

 

Ahora consideraremos el caso donde el SMG es formado por potenciales electrostáticos, 

el campo electrostático es aplicado perpendicularmente sobre la sábana de grafeno.   

 

El efecto principal al aplicar campos electrostáticos a la sábana de grafeno es la generación de un 

desplazamiento de los conos de Dirac que es proporcional a la magnitud del campo 𝑉𝑉0. El 

hamiltoniano para este caso estará dado por 

𝐻𝐻�𝑉𝑉 = 𝑣𝑣𝐹𝐹(𝝈𝝈 ∙ 𝒑𝒑) + 𝑉𝑉(𝑥𝑥),                                                 (10) 

donde 𝑉𝑉(𝑥𝑥) = 𝑉𝑉0 es el potencial unidimensional a lo largo del eje 𝑥𝑥. Tomando en cuenta la 

región 𝑞𝑞, que es donde se induce un gap debido al campo aplicado, la solución general a la 

ecuación de Dirac será 
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𝜓𝜓𝑞𝑞± = 1
√2
�

1
𝑣𝑣±
� 𝑒𝑒±𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥+𝑖𝑖𝑞𝑞𝑦𝑦𝑦𝑦,                                            (11) 

Donde 

 

𝑣𝑣± = ℏ𝑣𝑣𝐹𝐹(±𝑞𝑞𝑥𝑥+𝑖𝑖𝑞𝑞𝑦𝑦)
𝐸𝐸−𝑉𝑉0

,                                                        (12) 

con una relación de dispersión dada por 

 

𝐸𝐸 − 𝑉𝑉0 = ±ℏ𝑣𝑣𝐹𝐹�𝑞𝑞𝑥𝑥2 + 𝑞𝑞𝑦𝑦2 = ±ℏ𝑣𝑣𝐹𝐹𝑞𝑞,                                          (13) 

que también es de tipo lineal. 

 

 

Pasemos ahora al método de la matriz de transferencia, para eso consideremos al SMG de 

la figura 1. Coloquemos nuestro origen en 𝑥𝑥0 = 0, entonces tomando en cuenta la conservación 

del momento transversal e imponiendo condiciones de continuidad a la función de onda de las 

diferentes interfases a lo largo de la dirección 𝑥𝑥 se puede obtener la relación entre los coeficientes 

de las ondas incidentes reflejadas del lado izquierdo con las ondas transmitidas del lado derecho 

mediante: 

�𝐴𝐴0𝐵𝐵0
� = 𝐷𝐷0−1(∏ 𝐷𝐷𝑙𝑙𝑃𝑃𝑙𝑙𝐷𝐷𝑙𝑙−1𝑁𝑁

𝑙𝑙=1 )𝐷𝐷0 �𝐴𝐴𝑁𝑁+1𝑒𝑒
𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥𝑁𝑁

0
�,                             (14) 

 

sin olvidar que estamos asumiendo que el medio final es igual al medio inicial y que al final de la 

N-ésima barrera ya no habrá onda reflejada por lo que 𝐵𝐵𝑁𝑁+1 = 0. 

 

En la ecuación (14) las matrices 𝐷𝐷𝑙𝑙 y 𝑃𝑃𝑙𝑙 dentro de la productoria, son las matrices dinámicas y de 

propagación, respectivamente, correspondientes a cada una de las regiones que forman el sistema 

multicapas de grafeno, éstas ecuaciones acorde a nuestros resultados anteriores, se definen como 

 

𝐷𝐷𝑙𝑙 = �
� 1 1
𝑢𝑢+ 𝑢𝑢−

�  para 𝑙𝑙 = 0,2,4, … ,2𝑁𝑁 − 2 para la región 𝑘𝑘,

� 1 1
𝑣𝑣+ 𝑣𝑣−

�  para 𝑙𝑙 = 1,3,5, … ,2𝑁𝑁 − 1 para la región 𝑞𝑞,
                             (15) 
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y las matrices de propagación 

 

𝑃𝑃𝑙𝑙 = �
�𝑒𝑒

𝑖𝑖𝑘𝑘𝑥𝑥(𝑥𝑥2𝑙𝑙−2−𝑥𝑥2𝑙𝑙−3) 0
0 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥(𝑥𝑥2𝑙𝑙−2−𝑥𝑥2𝑙𝑙−3)�  para 𝑙𝑙 = 2,4, … ,2𝑁𝑁 − 2 para la región 𝑘𝑘,

�𝑒𝑒
𝑖𝑖𝑘𝑘𝑥𝑥(𝑥𝑥2𝑙𝑙−1−𝑥𝑥2𝑙𝑙−2) 0

0 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥(𝑥𝑥2𝑙𝑙−1−𝑥𝑥2𝑙𝑙−2)�  para 𝑙𝑙 = 1,3, … ,2𝑁𝑁 − 1 para la región 𝑞𝑞,
    (16) 

 

de la productoria y de las dimensiones de las matrices dinámicas y de propagación podemos 

definimos la matriz de transferencia de dimensiones 2 × 2 como  

𝑀𝑀 = 𝐷𝐷0−1(∏ 𝐷𝐷𝑙𝑙𝑃𝑃𝑙𝑙𝐷𝐷𝑙𝑙−1𝑁𝑁
𝑙𝑙=1 )𝐷𝐷0,                                              (17) 

entonces podemos encontrar que la transmitancia de los electrones de Dirac a través del sistema 

multicapas de grafeno, estará dada como 

𝑇𝑇 = 1
|𝑀𝑀11|2.                                                              (18) 

Por lo tanto vemos que la transmitancia está dada en función del elemento 𝑀𝑀11 de la matriz de 

transferencia, lo que significa que para calcular la transmitancia es necesario conocer el elemento 

matricial 𝑀𝑀11. 

 

La transmitancia nos permite calcular la conductancia en el régimen lineal directamente a 

través del formalismo de Landauer-Büttiker (Datta 1995),  

 

𝐺𝐺
𝐺𝐺0

= 𝐸𝐸𝐹𝐹∗ ∫ 𝑇𝑇(𝐸𝐸𝐹𝐹∗ , 𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,
𝜋𝜋
2
−𝜋𝜋2

                                          (19) 

donde 𝐸𝐸𝐹𝐹∗ = 𝐸𝐸𝐹𝐹
𝐸𝐸0

, es la energía de Fermi adimensional, con 𝐸𝐸0 = 𝑉𝑉0 = 𝑡𝑡´, y 𝐺𝐺0 = 2𝑒𝑒2𝐿𝐿𝑦𝑦𝐸𝐸0
ℎ2𝑣𝑣𝐹𝐹

 , es el 

factor fundamental de conductancia, con 𝐿𝐿𝑦𝑦 el ancho del sistema en el eje transversal 𝑦𝑦, y 𝜃𝜃 es el 

ángulo de incidencia de los electrones con respecto al eje 𝑥𝑥. 

 

Por último, para calcular el espectro de estados acotados, es necesario cambiar de 

condiciones blandas a duras, es decir los anchos de la primer y última barrera del SMG se 

extienden hasta el infinito (Pereira 2006, 045424). La condición para tener estados acotados es 
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que el vector de onda de las barreras semi-infinitas sea imaginario puro es decir 𝑞𝑞𝑥𝑥 → 𝑖𝑖𝛼𝛼𝑥𝑥 , de 

aquí resulta una ecuación trascendental entre la energía y el vector de onda transversal de los 

electrones de Dirac como 

 

𝑀𝑀11
𝐵𝐵𝐵𝐵�𝐸𝐸,𝑘𝑘𝑦𝑦; 𝑞𝑞𝑥𝑥 → 𝑖𝑖𝛼𝛼𝑥𝑥� = 0,                                              (20) 

 

luego, utilizando el formalismo de la matriz de transferencia encontraremos que  

 

𝑀𝑀𝐵𝐵𝐵𝐵 = 𝐷𝐷1−1(∏ 𝐷𝐷𝑙𝑙𝑃𝑃𝑙𝑙𝐷𝐷𝑙𝑙−1𝑁𝑁−1
𝑙𝑙=2 )𝐷𝐷1,                                           (21) 

 

es la matriz de transferencia correspondiente al caso de estados acotados. 

 

 
Figura 2.  Superred con potencial periódico sinusoidal creada por la aplicación de potenciales electrostáticos. 

  
 

Resultados 

Los resultados obtenidos son para dos tipos de superredes con potencial periódico sinusoidal: una 

superred creada por medio de potenciales electrostáticos (EGSLs, mostrada en la figura 2) y la 

otra creada por medio de sustratos (SGSLs, mostrada en la figura 3). Por medio de la matriz de 

transferencia se calcularon las propiedades de transmisión, transporte y estructura electrónica, 

para anchos 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎, 100𝑎𝑎 y 200𝑎𝑎, donde 𝑑𝑑𝑑𝑑 es el ancho de pozos y 𝑑𝑑𝑑𝑑 el de barreras, 

𝑎𝑎 es la distancia carbono-carbono. Usamos los ángulos de incidencia 𝜃𝜃 = 0 y 𝜋𝜋/6 y una energía 

de incidencia de 0.13 eV. Los altos de barrera son de 0.13 eV y para los pozos de −0.13 eV, 

todo esto a diferente número de barreras 𝑁𝑁𝑁𝑁. 
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Figura 3.  Superred con potencial periódico sinusoidal creada por sustratos mixtos. 

 

 

Empezaremos por mostrar los resultados para transmitancia como función de energía, 

figura 4. Los parámetros usados son 𝑁𝑁𝑁𝑁 = 2, 5 y 10, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 100𝑎𝑎, y 𝜃𝜃 =

0 (línea roja) y 𝜋𝜋/6 (línea negra). Para EGSLs los espectros muestran que para un ángulo de 

incidencia normal la transmitancia es perfecta, sin importar el número de barreras. Por lo tanto 

los electrones atraviesan las barreras como si éstas fueran transparentes. Entonces podemos 

confirmar que el efecto Klein realmente aparece en superredes de este tipo. Sin embargo el caso 

no es el mismo para SGSLs, pues se puede apreciar que el espectro de transmitancia tanto para 

incidencia normal como a incidencia oblicua, es rico en estructura, y es notorio que los electrones 

en este caso sienten la presencia del número de barreras y pozos. Además el efecto Klein no se da 

en este tipo de superredes. Al aumentar el número de barreras el espectro de transmisión a 

incidencia oblicua para EGSLs se vuelve simétrico, pues la diferencia entre el número de barreras 

y pozos es de 1. Caso contrario a SGSLs, donde el número de pozos casi es el doble que de 

barreras y por lo tanto su espectro de transmisión se vuelve asimétrico. La presencia de huecos es 

importante para este análisis. 

 

Consideramos dos maneras de presentar la conductancia, la primera se muestra en la 

figura 5, se variaron los anchos 𝑑𝑑𝑑𝑑 y 𝑑𝑑𝑑𝑑, se tomó como fijo el número de barreras 𝑁𝑁𝑁𝑁 = 5.  

Nuevamente la simetría y la asimetría en los espectros con respecto al origen de la energía es 

evidente para EGSLs y SGSLs respectivamente, pero ahora para el aumento de los anchos. 

También es apreciable el carácter oscilatorio de la conductancia con el aumento de los anchos. 
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Además existe una gran diferencia entre la conductancia para EGSLs y SGSLs pues conforme 

aumenta el ancho de las barreras y pozos, la conductancia se mantiene en los mismos órdenes de 

magnitud para EGSLs. Caso contrario a SGSLs pues la región central de la curva crece con el 

aumento de los anchos y por lo tanto la conductancia disminuye fuertemente.  

 

 
Figura 4.  Transmitancia como función de la energía para EGSLs y SGSLs. 

 

En la figura 6 se muestra la segunda representación de la conductancia, ahora variamos el 

número de barreras y fijamos el anchos de las barreras y pozos a dw=dB=100a. Se pueden 

observar cosas similares a las curvas de conductancia mostradas anteriormente, sin embargo lo 

más interesante es que con el aumento de los anchos el carácter oscilatorio es mucho más 

evidente. 

 

Para una ilustración más explícita de las propiedades de transmisión en los sistemas 

EGSLs y SGSLs, la figura 7 muestra los contornos (𝐸𝐸,𝜃𝜃) para anchos fijos 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 100𝑎𝑎, 
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en donde los ejes horizontal y vertical corresponden a la energía y al ángulo de incidencia de los 

electrones. Como se puede ver la columna de la izquierda muestra los resultados para EGSLs y la 

columna derecha para SGSLs, la primer fila de resultados es para 𝑁𝑁𝑁𝑁 = 2, la segunda para 𝑁𝑁𝑁𝑁 =

5, y  la última para 𝑁𝑁𝑁𝑁 = 10.  

 
Figura 5.  Conductancia como función de la energía para EGSLs y SGSLs a diferentes anchos de barreras y pozos. 

 

Una de las características notables para EGSLs es la simetría de los contornos con 

respecto del ángulo de incidencia y la asimetría con respecto de la energía. Para SGSLs a simetría 

permanece con respecto del ángulo de incidencia pero no para la energía. Para analizar la 

transmitancia los colores rojo y negro corresponden a transmitancia perfecta y nula 

respectivamente. Para el sistema EGSLs, el caso 𝑁𝑁𝑁𝑁 = 2 no presenta resonancias y tampoco 

zonas con transmitancia nula, sin embargo tales regiones aparecen conforme aumenta el número 

de barreras. Un resultado notorio se da en la amplitud de la región central para ángulos pequeños, 

pues ésta se reduce con el aumento del número de barreras pero nunca desaparece, debido a la 

influencia del efecto Klein y a la preferencia por ángulos pequeños, mostrando así que la 
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conductancia se mantiene. Para el sistema SGSLs, se presentan resultados similares, pero la 

transmitancia es más sensible al aumento del número de barreras, pues las regiones prohibidas de 

energía es vuelve más notoria. Las regiones de transmisión perfecta desaparecen con al aumento 

del número de barreras, lo que lleva a una disminución notable en la conductancia. 
 

 
Figura 6.  Conductancia como función de la energía para EGSLs y SGSLs a diferente número de barreras. 

 

La figura  8, muestra otro contorno (𝐸𝐸,𝜃𝜃), ahora fijamos el número de barreras 𝑁𝑁𝑁𝑁 = 5, donde 

los anchos son 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎, para la primera fila,  𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 100𝑎𝑎 para la segunda y 𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑑𝑑 = 200𝑎𝑎 para la tercera. Nuevamente las simetrías en los contornos mencionadas 

anteriormente tanto para EGSLs como para SGSLs se mantienen.  

 

Para el sistema EGSLs, el efecto Klein se hace notar pues la región central a ángulos 

pequeños jamás desaparece con el aumento de los anchos. Tampoco desaparece la región de 

transmitancia perfecta (región roja), porque se mantiene prácticamente constante aunque 
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aparezcan regiones de energía prohibida. Por lo tanto la conductancia disminuye muy poco 

manteniéndose en los mismos órdenes de magnitud.  

 
Figura 7.  Diagrama de contorno, ángulo en función de la energía para EGSLs y SGSLs con 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 =
100𝑎𝑎  para diferente número de barreras 𝑁𝑁𝑁𝑁 = 2, 5, y 10 para la primer, segunda y tercer fila 
respectivamente. 

 

Para SGSLs, el contorno muestra más estructura para huecos que para electrones, debido 

al número de barreras existentes para huecos, y como era de esperarse las regiones de 

transmitancia nula son evidentes incluso a 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎. Con el aumento de los anchos tales 

regiones se vuelven prácticamente más notorias, abarcando gran parte del espectro (el carácter 

evanescente de las ondas rige en este tipo de estructuras). Junto con ello se presenta una 

disminución importante en la conductancia.  Además la aparición de resonancias es más notable 

para 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 200𝑎𝑎, lo que concuerda con la aparición de oscilaciones en la conductancia.  
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Figura 8.  Diagrama de contorno, ángulo en función de la energía para EGSLs y SGSLs con 𝑁𝑁𝑁𝑁 = 5 y 

con anchos 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎, 100𝑎𝑎, y 200𝑎𝑎 para la primer, segunda y tercer fila respectivamente. 
 

Para hablar más explícitamente de las propiedades de transporte y explicar las 

oscilaciones en la conductancia calculamos el espectro de estados acotados, mostrado en la figura 

9. En este caso el gráfico muestra la energía en función del momento transversal. Usamos 

condiciones duras, por lo tanto ahora en vez de referirnos al número de barreras estaremos 

usando el número de pozos (Nw), fijándolo en Nw=4, para la primer fila 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎, para 

la segunda 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 100𝑎𝑎  y para la última fila 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 200𝑎𝑎.  
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Figura 9.  Espectro de estados acotados para EGSLs y SGSLs con 𝑁𝑁𝑁𝑁 = 4 y con anchos 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 =

50𝑎𝑎, 100𝑎𝑎, y 200𝑎𝑎 para la primer, segunda y tercer fila respectivamente. 
 

Para el sistema EGSLs la apertura y cierre de minibandas ocurre  prácticamente a la 

misma altura, desapareciendo la región de energía prohibida entre ellas, esto es más notorio si 

observamos la conductancia en la figura 5. Por ejemplo para 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 200𝑎𝑎 en el valor  𝐸𝐸𝐹𝐹
𝐸𝐸0

=

1, se puede apreciar un valle de conductancia casi nula pero jamás llega a cero, debido al efecto 

Klein, y si volvemos al espectro de estados acotados el cierre de la minibanda mostrada antes del 

valor de 0.13 eV ocurre de manera conjunta con la apertura de la minibanda mostrada después de 

éste valor. Por lo tanto, cada apertura y cierre de minibanda en el espectro de estados acotados 

corresponde a un pico principal de conductancia (donde nos referimos a pico principal  al 

formado por un aumento y disminución fuerte). Sin embargo en cada pico principal existen 

disminuciones y aumentos no tan prominentes en la conductancia correspondientes a la apertura y 

cierre de cada una de las subbandas que forman la minibanda.  
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En el caso del sistema SGSLs, las subbandas se degeneran, y al igual que EGSLs la 

apertura y cierre de las minibandas ocurren a una misma energía con el aumento de los anchos 

𝑑𝑑𝑑𝑑 y 𝑑𝑑𝑑𝑑. Ahora vayamos a la figura 5, podemos observar que para 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 50𝑎𝑎, existen 

unos picos muy cercanos al cero de energía, tales picos corresponden las subbandas que aparecen 

cercanas al cero de energía en el espectro de estados acotados. Enseguida existe una conductancia 

prácticamente nula, y entre las subbandas existen regiones sin estados acotados. Además 

nuevamente aparece un pico principal en la conductancia alrededor de 𝐸𝐸𝐹𝐹
𝐸𝐸0

= 1, relacionado con la 

minibanda degenerada a la altura de la barrera en el espectro de estados acotados.  

 

De igual manera podemos analizar el caso para 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 100𝑎𝑎. La minibanda que aparece 

poco antes del valor de 0.05 eV corresponde con el pico principal en la conductancia 

aproximadamente en  𝐸𝐸𝐹𝐹
𝐸𝐸0

= 0.4, enseguida el canal se cierra y se abre la siguiente minibanda 

aproximadamente al nivel de la altura de la barrera, y nuevamente este caso coincide con los 

picos en la conductancia y las oscilaciones alrededor de esta energía.  Para 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 200𝑎𝑎 

existen unos picos de conductancia que no aparecen antes de 0.13 eV y que para este caso 

corresponderían a las minibandas observadas en el espectro de estados acotados, pero no 

aparecen debido a la precisión de nuestros cálculos. Las dos siguientes minibandas después del 

valor de 0.13 eV si corresponden con los picos principales que surgen después de 𝐸𝐸𝐹𝐹
𝐸𝐸0

= 1. 

 

Por lo tanto, entre las cosas importantes que encontramos es la degeneración de las subbandas 

para formar minibandas, característica de las superredes, otra es la apertura y cierre de las mismas 

para explicar la disminución y aumento de la conductancia. Por lo tanto de manera cualitativa el 

espectro de estados acotados fue necesario para explicar las propiedades de transporte. 

 

Conclusiones 

En conclusion, hemos estudiado las propiedades de transmisión, transporte y estructura 

electrónica en superredes de grafeno, donde hemos considerado superredes con potencial 

periódico sinusoidal o dicho de otro modo superredes con polaridad alternada. En particular se 

llevó a cabo un análisis comparativo de superredes creadas por medio de potenciales 

electrostático (presentan tunelaje Klein) y superredes creadas por medio de sustratos mixtos (no 

Revista Electrónica Nova Scientia, Nº 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 431 – 451 
- 449 - 



Propiedades de transporte de una superred de grafeno tipo sinusoidal  

presentan tunelaje Klein). Empleamos el método de matriz de transferencia para el cálculo de las 

propiedades de transmisión y espectro de estados acotados, mientras que para las propiedades de 

transporte se utilizó el formalismo de Landauer-Büttiker. Los principales resultados que 

encontramos, es que las propiedades de transmisión transporte y estructura electrónica pueden ser 

moduladas fácilmente ajustando los parámetros de la superred. La transmitancia y conductancia 

en el caso de EGSLs están dominadas por el tunelaje Klein. Para el caso de SGSLs éstas 

propiedades son muy sensibles al tamaño del sistema debido al carácter evanescente de los 

electrones. Como parte importante de los resultados las oscilaciones encontradas en la 

conductancia para ambas superredes EGSLs y SGSLs, pueden ser multiplicadas o reducidas en 

número modificando el ancho de las barreras y pozos, o reforzadas aumentando el número de 

barreras en la estructura. La polaridad alternada trae como consecuencia que las propiedades de 

transmisión y transporte como función de la energía para EGSLs sean simétricas con respecto al 

origen de la energía mientras que para SGSLs son asimétricas, esto debido a la influencia de 

huecos en las estructuras. Por último se ha encontrado en investigaciones recientes que los picos 

en la conductancia obedecen, en el caso de  un pozo cuántico en grafeno (Rodríguez-Vargas 

073711), a la apertura-cierre (degeneración) de subbandas en el espectro de estados acotados. Sin 

embargo en nuestros resultados esto se contrasta, pues los picos en la conductancia obedecen la 

apertura-cierre de minibandas para ambos tipos de superredes, tanto EGSLs como SGSLs. 

Además la polaridad alternada baja el nivel de energía de las subbandas, las degenera y origina 

que la apertura-cierre (degeneración) de minibandas sea en el mismo nivel. 
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