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Resumen

En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de
los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con
potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por
medio de sustratos mixtos junto con la aplicacion de un campo perpendicular sobre el sustrato de
Oxido de Silicio (SiO2), la otra por medio de potenciales alternados aplicados
perpendicularmente sobre la sabana de grafeno. Calculamos las propiedades de transmision,
transporte y estructura electronica, variando diferentes pardmetros como angulo de incidencia,
anchos de pozos y barreras y diferente nimero de barreras. Se encontr6 (1) el importante papel
que juega el efecto Klein en tales estructuras, (2) las propiedades de transmision y transporte
presentan cierta simetria respecto del origen de la energia, y (3) el caracter sinusoidal del sistema
trae consigo una baja en el nivel de energia de las subbandas en el espectro de estados acotados,
ademas las degenera y origina que la apertura-cierre de las minibandas sea en el mismo nivel de

energia.
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Abstract

We used the transfer-matrix method to study the tunneling of Dirac eletrons through graphene
superlattices. We have considered two types of sinusoidal superlattices: (1) electrostatic-barrier
structures created by application of electrostatic potentials and (2) susbtrate-barrier structures,
obtained by alternating susbtrates that open and non-open a bandgap on graphene.

We found the transmission, transport and electronic structure properties for different set of
parameters such as well and barriers widths, energy and angle of incident as well as barriers
number. We find: (1) the important role of Klein tunneling, (2) the transmission and transport

properties have certain symmetry about the origin of the energy, and (3) the sinusoidal character
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of the system entails a decrease in the level of the subbands in the spectrum of bound states, and

degenerates and causes the opening and closing of minibands in the same energy level.

Keywords: Graphene, superlattices, transfer matrix, bound states
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Introduccion

El grafeno fue descubierto en el afio 2004 por investigadores de la Universidad de Manchester,
encabezados por los fisicos Andre K. Geim y Kostia Novoselov (Novoselov 2004, 666;
Novoselov 2005, 197). La estabilidad de una monocapa de este material abrié un nuevo camino
en el estudio de las propiedades de transmision y transporte en sistemas bidimensionales. El
grafeno es un material bidimensional constituido por una sola capa de aomos de carbono
formando una red bidimensional, cuyo espesor es de un Gnico d&tomo. La estructura cristalina del
grafeno consiste en dos subredes triangulares con dos atomos por celda unitaria, esto proviene del
hecho de que la red hexagonal original del grafeno no es una red de Bravais. Su estructura de
bandas es simétrica con respecto a E =0, por lo que el salto entre subredes produce la
formacion de dos bandas de energia y su interaccion cerca de los bordes de la zona de Brillouin
nos lleva a una relacion de dispersion lineal en los puntos K y K, es decir que se conocen como
puntos de Dirac.

El grafeno posee propiedades electrdnicas relevantes, es un semiconductor con una banda
prohibida de energia de tamafio cero, en la cual las cuasiparticulas obedecen una relaciéon de
dispersion lineal a bajas energias, y que formalmente pueden ser descritas por el hamiltoniano de
Dirac,

_ 0 ky—ik,
H = hvp <kx + lky 0 ) = h’l]F(O'- k), (1)

donde k es el momento de la cuasiparticula, o son las matrices de Pauli en 2D y vy es la
velocidad de Fermi independiente de k y juega el papel de la velocidad de la luz. Por lo tanto, la
ecuacion tipo Dirac es consecuencia directa de la simetria cristalina del grafeno, y mas aun las
cuasiparticulas en el grafeno deben de ser descritas por la ecuacion de Dirac para fermiones sin
masa. Esto nos lleva a tomar como camino la electrodinamica cuantica (Katsnelson 2007, 3) para
medir y describir algunos efectos relativistas y encontrar mas propiedades electrénicas del
grafeno, tales como efecto Hall cuantico anémalo, conductividad minima y el efecto Klein
(Zhang 2005, 201; Katsnelson 2006, 620).

El efecto Klein (Katsnelson 2006, 620), fendmeno relativista en el cual una particula
puede atravesar cualquier barrera de energia potencial sin importar su ancho o su altura, se ha

observado en muchas investigaciones y muchos cientificos recurren a él para explicar fenémenos
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encontrados en sus mediciones. Una observacion importante es la aparicion de oscilaciones en
mediciones de conductancia para barreras electrostaticas en grafeno (Bai 2007, 075430, Young
2009, 222, Rodriguez-Vargas, 2012, 073711). Este fendmeno presentado en las propiedades de
transporte se ha encontrado no s6lo en casos para una barrera de potencial, sino que se ha
observado en casos donde el caso se extiende a un numero finito de barreras y pozos de potencial,
tanto asi que en la actualidad se hacen investigaciones sobre las propiedades de transporte de los
portadores de carga en superredes de grafeno, ya sea tanto en monocapas o bicapas de grafeno
(Bai 2007, 075430, Briones-Torres 2014, 98, Barbier 2009, 155402, Sinha 2011, 155439).

Los pioneros en el tema de las superredes fueron Esaki y Tsu, en la década de los setenta,
marcaron el inicio del desarrollo de nuevas estructuras artificiales perioddicas y su aplicacion a
nuevos dispositivos (Esaki 1970, 61, Tsu, 1973, 562). Una superred es un compuesto artificial en
donde se depositan peliculas de dos o mas materiales formando una estructura periodica, la
mayoria de sus propiedades dependen en gran parte del espesor de los materiales y de su
interaccion entre si. Entre las propiedades que presentan tales estructuras se encuentran las
oscilaciones de Bloch, el tunelaje resonante, la localizacion de Winnier-Stark, efectos exitonicos
y transporte de minibandas, muchas de las cuales estan relacionadas con la estructura de
minibandas (Esaki 1970, 61, Tsu, 1973, 562, Grahn 1995).

Recientemente, el grafeno ha sido objeto de investigacion especialmente por las
propiedades Unicas que presenta. Una de las tareas es observar que sucede con tales propiedades
al aplicar una modulacion periodica, especialmente en sistemas multicapas de una, dos 0 mas
barreras. Las propiedades de transporte de materiales semiconductores y de las estructuras
formadas por ellos son tan importantes para la creacion de dispositivos electronicos maés
eficientes, y en el grafeno se han encontrado diferencias en tales propiedades respecto a lo
encontrado en semiconductores convencionales. Una de las mas importantes es que la
conductividad puede ser controlada cambiando los parametros principales del sistema, como el
potencial de las barreras y pozos o el numero de periodos. Una de las cosas mas relevantes
encontradas actualmente es que las propiedades de transporte en los sistemas multicapas
presentan ciertas peculiaridades, como lo es el caracter oscilante de la conductancia. En uno de
nuestros trabajos publicados recientemente encontramos que tal caracter oscilante de una

superred periodica puede ser explicado con el uso de la estructura electronica, encontrando que
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existe una conexion directa entre los picos de conductancia y la apertura —cierre de las
minibandas de energia (Briones-Torres 2014, 98).

Con base a lo anterior, la razon del presente trabajo es encontrar que sucede con la
conductancia utilizando una superred tipo sinusoidal y si de igual manera podemos encontrar la
relacién entre los picos de conductancia y las minibandas de energia. Para eso consideraremos
dos tipos de superredes sinusoidales en grafeno, construidas de dos maneras: usando campos
electrostaticos y empleando sustratos mixtos. Haremos una comparacion de las propiedades de
transmision, transporte y estructura electronica de ambas superredes, la eleccion de esto dos
sistemas es porque son sistemas opuestos, para el caso electrostatico se da la aparicion del efecto
Klein, lo que no sucede para el caso de sustratos.

Metodo

El método de calculo que usamos es el método de la matriz de transferencia (Yeh 2005), para la
propagacién de ondas electromagnéticas en medios multicapas, este método puede ser aplicado a
electrones de Dirac, con algunas especificaciones particulares que estos acarrean. Para dejar mas
claro este método, empezaremos por suponer que tenemos un sistema multicapas de Grafeno
(SMG) como el mostrado en la Figura 1. Estos sistemas pueden ser formados colocando una
sébana de grafeno ya sea sobre un sustrato mixto de SiO, y SiC, o bien alternando potenciales

electrostaticos.

Para nuestros calculos, se han tomado ambas formas de crear un SMG, antes de enunciar
formalmente el método de la matriz de transferencia, haremos un breve analisis para encontrar el
hamiltoniano y la funcién de onda para cada SMG (tanto para el formado por un sustrato mixto

como para el caso electrostatico) (Viana 2008, 325221).

Do D1 D2 D3 Di Dn Do

3
‘ P1 P2 P3 Pi Pn
b 4

Xo X1 X2 X3 Xi-1 Xi XN-1 XN

Figura 1. Diagrama de un sistema multicapas de grafeno con N barreras de potencial, con sus matrices dindmicas y
de propagacién correspondientes a cada regién del sistema.
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Para el caso de SMG formado por un sustrato mixto, es bien sabido que es posible
controlar el tamafio del gap del grafeno modificando la interaccion de éste con el sustrato sobre el
cual es depositado, que sera SiC o SiO,. Con esto se logran tener regiones donde el grafeno tendra
gap con un ancho finito y otras donde no tendra gap, y esto hace posible formar un SMG (Zhou
2007, 770). Entonces tendremos dos regiones, que aparecen periodicamente en el SMG, la region
k donde la sabana de grafeno es colocada sobre el sustrato SiO,, region donde no existe gap en el
grafeno y con funcion de onda ¥, y la region g en la cual se deposita la sdbana de grafeno y que
induce un gap de ancho finito 2t" (t' es el término de masa, practicamente es el alto de la

barrera), en esta region se tiene una funcion de onda v,,.

Para la region k, los electrones de Dirac poseen un comportamiento relativista, idéntico al

de las particulas relativistas con masa cero, entonces el hamiltoniano estara dado por
H =vp(o-p), )

donde la v es la velocidad de Fermi de los electrones de Dirac en grafeno, con un valor de vy =
¢/300, que para el caso de sustratos mixtos esta dada por vy = 3ta/(2h), donde t se define
como el factor de medida de interaccion de los &tomos carbono-carbono en el grafeno, con un
valor de aproximadamente de 2.7 eV, a es la distancia carbono-carbono, que en para grafeno es
igual a 1.42 A, las componentes del pseudoespin ¢ = (o, a,) son las matrices de Pauliy p =
(. Dy) €s el operador de momento.

Con esto, la solucion general a la ecuacion de Dirac para la region k, sera

1 4 y
1/)% = % (u+> eilkxxﬂkyy' (3)
donde
Ul —t5et?, (4)

con s =sign(E)y 6 = arctan(k, /k,), por lo tanto la energia correspondiente es

E = +hvp k2 + k2 = +hvgk, (5)
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que es una relacion de dispersion lineal.

Por otro lado, para la region g, como ya existe un gap, los electrones de Dirac ahora tendrdn masa

y el hamiltoniano ser4,
ﬁs = UF(O- - p) + tIO-Z, (6)

donde t' = mv%, aqui m juega el papel de la masa efectiva, producto de la apertura del gap
generado por el SiC, para nuestros calculos numéricos t' = 0.13 eV. Entonces la solucién

general para la ecuacion de Dirac en la region q es

/1 o
0= (o, ) e ™

donde

E-t’
vy = —m————, 8
7 hop(tax-iay) (8)

por lo tanto la energia correspondiente a esta region esta dada por

E =+,/(a%+ q3)(hvp)? + t72, ©)

esta relacion de dispersion ya no es lineal sino de tipo parabdlico.

Ahora consideraremos el caso donde el SMG es formado por potenciales electrostaticos,

el campo electrostatico es aplicado perpendicularmente sobre la sdbana de grafeno.

El efecto principal al aplicar campos electrostaticos a la sabana de grafeno es la generacion de un
desplazamiento de los conos de Dirac que es proporcional a la magnitud del campo V,. El

hamiltoniano para este caso estara dado por
Hy = ve(o - p) + V(x), (10)

donde V(x) =V, es el potencial unidimensional a lo largo del eje x. Tomando en cuenta la
region g, que es donde se induce un gap debido al campo aplicado, la solucion general a la
ecuacion de Dirac sera
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1 . .
0= (0, ) e (11)
Donde
hvp(Xqx+iqy)
vy = FE_—VOy, (12)

con una relacion de dispersién dada por

E —Vy = hvp,/q2 + q% = Thvgq, (13)

que también es de tipo lineal.

Pasemos ahora al método de la matriz de transferencia, para eso consideremos al SMG de
la figura 1. Coloquemos nuestro origen en x, = 0, entonces tomando en cuenta la conservacion
del momento transversal e imponiendo condiciones de continuidad a la funcion de onda de las
diferentes interfases a lo largo de la direccion x se puede obtener la relacidn entre los coeficientes
de las ondas incidentes reflejadas del lado izquierdo con las ondas transmitidas del lado derecho

mediante:

A _ _ ikxXN
(Bg) = Dy *(ITiL4 DD M) Dy (AN+1(e) >’ (14)

sin olvidar que estamos asumiendo que el medio final es igual al medio inicial y que al final de la

N-ésima barrera ya no habra onda reflejada por lo que By, ; = 0.

En la ecuacion (14) las matrices D; y P; dentro de la productoria, son las matrices dindmicas y de
propagacion, respectivamente, correspondientes a cada una de las regiones que forman el sistema

multicapas de grafeno, éstas ecuaciones acorde a nuestros resultados anteriores, se definen como

( 1 1 ) paral = 0,2,4,...,2N — 2 para la region k,
Uu_

1 1 (15)

( v ) paral = 1,3,5,...,2N — 1 para la regi6n q,
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y las matrices de propagacion

etkx(X21-2—%21-3) 0

0 elkx(X21-2—x21-3)
etkx(X21-1=%21-2) 0

0 etkx(*21-1—%21-2)

) paral =2/4,...,2N — 2 paralaregién k,

P = (16)

) paral =1,3,..,2N — 1 paralaregién q,

de la productoria y de las dimensiones de las matrices dindmicas y de propagacion podemos

definimos la matriz de transferencia de dimensiones 2 X 2 como
M = Dy *(ITiL, D,P,.D; 1) D, (17)

entonces podemos encontrar que la transmitancia de los electrones de Dirac a través del sistema

multicapas de grafeno, estara dada como

1 (18)

[Myq]%

Por lo tanto vemos que la transmitancia esta dada en funcion del elemento M;, de la matriz de
transferencia, lo que significa que para calcular la transmitancia es necesario conocer el elemento

matricial M.

La transmitancia nos permite calcular la conductancia en el régimen lineal directamente a

través del formalismo de Landauer-Blttiker (Datta 1995),

Gi = E; [% T(E}, 0)cos0do, (19)
0 2

2e%LyE,
hZUF

E , ' : ,
donde Ep = E—F es la energia de Fermi adimensional, con E, =V, =t", y G, = , €s el
0

factor fundamental de conductancia, con L,, el ancho del sistema en el eje transversal y, y 6 es el

angulo de incidencia de los electrones con respecto al eje x.

Por ultimo, para calcular el espectro de estados acotados, es necesario cambiar de
condiciones blandas a duras, es decir los anchos de la primer y Gltima barrera del SMG se

extienden hasta el infinito (Pereira 2006, 045424). La condicion para tener estados acotados es
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que el vector de onda de las barreras semi-infinitas sea imaginario puro es decir g, — ia, , de
aqui resulta una ecuacion trascendental entre la energia y el vector de onda transversal de los

electrones de Dirac como
ME(E, ky; gy » iay) =0, (20)
luego, utilizando el formalismo de la matriz de transferencia encontraremos que
M?® = DT ([11%" DR DDy, (21)

es la matriz de transferencia correspondiente al caso de estados acotados.

eo— AL i Vot il\’oc:::) il"oc’:b §3V0 E,

<> U&= U&= \|/]Jv.&<}>

(a)

(b)

- dB dW- dB dW- dB dW- dB Vo

Figura 2. Superred con potencial periddico sinusoidal creada por la aplicacion de potenciales electrostaticos.

Resultados

Los resultados obtenidos son para dos tipos de superredes con potencial periddico sinusoidal: una
superred creada por medio de potenciales electrostaticos (EGSLs, mostrada en la figura 2) y la
otra creada por medio de sustratos (SGSLs, mostrada en la figura 3). Por medio de la matriz de
transferencia se calcularon las propiedades de transmision, transporte y estructura electronica,
para anchos dw = dB = 50a, 100a y 200a, donde dw es el ancho de pozos y dB el de barreras,
a es la distancia carbono-carbono. Usamos los &ngulos de incidencia 6 = 0y /6 y una energia
de incidencia de 0.13 eV. Los altos de barrera son de 0.13 eV y para los pozos de —0.13 eV,

todo esto a diferente niUmero de barreras NB.
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Figura 3. Superred con potencial periddico sinusoidal creada por sustratos mixtos.

Empezaremos por mostrar los resultados para transmitancia como funcion de energia,
figura 4. Los pardmetros usados son NB =2,5y10, dw=dB =100a, y 0 =
0 (linea roja) y /6 (linea negra). Para EGSLs los espectros muestran que para un angulo de
incidencia normal la transmitancia es perfecta, sin importar el nimero de barreras. Por lo tanto
los electrones atraviesan las barreras como si éstas fueran transparentes. Entonces podemos
confirmar que el efecto Klein realmente aparece en superredes de este tipo. Sin embargo el caso
no es el mismo para SGSLs, pues se puede apreciar que el espectro de transmitancia tanto para
incidencia normal como a incidencia oblicua, es rico en estructura, y es notorio que los electrones
en este caso sienten la presencia del nimero de barreras y pozos. Ademas el efecto Klein no se da
en este tipo de superredes. Al aumentar el nimero de barreras el espectro de transmision a
incidencia oblicua para EGSLs se vuelve simétrico, pues la diferencia entre el nimero de barreras
y pozos es de 1. Caso contrario a SGSLs, donde el nimero de pozos casi es el doble que de
barreras y por lo tanto su espectro de transmision se vuelve asimétrico. La presencia de huecos es

importante para este andlisis.

Consideramos dos maneras de presentar la conductancia, la primera se muestra en la
figura 5, se variaron los anchos dw y dB, se tom6 como fijo el nUmero de barreras NB = 5.
Nuevamente la simetria y la asimetria en los espectros con respecto al origen de la energia es
evidente para EGSLs y SGSLs respectivamente, pero ahora para el aumento de los anchos.

También es apreciable el caracter oscilatorio de la conductancia con el aumento de los anchos.
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Ademas existe una gran diferencia entre la conductancia para EGSLs y SGSLs pues conforme

aumenta el ancho de las barreras y pozos, la conductancia se mantiene en los mismos érdenes de

Nova Scientia

magnitud para EGSLs. Caso contrario a SGSLs pues la region central de la curva crece con el

aumento de los anchos y por lo tanto la conductancia disminuye fuertemente.

EGSLs
LAY i
osl M (lf I
! ' |
| Il
06l |
0.4} || ‘ |
) Tal T NB=2
E0=0.13 eV SO Es=0.13 eV
0.0 | vo=-0.13 ev e "0 Vek=-0.13 eV
dw=dB=100a dw=dB=100a
10 e — — _
'.- “"i'" TR l" R TR
i Pl f 5
m OBF | | | | | | | i | i
G ‘ 1k Ll
g osf ‘ ‘ ) i 5
= | | {
E oal | ‘ 5
] | | l '
L g2lNB=s _ I
= Eo=0.13 eV | :in-:a ev
0.0 | Vok=-0.13 eV | =0 | youm043 eV
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m W i Wﬂ
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06} il
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0.0 |- Vok=0.13eV 1 1] broveaiaey |00 ELEE L | HIFEN
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-1.0 -0.5 0.5 1. El -1.0 -0‘,5
Energia (eV)

Figura 4. Transmitancia como funcién de la energia para EGSLs y SGSLs.

En la figura 6 se muestra la segunda representacion de la conductancia, ahora variamos el
numero de barreras y fijamos el anchos de las barreras y pozos a dw=dB=100a. Se pueden
observar cosas similares a las curvas de conductancia mostradas anteriormente, sin embargo lo
mas interesante es que con el aumento de los anchos el caracter oscilatorio es mucho mas

evidente.

Para una ilustracion mas explicita de las propiedades de transmision en los sistemas
EGSLs y SGSLs, la figura 7 muestra los contornos (E, 8) para anchos fijos dw = dB = 100a,
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en donde los ejes horizontal y vertical corresponden a la energia y al angulo de incidencia de los
electrones. Como se puede ver la columna de la izquierda muestra los resultados para EGSLs y la
columna derecha para SGSLs, la primer fila de resultados es para NB = 2, la segunda para NB =

5,y ladltimapara NB = 10.

EGSLs SGSLs
NB=5 dw=dB=50a | NB=5 dw=dB=50a
E0=0.13 eV E0=0.13 eV
3 FVok=-0.13 eV Vok=-0.13 eV
2k
1} N
ok ]
NB=5 dw=dB=100a | NB=5 dw=dB=100a
Eo=0.13 eV E0=0.13 eV
3FVok=-0.13 eV Vok=-0.13 eV
o 2
o
[&]
1k
I, _.'-IJ
}
o !
NB=5 dw=dB=200a | NB=5 dw=dB=200a
E0=0.13 eV Eo=0.13 eV
3 FVok=-0.13 eV Vok=-0.13 eV
4
2
1F
! i
A 1 _‘[{' A
n B ..." v
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

EF/Eo

Figura 5. Conductancia como funcion de la energia para EGSLs y SGSLs a diferentes anchos de barreras y pozos.

Una de las caracteristicas notables para EGSLs es la simetria de los contornos con
respecto del angulo de incidencia y la asimetria con respecto de la energia. Para SGSLs a simetria
permanece con respecto del angulo de incidencia pero no para la energia. Para analizar la
transmitancia los colores rojo y negro corresponden a transmitancia perfecta y nula
respectivamente. Para el sistema EGSLs, el caso NB = 2 no presenta resonancias y tampoco
zonas con transmitancia nula, sin embargo tales regiones aparecen conforme aumenta el nimero
de barreras. Un resultado notorio se da en la amplitud de la region central para angulos pequefios,
pues ésta se reduce con el aumento del niUmero de barreras pero nunca desaparece, debido a la

influencia del efecto Klein y a la preferencia por angulos pequefios, mostrando asi que la
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conductancia se mantiene. Para el sistema SGSLs, se presentan resultados similares, pero la
transmitancia es mas sensible al aumento del nimero de barreras, pues las regiones prohibidas de
energia es vuelve mas notoria. Las regiones de transmision perfecta desaparecen con al aumento

del nimero de barreras, lo que lleva a una disminucion notable en la conductancia.

EGSLs SGSLs
dw=dB=100a dw=dB=100a
E0=0.13 eV E0=0.13 eV
3 bvok=-0.13 eV Vok=-0.13 eV
2l
1b
o : NB=2 e NB=2
dw=dB=100a dw=dB=100a
E0=0.13 eV Eo=0.13 eV
3FVok=-0.13 eV Vok=-0.13 eV
o 2}
S
&)
1k
| '-||
J o\ ' A n
oF ' NB=5 ’ - NB=5
dw=dB=100a dw=dB=100a
Eo0=0.13 eV Eo=0.13 eV
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i
2} /
T q
h A
.,
: \ ."F vy ‘ A f
oF NB=10 - — — NB=10
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EF/Eo

Figura 6. Conductancia como funcidn de la energia para EGSLs y SGSLs a diferente nimero de barreras.

La figura 8, muestra otro contorno (E, @), ahora fijamos el numero de barreras NB = 5, donde
los anchos son dw = dB = 50a, para la primera fila, dw = dB = 100a para la segunday dw =
dB = 200a para la tercera. Nuevamente las simetrias en los contornos mencionadas

anteriormente tanto para EGSLs como para SGSLs se mantienen.

Para el sistema EGSLs, el efecto Klein se hace notar pues la region central a angulos
pequefios jamas desaparece con el aumento de los anchos. Tampoco desaparece la region de

transmitancia perfecta (region roja), porque se mantiene practicamente constante aunque
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aparezcan regiones de energia prohibida. Por lo tanto la conductancia disminuye muy poco

manteniéndose en los mismos 6rdenes de magnitud.

6/60

Figura 7. Diagrama de contorno, angulo en funcion de la energia para EGSLs y SGSLs con dw = dB =
100a para diferente nimero de barreras NB = 2,5,y 10 para la primer, segunda y tercer fila
respectivamente.

Para SGSLs, el contorno muestra mas estructura para huecos que para electrones, debido
al numero de barreras existentes para huecos, y como era de esperarse las regiones de
transmitancia nula son evidentes incluso a dw = dB = 50a. Con el aumento de los anchos tales
regiones se vuelven practicamente mas notorias, abarcando gran parte del espectro (el caracter
evanescente de las ondas rige en este tipo de estructuras). Junto con ello se presenta una
disminucion importante en la conductancia. Ademas la aparicion de resonancias es mas notable

para dw = dB = 200a, lo que concuerda con la aparicién de oscilaciones en la conductancia.
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6/60

E/Eo

Figura 8. Diagrama de contorno, angulo en funcién de la energia para EGSLs y SGSLs con NB =5y
con anchos dw = dB = 50a, 100a, y 200a para la primer, segunda y tercer fila respectivamente.

Para hablar méas explicitamente de las propiedades de transporte y explicar las
oscilaciones en la conductancia calculamos el espectro de estados acotados, mostrado en la figura
9. En este caso el grafico muestra la energia en funcién del momento transversal. Usamos
condiciones duras, por lo tanto ahora en vez de referirnos al numero de barreras estaremos
usando el nimero de pozos (Nw), fijandolo en Nw=4, para la primer fila dw = dB = 50a, para

la segunda dw = dB = 100a Y para la ultima fila dw = dB = 200a.
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Figura 9. Espectro de estados acotados para EGSLs y SGSLs con Nw = 4 y con anchos dw = dB =
50a, 100a, y 200a para la primer, segunda y tercer fila respectivamente.

Para el sistema EGSLs la apertura y cierre de minibandas ocurre practicamente a la

misma altura, desapareciendo la region de energia prohibida entre ellas, esto es mas notorio si

observamos la conductancia en la figura 5. Por ejemplo para dw = dB = 200a en el valor ? =

0

1, se puede apreciar un valle de conductancia casi nula pero jamas llega a cero, debido al efecto
Klein, y si volvemos al espectro de estados acotados el cierre de la minibanda mostrada antes del
valor de 0.13 eV ocurre de manera conjunta con la apertura de la minibanda mostrada después de
éste valor. Por lo tanto, cada apertura y cierre de minibanda en el espectro de estados acotados
corresponde a un pico principal de conductancia (donde nos referimos a pico principal al
formado por un aumento y disminucion fuerte). Sin embargo en cada pico principal existen
disminuciones y aumentos no tan prominentes en la conductancia correspondientes a la apertura 'y

cierre de cada una de las subbandas que forman la minibanda.
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En el caso del sistema SGSLs, las subbandas se degeneran, y al igual que EGSLs la
apertura y cierre de las minibandas ocurren a una misma energia con el aumento de los anchos
dw y dB. Ahora vayamos a la figura 5, podemos observar que para dw = dB = 50a, existen
unos picos muy cercanos al cero de energia, tales picos corresponden las subbandas que aparecen
cercanas al cero de energia en el espectro de estados acotados. Enseguida existe una conductancia

practicamente nula, y entre las subbandas existen regiones sin estados acotados. Ademas

. . . . E .
nuevamente aparece un pico principal en la conductancia alrededor de E—F = 1, relacionado con la
0

minibanda degenerada a la altura de la barrera en el espectro de estados acotados.

De igual manera podemos analizar el caso para dw = dB = 100a. La minibanda que aparece

poco antes del valor de 0.05 eV corresponde con el pico principal en la conductancia

aproximadamente en E—F = 0.4, enseguida el canal se cierra y se abre la siguiente minibanda
0

aproximadamente al nivel de la altura de la barrera, y nuevamente este caso coincide con los
picos en la conductancia y las oscilaciones alrededor de esta energia. Para dw = dB = 200a
existen unos picos de conductancia que no aparecen antes de 0.13 eV y que para este caso
corresponderian a las minibandas observadas en el espectro de estados acotados, pero no

aparecen debido a la precision de nuestros calculos. Las dos siguientes minibandas después del

. . .. . i
valor de 0.13 eV si corresponden con los picos principales que surgen después de E—F — b
0

Por lo tanto, entre las cosas importantes que encontramos es la degeneracion de las subbandas
para formar minibandas, caracteristica de las superredes, otra es la apertura y cierre de las mismas
para explicar la disminucién y aumento de la conductancia. Por lo tanto de manera cualitativa el

espectro de estados acotados fue necesario para explicar las propiedades de transporte.

Conclusiones

En conclusion, hemos estudiado las propiedades de transmision, transporte y estructura
electronica en superredes de grafeno, donde hemos considerado superredes con potencial
periddico sinusoidal o dicho de otro modo superredes con polaridad alternada. En particular se
llevd a cabo un andlisis comparativo de superredes creadas por medio de potenciales

electrostatico (presentan tunelaje Klein) y superredes creadas por medio de sustratos mixtos (no
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presentan tunelaje Klein). Empleamos el método de matriz de transferencia para el célculo de las
propiedades de transmision y espectro de estados acotados, mientras que para las propiedades de
transporte se utilizé el formalismo de Landauer-Blttiker. Los principales resultados que
encontramos, es que las propiedades de transmision transporte y estructura electronica pueden ser
moduladas facilmente ajustando los parametros de la superred. La transmitancia y conductancia
en el caso de EGSLs estan dominadas por el tunelaje Klein. Para el caso de SGSLs éstas
propiedades son muy sensibles al tamafio del sistema debido al caracter evanescente de los
electrones. Como parte importante de los resultados las oscilaciones encontradas en la
conductancia para ambas superredes EGSLs y SGSLs, pueden ser multiplicadas o reducidas en
namero modificando el ancho de las barreras y pozos, o reforzadas aumentando el nimero de
barreras en la estructura. La polaridad alternada trae como consecuencia que las propiedades de
transmision y transporte como funcion de la energia para EGSLs sean simétricas con respecto al
origen de la energia mientras que para SGSLs son asimétricas, esto debido a la influencia de
huecos en las estructuras. Por Gltimo se ha encontrado en investigaciones recientes que los picos
en la conductancia obedecen, en el caso de un pozo cuantico en grafeno (Rodriguez-Vargas
073711), a la apertura-cierre (degeneracion) de subbandas en el espectro de estados acotados. Sin
embargo en nuestros resultados esto se contrasta, pues los picos en la conductancia obedecen la
apertura-cierre de minibandas para ambos tipos de superredes, tanto EGSLs como SGSLs.
Ademas la polaridad alternada baja el nivel de energia de las subbandas, las degenera y origina

que la apertura-cierre (degeneracion) de minibandas sea en el mismo nivel.
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