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Resumen 
En este trabajo se presenta un nuevo modelo de clasificación de patrones, en modo supervisado, 

cuyo diseño y operación se basa en la función de Heaviside; este Clasificador de Heaviside es del 

tipo one shot, lo cual garantiza que el nuevo modelo carecerá de problemas de convergencia. 

 

Para lograr lo anterior, se proponen dos operaciones originales, llamadas L y C, en cuyo diseño 

interviene de manera relevante la función de Heaviside. La fase de aprendizaje de patrones del 

nuevo modelo está sustentada en la operación original L, mientras que la fase de clasificación de 

patrones descansa en la efectividad de la nueva operación C. 

 

Con objeto de fundamentar teóricamente el Clasificador de Heaviside, se enuncian y demuestran 

algunos lemas, teoremas y corolarios que exhiben propiedades relevantes de las nuevas 

operaciones, las cuales inciden directamente en el desempeño del nuevo modelo. 

 

En pruebas experimentales preliminares, cuyos resultados se incluyen en el presente artículo, se 

ha aplicado el Clasificador de Heaviside en algunos bancos de datos conocidos y utilizados por la 

comunidad académica internacional. El análisis de los datos generados en las pruebas 

experimentales, evidencian que el desempeño del nuevo modelo es competitivo, y en algunos 

casos superior, con respecto a modelos destacados en el estado del arte de temas afines a la 

Inteligencia Computacional, la Minería de Datos, el Reconocimiento y la Clasificación de 

Patrones (en modo de aprendizaje supervisado). 

 

Palabras Clave: Inteligencia Computacional, Aprendizaje Supervisado, Clasificación de 

Patrones, Función de Heaviside 
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Abstract 
 

In this work, a new pattern classification model, working in supervised mode, is presented. The 

design and operation of this model is based on the Heaviside function. Also, this Heaviside 

Classifier is of the one-shot kind, which guarantees that the new model will not have any 

convergence problem. 

 

In order to achieve the former, two original operations, called L and C, are proposed; the 

Heaviside function strongly intervenes in the design of these operations. The pattern learning 

phase of the new model is based on the original operation L, while the pattern classification phase 

relies on the effectiveness of the new operation C. 

 

With the goal of theoretically substantiating the Heaviside Classifier, some lemmas, theorems, 

and corollaries are stated and proved. These theorems exhibit relevant properties of the new 

operations, which in turn affect directly the performance of the new model. 

 

In preliminary experimental tests, included in this paper, the Heaviside Classifier has been 

applied to some data sets known and used by the international academic community. The data 

obtained from the experimental tests show that the new model performance is competitive, and in 

some cases superior, with respect to outstanding models in the state of the art on topics related to 

Computer Intelligence, Data Mining, Pattern Recognition, and Pattern Classification (in the 

supervised learning mode). 

 

Keywords:  Computational Intelligence, Supervised Learning, Pattern Classification, Step Unit 

Function. 
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Introducción 

La creación y desarrollo de algoritmos inteligentes tiene relevancia en áreas tales como el 

Reconocimiento y Clasificación de Patrones, la Minería de Datos y la Inteligencia Computacional 

(Theodoridis y Koutrombas 2009, 7). 

 

Son cuatro las tareas principales asociadas con los algoritmos inteligentes: recuperación, 

regresión, clasificación y agrupamiento; las tres primeras tareas se ubican en el paradigma de 

aprendizaje supervisado, mientras que la última se asocia con el aprendizaje no supervisado 

(Duda, Hart y Stork 2000, 12). 

 

Dado un algoritmo específico, la base matemática que se incluye en su diseño y operación 

determina el enfoque al que pertenece. Por ejemplo, hay algoritmos que se basan en el concepto 

de métrica y en las propiedades de los espacios métricos para hacer la clasificación de los 

patrones (Cover 1967, 23); de igual manera, han surgido clasificadores basados en el enfoque 

estadístico-probabilístico, los cuales están basados en el teorema de Bayes (Marques de Sá 2001, 

90); y de forma similar, existen clasificadores creados a partir del enfoque neuronal, cuya base 

conceptual consiste en modelos matemáticos de la neurona del cerebro humano (Du y Swami 

2014, 10). Estos son sólo algunos ejemplos de la gran variedad de enfoques que existe para 

reconocer y clasificar patrones; hay muchos más. 

 

Cada enfoque tiene sus prototipos. Por ejemplo, el Clasificador Bayesiano es el algoritmo más 

conocido en el enfoque estadístico-probabilístico, mientras que el Perceptrón Multicapa es el 

prototipo del enfoque neuronal. Al enfoque basado en métricas pertenece uno de los 

clasificadores más eficaces, no obstante su simplicidad: el clasificador basado en los vecinos más 

cercanos (k-NN, por k-Nearest Neighbor). Sin embargo, la mayoría de los algoritmos comparten 

características de más de un enfoque y de otras áreas de la ciencia. Lo anterior es notorio en las 

máquinas de soporte vectorial (SVM, siglas de Support Vector Machines), en cuyo algoritmo 

interviene de manera importante el concepto de optimización: las SVM maximizan el margen 

entre los patrones en el límite de las clases (estos patrones son llamados vectores de soporte) 

(Cortes y Vapnik 1995, 275). 
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La propuesta del presente artículo se enfoca en la tarea de clasificación supervisada de patrones; 

por ello, se asume que se cuenta con un banco de patrones divididos previamente en clases o 

etiquetas. El modelo aquí propuesto se ubica en el enfoque asociativo de clasificación de patrones 

(Yáñez Márquez 2002, 30). Al igual como sucede en los demás enfoques, éste también posee una 

base conceptual que rige el diseño y operación de los algoritmos: aquí, la base conceptual 

consiste en el establecimiento de asociaciones entre patrones, a través de la aplicación de entes 

matemáticos específicos para cada algoritmo. 

 

El ente matemático que se ha elegido para el diseño y operación del modelo aquí propuesto, es la 

función de Heaviside (Abramowitz y Stegun 1972, 1020). Así, en este artículo se propone un 

nuevo modelo de clasificación de patrones, en modo supervisado, cuyo diseño y operación se 

basa en la función de Heaviside; este Clasificador de Heaviside es del tipo one shot, lo cual 

garantiza que el nuevo modelo carecerá de problemas de convergencia. 

 

El resto del artículo está organizado como sigue: en la segunda sección se presenta un resumen 

conciso del surgimiento y desarrollo del enfoque asociativo de clasificación de patrones, a fin de 

contextualizar el modelo aquí propuesto. Tomando como base este contenido, en la sección 

tercera se describe y fundamenta, a través de lemas, teoremas y corolarios, el Clasificador de 

Heaviside. La cuarta sección, Resultados experimentales, es importante porque da soporte 

experimental al nuevo modelo, justificando así su inclusión en el estado del arte. 

Inmediantamente después, se incluye la relevante sección de Discusión y conclusiones, para 

finalmente cerrar con las Referencias. 

 

Enfoque asociativo del reconocimiento y clasificación de patrones 

¿Cuántas veces nos sucede que no podemos recordar la melodía o la letra de una canción de 

nuestro agrado? Sin embargo, en el mismo instante en que escuchamos un pequeño trozo de la 

melodía o un fragmento de la letra, somos capaces de recordar la melodía o la letra completas de 

la canción en cuestión, sin esfuerzo adicional. Similarmente, los seres humanos somos capaces de 

reconocer el rostro de una persona, no obstante que sólo veamos una parte de la cara, o que la 

persona se haya puesto peluca o lentes, o se haya quitado la barba o el bigote, por ejemplo. 
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En relación con este tipo de habilidades, se dice que la mente humana es asociativa (Anderson y 

Rosenfeld 1990, 271); esto significa que los seres humanos poseemos memoria asociativa, dado 

que podemos recordar, mediante asociaciones, lo que hemos aprendido. Esto ocurre con objetos, 

seres vivos, conceptos e ideas abstractas, incluso cuando hay contaminación o alteración (como 

en el caso de los rostros con lentes o sin barba, o las melodías incompletas). 

 

Algunos grupos de investigación se interesan en crear modelos matemáticos que se comporten 

como memorias asociativas. Con base en esos modelos, se crean, diseñan y operan sistemas 

(software o hardware) que sean capaces de aprender y recordar objetos, seres vivos, conceptos e 

ideas abstractas. Para lograr lo anterior, es preciso representar esos objetos o ideas como 

patrones, lo cual se realiza usualmente a través de vectores columna de dimensión finita con 

valores reales, o racionales, o enteros, o booleanos, o mezclas de algunos de ellos (Uriarte-Arcia, 

López-Yáñez y Yáñez-Márquez 2014, 4). 

 

Típicamente, un modelo asociativo clasificador de patrones consta de dos fases: aprendizaje y 

clasificación. Si kA  es un patrón perteneciente al conjunto de entrenamiento que pertenece a la 

clase k, la fase de aprendizaje se esquematiza de la siguiente manera (Figura 1): 
 

 
 
 

 
 

Figura 1. Fase de aprendizaje de un modelo asociativo. 

Cuando el modelo asociativo ha concluido la fase de aprendizaje, ya está listo para clasificar 

patrones de clase desconocida. Si 'A  es un patrón cuya clase se desconoce, la fase de 

clasificación del modelo asociativo se esquematiza así (Figura 2): 

 

 
 

 

 

Figura 2. Fase de clasificación de un modelo asociativo. 

Modelo 
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 Clase (k) 
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El primer modelo matemático de memoria asociativa de que se tiene noticia es la Lernmatrix de 

Steinbuch, desarrollada en 1961 por el científico alemán Karl Steinbuch (Steinbuch 1961, 39); no 

obstante la importancia de su modelo y las potenciales aplicaciones, el trabajo pasó casi 

inadvertido. El siguiente modelo de memoria asociativa surgió 8 años después: en 1969, tres 

científicos escoceses crearon el Correlograph, el cual es un dispositivo óptico elemental capaz de 

funcionar como una memoria asociativa. En palabras de los autores "el sistema es tan simple, que 

podría ser construido en cualquier laboratorio escolar de física elemental" (Willshaw, Buneman y 

Longuet-Higgins 1969, 961). 

 

El año de 1972 fue testigo de la generación de cuatro nuevos modelos asociativos relevantes. Al 

inicio del año, James A. Anderson de la UCLA publicó su Interactive Memory (Anderson 1972, 

202); en abril, Teuvo Kohonen, profesor de la Helsinki University of Technology, presentó ante 

el mundo sus Correlation Matrix Memories (Kohonen 1972, 355); tres meses después, Kaoru 

Nakano de la University of Tokyo, dio a conocer su Associatron (Nakano 1972, 382); y en el 

ocaso del año, Shun-Ichi Amari, profesor de la University of Tokyo, publicó un trabajo teórico 

donde continuaba con sus investigaciones sobre las Self-Organizing Nets of Threshold Elements 

(Amari 1972, 1200). Los trabajos de Anderson y Kohonen, en conjunto, dieron lugar al Linear 

Associator. 

 

Si 1972 fue el año de los pioneros en el área de las memorias asociativas, 1982 fue el año del 

científico estadounidense John J. Hopfield. Su artículo de ese año publicado por la National 

Academy of Sciences, impactó positivamante y trajo a la palestra internacional su modelo 

asociativo (Hopfield 1982, 2556). La razón es que el modelo Hopfield, que funciona como una 

red neuronal y también como una memoria asociativa, impulsó de nuevo al área de las redes 

neuronales, después de sufrir más de una década de estancamiento. 

 

Los trabajos de Hopfield causaron excitación en el mundo de las memorias asociativas y las redes 

neuronales, y las actividades de investigación en el área se incrementaron. No obstante la 

cantidad de nuevos modelos propuestos después del éxito de la memoria Hopfield de 1982, no 

sucedió nada realmente trascendente hasta 1998, cuando aparecieron las memorias asociativas 

morfológicas (Ritter, Sussner y Diaz-de-Leon 1998, 286). La diferencia fundamental entre estos 
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modelos y las memorias asociativas clásicas como el Linear Associator y la Memoria Hopfield, 

es que mientras éstas basan su operación en la suma y multiplicación usuales, las memorias 

morfológicas se basan en las operaciones morfológicas de dilatación y erosión. Los modelos 

morfológicos rompieron el esquema utilizado a través de los años en los modelos clásicos, que 

utilizan operaciones convencionales entre vectores y matrices para la fase de aprendizaje, y suma 

de productos para recuperar patrones. 

 

Las memorias asociativas morfológicas usan máximos o mínimos de sumas para la fase de 

aprendizaje, y máximos o mínimos de sumas para la fase de recuperación. Con este nuevo 

esquema, superaron claramente a las memorias asociativas clásicas. 

 

La aparición, desarrollo, aplicaciones y consolidación de las memorias asociativas morfológicas 

en 1998 marcó un hito en el campo de las memorias asociativas, porque superaron en 

prácticamente todos los aspectos de interés, de súbito, a los modelos conocidos. Este hecho se 

convirtió en una fuerte motivación para la creación y desarrollo de las memorias asociativas Alfa-

Beta, en México, durante el año 2002 (Yáñez Márquez 2002, 301). 

 

Las memorias asociativas Alfa-Beta constituyen un modelo alternativo a las memorias 

asociativas morfológicas. Los entes matemáticos que sustentan a los modelos Alfa-Beta incluyen 

dos operaciones binarias inventadas ex profeso, cuyos operadores fueron bautizados 

arbitrariamente con las dos primeras grafías del alfabeto griego: Alfa y Beta. Alfa se usa en la 

fase de aprendizaje, y Beta en la fase de clasificación. 

 

Sean los conjuntos { }0,1W =  y { }0,1,2Y = . Los operadores Alfa(α) y Beta(β) se definen en 

forma tabular, como se ilustra en las siguientes tablas: 
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:W W Yα × →  

Tabla 1. Operación alfa. 

𝒘𝒘 ∈ 𝑾𝑾 𝒚𝒚 ∈ 𝑾𝑾 𝜶𝜶(𝒘𝒘,𝒚𝒚) 

0 0 1 
0 1 0 
1 0 2 
1 1 1 

 
 

:Y W Yβ × →  

Tabla 2. Operación beta. 

𝒚𝒚 ∈ 𝒀𝒀 𝒘𝒘 ∈ 𝑾𝑾 𝜷𝜷(𝒚𝒚,𝒘𝒘) 
0 0 0 
0 1 0 
1 0 0 
1 1 1 
2 0 1 
2 1 1 

 

A más de una década de su creación, los modelos Alfa-Beta se han consolidado, y las actividades 

del Grupo de Investigación Alfa-Beta giran en torno a estos modelos, sus extensiones y sus 

aplicaciones. El enclave académico del Grupo es el Centro de Investigación en Computación del 

Instituto Politécnico Nacional, y los nuevos modelos basados en los operadores originales se 

desarrollan como tesis de doctorado en ciencias de la computación, además de que se generan 

publicaciones nacionales e internacionales en revistas arbitradas. 

 

Así se han creado, entre otros modelos, las redes neuronales Alfa-Beta sin pesos (Argüelles Cruz 

2007, 37), los modelos Alfa-Beta difusos (Sánchez Garfias 2009, 33) y las memorias asociativas 

Alfa-Beta bidireccionales (Acevedo-Mosqueda, Yáñez-Márquez y López-Yáñez 2007, 25). 

Tomando como base los operadores Alfa y Beta originales, se creó el Clasificador Gamma, en 

cuyo algoritmo interviene un código especial diseñado también en el seno del Grupo: el código 

Johnson-Möbius (López-Yáñez, Argüelles-Cruz, Camacho-Nieto y Yáñez-Márquez 2011, 696). 
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El advenimiento del algoritmo del Clasificador Gamma abrió una veta muy interesante de nuevas 

aplicaciones de éste y de algunos algoritmos híbridos Alfa-Beta. Se exploran áreas de aplicación 

tan disímbolas como la predicción de contaminantes atmosféricos y los componentes de polución 

arrojados por el escape de un automóvil, procesos de predicción en ingeniería de software, 

detección de fracturas craneales en radiografías, reconocimiento de conceptos en lattices y 

reconocimiento de voz emotiva, entre otras. 

 

Recientemente, los modelos asociativos Alfa-Beta han arrojado resultados muy prometedores al 

realizar predicciones en series de tiempo correspondientes a la producción de pozos petroleros 

(López Yáñez, Sheremetov y Yáñez Márquez 2014, 25); lo mismo que en el diseño e 

implementación de sistemas de soporte para la toma de decisiones en el ámbito médico (Aldape-

Pérez, Yáñez-Márquez, Camacho-Nieto y Argüelles-Cruz 2012, 289). 

 

El Grupo Alfa-Beta está innovando constantemente. En este contexto, se ha iniciado un conjunto 

de proyectos y actividades de investigación que involucran la fusión o extensión de los 

operadores Alfa y Beta con algunas funciones especiales. Es el caso de la función de Heaviside, 

cuando el primer autor de este artículo se percató de que con esta función era posible representar 

extensiones de los operadores Alfa y Beta, más allá del sistema binario. 

 

Mediante un proceso inductivo, se procedió a realizar experimentos de aprendizaje y clasificación 

de patrones en el sistema numérico de base 3, luego en el de base 4 y después en el de base 5. Los 

resultados fueron buenos, porque en algunos casos el desempeño de los nuevos clasificadores era 

superior al modelo original en binario. 

 

Acto seguido, el equipo de investigación procedió a generar las expresiones para las fases de 

aprendizaje y clasificación de patrones, extendido a un sistema numérico de base b, donde b es un 

entero mayor que 1. A partir de los buenos resultados, se procedió a crear un nuevo modelo 

clasificador de patrones basado en la función de Heaviside: el Clasificador de Heaviside, cuya 

descripción y fundamentación matemática, a través de lemas, teoremas y corolarios, se presenta a 

continuación. 
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Algunas hipótesis acerca del modelo propuesto 

El modelo que se está proponiendo es del tipo one shot, y por ello la clasificación se realiza en un 

solo paso. Una premisa que subyace al presente trabajo, es que esta característica permitirá 

superar las limitaciones que exhiben los modelos del estado del arte, los cuales en su mayoría son 

iterativos. 

 

Hipótesis 1.- Dado que el Clasificador de Heaviside es supervisado, se asume que se tiene 

acceso a un banco de patrones clasificado previamente en un número finito de clases, al estilo de 

los que se incluyen en el prestigioso repositorio de la UCI (Lichman,2013). 

 

Hipótesis 2.- Los patrones pueden ser representados como vectores de dimensión finita, 

cuyas componentes son números reales. Si hay números negativos, es posible aplicar una 

transformación para obtener sólo componentes reales no negativas. Además, es posible truncar o 

redondear estos números reales no negativos, a fin de obtener vectores de dimensión finita con 

componentes racionales no negativas; estos valores se representan mediante números racionales 

que contienen un número no negativo y un número finito de decimales. 

 

Hipótesis 3.- Es posible encontrar un escalamiento que permita transformar esas 

componentes racionales con un número finito de decimales, en números enteros no negativos. 

La tres hipótesis previas permiten transformar el banco de datos original en un banco de 

vectores de cardinalidad finita y de dimensión finita, cuyas componentes son números enteros no 

negativos. De aquí se desprende la siguiente, y última, hipótesis. 

 

Hipótesis 4.- Es posible representar cada una de las componentes de los vectores del 

banco transformado, en términos de un sistema numérico posicional de base b, donde b es un 

número entero mayor que 1.  

 

Después de aplicar al banco de datos original los procesos operativos involucrados en cada una 

de las hipótesis previas, se tendrá disponible un banco de vectores con componentes enteras no 
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negativas. La representación simbólica de estas componentes enteras no negativas, se realizará 

respecto de una base b de algún sistema numérico posicional. 

 

Para ilustrar un poco lo mencionado en las hipótesis anteriores, considérese el siguiente conjunto 

de patrones, en donde cada fila representa un patrón diferente: 

 

 

El valor mínimo del patrón 1 es -2.88889, al restar este valor al patrón obtenemos el siguiente 

patrón transformado: 

 
3.111112 2.962964 3.851853 2.88889 5.77778 2.88889 0 8.66667 0 5.77778 3.88889 0.79449 

 
En el patrón 2 el valor mínimo es -16.6667; al restar este valor de las componentes del patrón se 

obtiene lo siguiente: 

 
18.6667 19.11114 39.7778 38.3334 46.7778 34.2223 12.33337 37.6667 0 46.7778 17.082224 14.92596 

 
En el patrón 3 el valor mínimo es -22.6667; al restar este valor de las componentes del patrón se 

obtiene el siguiente patrón transformado: 

 
28.33337 28.45941 81 74.5556 95 73.4445 3.3334 64.6667 0 95 22.966354 20.63083 

Finalmente, en el patrón 4 el valor mínimo es -9.11111; al restar este valor del patrón se obtiene 

el siguiente patrón transformado: 

 
10.72222 11.52963 24.03701 21.00001 22.88891 28.22221 0 5.66667 21.66671 28.22221 9.497566 11.47326 

 
Por lo tanto, el banco de datos transformado queda de la siguiente forma: 

 
3.111112 2.962964 3.851853 2.88889 5.77778 2.88889 0 8.66667 0 2.88889 3.88889 0.79449 

18.6667 19.11114 39.7778 38.3334 46.7778 34.2223 12.33337 37.6667 0 46.7778 17.082224 14.92596 

0.222222 0.074074 0.962963 0 2.88889 0 -2.88889 5.77778 -2.88889 2.88889 1 -2.0944 

2 2.44444 23.1111 21.6667 30.1111 17.5556 -4.33333 21 -16.6667 30.1111 0.415524 -1.74074 

5.66667 5.79271 58.3333 51.8889 72.3333 50.7778 -19.3333 42 -22.6667 72.3333 0.299654 -2.03587 

1.61111 2.41852 14.9259 11.8889 13.7778 19.1111 -9.11111 -3.44444 12.5556 19.1111 0.386456 2.36215 
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28.33337 28.45941 81 74.5556 95 73.4445 3.3334 64.6667 0 95 22.966354 20.63083 

10.72222 11.52963 24.03701 21.00001 22.88891 28.22221 0 5.66667 21.66671 28.22221 9.497566 11.47326 

 
Al revisar el banco de datos transformado se obtiene que el máximo número de dígitos decimales 

que tienen las componentes es de 6, por lo tanto todas las componentes de todos los patrones del 

banco de datos serán multiplicadas por 106. El banco de datos resultante queda de la siguiente 

forma: 

 
3111112 2962964 3851853 2888890 5777780 2888890 0 8666670 0 5777780 3888890 794490 

18666700 19111140 39777800 38333400 46777800 34222300 12333370 37666700 0 46777800 17082224 14925960 

28333370 28459410 81000000 74555600 95000000 73444500 3333400 64666700 0 95000000 22966354 20630830 

10722220 11529630 24037010 21000010 22888910 28222210 0 5666670 21666710 28222210 9497566 11473260 

 
El banco de datos ha quedado en términos de números enteros no negativos, lo cual satisface las 

primeras tres hipótesis. A partir de esta representación es posible transformar las componentes, y 

por lo tanto el banco de datos, en términos de un sistema numérico base b en donde b>1, lo cual 

satisface la hipótesis 4. 

 

La función de Heaviside y los métodos de validación 

Aquí es donde entra de lleno la Función de Heaviside. No obstante que en la literatura de las 

funciones especiales la Función de Heaviside aparece definida de diversas maneras, en este 

trabajo se adoptará la definición incluida en una de las referencias más relevantes y respetadas en 

el área: el Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical 

Tables de Abramowitz y Stegun (Abramowitz y Stegun 1972, 1020), la cual es avalada por 

importantes obras como (Bracewell 2000, 61). 

 

Definición 1: Sea x un número real. La Función de Heaviside de x se define mediante la 

siguiente expresión: 





≤
>

=
00
01

)(
xsi
xsi

xH  

 

Asumiendo que ya se cuenta con un banco de vectores con componentes enteras no negativas (al 

que llamaremos B), representadas éstas respecto de una base b de algún sistema numérico 
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posicional, se procede a aplicar un método de validación estándar, tal como hold-out, leave-one-

out o k-fold-cross-validation (el cual es implementado normalmente con el parámetro k=10) 

(Witten y Frank 2011, 152). 

 

De la aplicación de uno de estos métodos de validación de modelos en el banco de vectores B, se 

obtienen dos conjuntos de patrones, mutuamente exclusivos: el conjunto de aprendizaje (al que se 

denominará A) y el conjunto de prueba (que se nombrará como P) cuya unión es, precisamente, 

el conjunto B. 

 

Operaciones originales L y C 

Para su funcionamiento, el Clasificador de Heaviside consta de dos operaciones originales: una 

para la fase de aprendizaje (a la que llamamos L) y otra para la fase de clasificación de patrones 

(a la que llamamos C). 

 

Considerando que el modelo de esta propuesta trabaja con operaciones propias de las lattices y 

estructuras algebraicas ordenadas (Blyth 2005, 20), existen dos modos operativos del Clasificador 

de Heaviside: el modo que corresponde al supremo (HS) y el modo que corresponde al ínfimo 

(HI). 

 

Mientras que la operación de aprendizaje L es igual para ambos modos, no sucede lo mismo con 

la operación de clasificación C, la cual varía con cada modo; específicamente, para el modo HI se 

ocupa sólo uno de los términos de la operación genérica C. 

 

Nota 1: Dado que el modo HS es el dual del modo HI, en este artículo sólo se describe lo 

concerniente al modo HI; el modo HS se puede obtener por dualidad. 

 

Definición 2: Si k
j

k
i AyA  son la i-ésima y la j-ésima componentes del k-ésimo patrón del 

conjunto A de aprendizaje, respectivamente, y si k
jij PyM  son la ij-ésima componente del 

modelo del Clasificador de Heaviside M y la j-ésima componente del k-ésimo patrón del conjunto 
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P de prueba, respectivamente, el modo operativo HI del Clasificador de Heaviside utiliza las 

siguientes operaciones de aprendizaje y clasificación de patrones: 

 

)]1()[()]([),( +−+⋅++= k
j

k
i

k
j

k
i

k
j

k
i AbAbAAHAAL  

)]()1[()]()12[()]()2[(),( k
jij

k
jij

k
jij

k
jij PbMPMbHPbMHPMC −−+⋅+−−⋅−−+=

 

Definición 3: Sean dk AyA  dos patrones que pertenecen al conjunto de aprendizaje A en 

un Clasificador de Heaviside en modo operativo HI. Se define el producto externo bajo L de 

ambos patrones, y se denota como dk AA , a una matriz cuya ij-ésima componente se calcula así: 

),( d
j

k
i AAL  

Siendo d
j

k
i AyA  la i-ésima y la j-ésima componentes del k-ésimo y d-ésimo patrón del conjunto 

A de aprendizaje, respectivamente. 

 

Nota 2: Si la dimensión de los patrones de A es n, entonces el producto externo bajo L es 

una matriz de dimensiones nxn. 

Nota 3: Es posible que k=d. 

 

Fases de aprendizaje y clasificación de patrones 

Definición 4: Fase de Aprendizaje. La ij-ésima componente del modelo del Clasificador 

de Heaviside M, en modo operativo HI dado un conjunto de aprendizaje A, se define por la 

siguiente expresión: 

),(min k
j

k
iij AALM =  

Nota 4: El valor mínimo se toma con respecto al índice k, que va de 1 a card(A). 

 

Definición 5: Fase de Clasificación. Sea M un Clasificador de Heaviside en modo 

operativo HI, y sea dP  un patrón del conjunto de prueba P de dimensión n; la clase que se le 

asigna a este patrón es la clase del patrón que se recupera al realizar la siguiente operación con la 

que se obtiene la i-ésima componente del patrón recuperado R: 
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)],(max[ d
jiji PMCR =  

 

Nota 5: El valor máximo se toma con respecto al índice j, que va de 1 a n. 

Nota 6: Por definiciones 4 y 5, se tiene: )]),,((minmax[ d
j

k
j

k
ii PAALCR =  

 

Fundamentación teórica del Clasificador de Heaviside 

Con base en las definiciones previas, se diseñaron y se demostraron los lemas, teoremas y 

corolarios que describen teóricamente el funcionamiento del Clasificador de Heaviside, sus 

alcances y sus limitaciones. 

 

Teorema 1.- Sea Zb∈  tal que 1>b , entonces Zx∈∀  tal que 10 −≤≤ bx  se cumple 
1),( −= bxxL . 

Demostración: 

Por hipótesis y por la definición 1 se tiene: 

1)2(][ =+=++ bxHbxxH , dado que 02 >≥+ bbx  

Y además se cumple que: 1]1[][ −=+−+ bxbx  

Al realizar las operaciones, resulta lo siguiente: 

1)1()1()]1()[()]([),( −=−⋅=+−+⋅++= bbxbxbxxHxxL  
q.e.d. 

 

Corolario 1.1: 

Sea Zb∈  tal que 1>b . Si 0== k
j

k
i AA  entonces 1),( −= bAAL k

j
k
i . 

Demostración: 

Dado que se cumple la hipótesis del Teorema 1, éste se puede aplicar directamente, haciendo 

x=0: 

1),()0,0( −== bxxLL  

q.e.d. 

 

 

Revista Electrónica Nova Scientia, Nº 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 365 – 397 
- 380 -                                            



Clasificador de Heaviside 
 

Corolario 1.2: 

Sea Zb∈  tal que 1>b . Entonces 1)0,0()1,1( −==−− bLbbL . 

Demostración: 

Dado que se cumple la hipótesis del Teorema 1, éste se puede aplicar directamente, haciendo 

x=b-1: 

)0,0(1),()1,1( LbxxLbbL =−==−−  

q.e.d. 

 

Lema 1.- Un Clasificador de Heaviside M en modo operativo HI contiene sólo valores b-

1 en su diagonal principal. 

Demostración: 

De acuerdo con la definición 4, las entradas de la diagonal principal de M se calculan con la 

siguiente expresión: 

),(min k
i

k
iii AALM =  

Pero por el Teorema 1, el valor de 1),( −= bAAL k
i

k
i  es constante y no depende del índice k; por 

ello, se tiene 1),(),(min −=== bAALAALM k
i

k
i

k
i

k
iii  para todo valor de i. 

q.e.d. 

 

Lema 2.- Sea Zb∈  tal que 1>b , y sean Zyx ∈,  tales que 10 −≤≤ bx  y 10 −≤≤ by

. Entonces se cumple la siguiente expresión: xyyxLC =]),,([ . 

 

Demostración: 

Por definición 2: 

1)]1()[()1()]1()[()]([),( −−+=+−+⋅=+−+⋅++= ybxybxybxbyxHyxL  

)]()1),([()]),(()12[()]()2),([(]),,([ ybyxLyyxLbHybyxLHyyxLC −−+⋅+−−⋅−−+=  

Por otro lado: 

1]1[]21[)]()21[()]()2),([( =+=+−+−−+=−−+−−+=−−+ xHybybxHybybxHybyxLH
1][)]112[)]),(()12[( =−=−++−−−=+−− xbHyybxbHyyxLbH  

xybybxybyxL =+−+−−+=−−+ 11)()1),((  
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Sustituyendo en la expresión de C: 

xxyyxLC =⋅⋅= )()1()1(]),,([  

q.e.d. 

 

Lema 3.- Sea M un Clasificador de Heaviside en modo operativo HI, y sea dA  un patrón 

del conjunto de aprendizaje A, entonces: 
d
i

d
jiji AAMCR ≤= )],(max[  

Demostración: 

Por definición 4, se tiene que: 

),(min k
j

k
iij AALM =  

Pero es claro que para cualquier valor fijo d del índice k se cumple la siguiente desigualdad: 

),(),(min d
j

d
i

k
j

k
i AALAAL ≤  

Aplicando la operación C con d
jA  en ambos lados de la desigualdad y tomando el máximo con 

respecto al índice j: 

]),,([max]),,([minmax d
j

d
j

d
i

d
j

k
j

k
i AAALCAAALC ≤  

Por nota 6, se tiene que si dd AP = : 

)]),,((minmax[ d
j

k
j

k
ii AAALCR =  

Y por transitividad con la expresión previa: 

]),,([max d
j

d
j

d
ii AAALCR ≤  

Por Lema 2, se tiene el resultado, porque max es con respecto al índice j, no al i: 
d
ii AR ≤  

q.e.d. 

 

Lema 4.- Sea M un Clasificador de Heaviside en modo operativo HI, y sea dA  un patrón 

del conjunto de aprendizaje A, entonces: 
d
ii AR ≥  
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Demostración: 

Al hacer j=i en la expresión )],(max[ d
jiji AMCR =  se tiene:  

),()],(max[ d
iii

d
jiji AMCAMCR ≥=  

Pero por Lema 1, para cualquier valor de k (incluyendo d) se tiene:  

),(1),(),(min d
i

d
i

k
i

k
i

k
i

k
iii AALbAALAALM =−===  

Por lo que: 

)),,(( d
i

d
i

d
ii AAALCR ≥  

Y finalmente, por Lema 2: 
d
ii AR ≥  

q.e.d. 

 

Teorema 2.- Un Clasificador de Heaviside M en modo operativo HI, clasifica 

correctamente cualquier patrón dA  del conjunto de aprendizaje A. 

 

Demostración: 

Por Lemas 3 y 4, para un valor de índice de patrón fijo d, se cumplen simultáneamente estas dos 

desigualdades: d
ii AR ≤  y d

ii AR ≥  para todos los valores del índice i, el cual representa la 

dimensión de los patrones de aprendizaje. 

 

Las dos desigualdades simultáneas equivalen a la igualdad dd AR = , por lo que el patrón 

recuperado es precisamente dA  , lo cual significa que se le asigna su propia clase; es decir, es 

clasificado correctamente. 

q.e.d. 

 

En el teorema 2 el índice d se fijó arbitrariamente, por lo que la conclusión es válida para 

cualquier patrón del conjunto de aprendizaje A.  
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De aquí surge una conclusión MUY RELEVANTE, en relación con el funcionamiento del 

Calsificador de Heaviside en modo operativo HI: EL CLASIFICADOR DE HEAVISIDE EN 

MODO OPERATIVO HI CLASIFICA CORRECTAMENTE TODOS LOS PATRONES 

DEL CONJUNTO DE APRENDIZAJE. 

 

¿Por qué es tan relevante esta conclusión? Por la sencilla razón de que, entre la miríada de 

algoritmos inteligentes para clasificación de patrones que existen en el estado del arte, sólo una 

mínima cantidad de ellos clasifican correctamente todo el conjunto de aprendizaje. 

 

Para el modo operativo HS del Clasificador de Heaviside, es posible demostrar un teorema 

similar, lo que potencia fuertemente las bondades y alcances del nuevo modelo. 

 

Pero este Clasificador también posee limitaciones, como cualquier obra del quehacer humano, en 

los ámbitos cotidiano, artístico, educativo, industrial o científico: por ejemplo, ¿qué ocurre si el 

conjunto de aprendizaje A contiene patrones con diferentes dimensiones? Pues ocurre que al 

tomar los máximos sobre el índice j de la dimensión, las operaciones fallarían rotundamente y los 

teoremas 1 y 2 no se cumplirían. 

 

Una manera adecuada, además del método basado en la teoría matemática, de visualizar los 

alcances y limitaciones de este modelo, es la realización de experimentos con patrones extraídos 

de la realidad cotidiana del quehacer humano, en sus diferentes ámbitos. 

 

Resultados experimentales 

Se hizo un estudio comparativo entre el modelo de clasificación propuesto contra nueve 

clasificadores reconocidos en el estado del arte del Reconocimiento de Patrones, los modelos 

comparados fueron los siguientes: 

 

1. Memorias Morfológicas Min (Ritter, Sussner, y Diaz-de-Leon, 1998, p. 285) (este modelo 

de memorias asociativas se basa en las dos operaciones básicas de la morfología 

matemática), 
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2. Clasificador 1NN (Cover y Hart, 1967, p. 21) (este clasificador asigna a los patrones de 

prueba la clase del vecino más cercano a partir de una función de distancia), 

3. K-NN con K=3 (Duda, Hart, y Stork, 2001, p. 177) (este modelo asigna  a los patrones de 

prueba la clase mayoritaria entre sus tres vecinos más cercanos, en caso de tener un 

empate la clase será asignada de forma aleatoria), 

4. Naïve Bayes (Duda, Hart y Stork, 2001, p. 52) (este modelo de clasificación está basado 

en la teoría de la probabilidad, se asigna la clase que sea considerada como la más 

probable a partir del patrón de entrada), 

5. Perceptrón Multicapa (Rumelhart, Hinton, y Williams, 1986, p. 533) (uno de los modelos 

de redes neuronales feedforward más conocidos en donde se utiliza el algoritmo de 

entrenamiento conocido como backpropagation), 

6. Máquinas de Soporte Vectorial (Cortes y Vapnik, 1995, p. 274)(técnica muy popular 

desarrollada por Vapnik hace dos décadas que busca establecer el margen óptimo entre 

dos clases), 

7. SMO (Platt, 1998, p. 44) (Sequential Minimal Optimization: modelo empleado para 

resolver el problema de la programación cuadrática durante el entrenamiento de máquinas 

de soporte vectorial), 

8. Redes Neuronales de Base Radial (Broomhead y Lowe, 1988, p. 326) (tipo especial de 

redes neuronales que utilizan funciones de base radial como funciones de activación), 

9. Función Logística (Tatsuoka, 1985, p. 55) (modelo de regresión logística multinomial). 

 
Para realizar la comparación entre el clasificador de Heaviside y los clasificadores enlistados 

anteriormente, se eligió el uso de una técnica estadística no paramétrica denominada Test de 

Wilcoxon. A continuación se presentan algunas de las características principales de esta prueba. 

 

Prueba no paramétrica de Wilcoxon 
 
El Test de Wilcoxon (Wilcoxon, 1945, p. 80) se utiliza para comparar diferencias de medias en 

dos muestras relacionadas. Sin embargo, un caso particular de esta problemática es la 

comparación de los resultados de la ejecución de dos algoritmos sobre el mismo conjunto de 

bancos de datos. El test determina, dentro de un intervalo de confianza, si se acepta o no se acepta 

la hipótesis de igualdad de medias. Si no se acepta, se puede decir que existen diferencias 
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significativas entre los algoritmos a comparar (Derrac, García, Molina, y Herrera, 2011, p. 6). El 

test consiste en lo siguiente: 

 

Sea id  la diferencia del desempeño de dos algoritmos en alguno de n posibles problemas, dichas 

diferencias son evaluadas de acuerdo con sus valores absolutos. Sea R+  la suma de los rankings o 

rangos en los cuales el desempeño del primer algoritmo es mayor al desempeño del segundo y 

sea  R−  la suma de los rangos en los cuales el segundo algoritmo tiene mejores resultados que el 

primero; los rangos correspondientes para 0id =  se dividen uniformemente entre las sumas, se 

ignorará uno de los rangos en caso de que la cantidad de sumas sea impar. Las sumas R+  y R− se 

calculan de la siguiente forma: 

 

0 0

0 0

1( ) ( )
2
1( ) ( )
2

i i

i i

i i
d d

i i
d d

R rank d rank d

R rank d rank d

+

> =

−

< =

= +

= +

∑ ∑

∑ ∑

  
 

Sea T la menor de las sumas min( , )T R R+ −= , si T es menor que la distribución de Wilcoxon 

para n grados de libertad (Zar, 1998, p. 165), la hipótesis nula de igualdad es rechazada y por lo 

tanto un algoritmo dado es significativamente diferente que el otro con un valor p asociado. 

 

Para considerar como válido el resultado de la prueba de Wilcoxon es importante tomar en cuenta 

que los valores de significancia estadística deben estar entre 0.01α =  y 0.1α = ; el valor 

0.05α =  permite establecer un intervalo de confianza entre el 90% y 99%, típicamente 95%. Si 

el valor de la probabilidad arrojado (p) es menor que alfa, se dice que se rechaza la hipótesis nula 

(porque cae en la zona de rechazo del test), y por ende se acepta la hipótesis alternativa (que es la 

que plantea que sí hay diferencias). 

 

La prueba de Wilcoxon asume la conmensurabilidad de las diferencias, pero sólo de forma 

cualitativa: es decir, las diferencias grandes entre los desempeños cuentan más; sin embargo, las 

magnitudes absolutas siguen siendo ignoradas. Desde el punto de vista estadístico, la prueba es 
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más segura dado que no asume la distribución normal, además de que no se ve afectada por la 

presencia de outliers, o patrones atípicos (Derrac et al., 2011, p. 7).  

 

Para cumplir con la cantidad mínima de comparaciones u observaciones requeridas por las 

pruebas de Wilcoxon, se eligieron los siguientes bancos de datos, algunos de los cuales fueron 

tomados del repositorio UCI (Lichman, 2013), y otros más fueron extraídos del repositorio KEEL 

(Alcalá-Fernandez et al., 2011, p. 256): 

 

1. Appendicitis (Datos de pacientes para estimar si padece apendicitis o no), 

2. Australian (banco de datos relacionado con solicitudes para tarjetas de crédito). 

3. Banana (banco de datos formado a partir de objetos agrupados en grupos con forma de 

banana). 

4. Bupa (banco de datos que analiza desórdenes en el hígado),  

5. Cleveland (banco de datos relacionado con enfermedades cardiacas), 

6. Columna Vertebral (banco de datos de características biomecánicas para determinar 

posibles problemas en la columna vertebral), 

7. Glass (banco de datos para la clasificación de seis tipos de vidrio que pueden ser hallados 

en una escena de crimen ), 

8. Haberman (datos de un estudio que se realizó a pacientes que siguen con vida después de 

una cirugía para cáncer de mama), 

9. Heart (detecta la presencia o ausencia de males cardiacos). 

10. Ionosphere: (determinar si una señal transmitida es buena o mala). 

11. Iris Plant (el mundialmente conocido banco de datos de la Iris Plant el cual contiene 

mediciones de tres tipos diferentes de plantes de Iris), 

12. Magic (simular el registro de partículas gamma en un telescopio a partir de un conjunto de 

imágenes). 

13. New Thyroid (banco de datos utilizado en la clasificación de pacientes normales, que 

padecen hipotiroidismo o que padecen hipertiroidismo), 

14. Phoneme (banco de datos para distinguir los sonidos nasales y orales). 

15. Pima Indians Diabetes (banco de datos relacionados con la incidencia de la diabetes en 

mujeres jóvenes de la tribu indígena de los Pima), 
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16. Ring (banco de datos artificial, propone una distribución multivariada de patrones). 

17. Segment-Test (Banco de datos utilizado en la determinación de regiones en imágenes 

digitales), 

18. Unbalanced (Una versión desbalanceada de un banco de datos que describe formas de 

vehículos), 

19. Wine (banco de datos relacionado con el reconocimiento de tres tipos diferentes de vinos), 

20. Winsconsin (Banco de datos relacionado con el diagnóstico del cáncer de mama). 

 

El clasificador de Heaviside fue implementado en Matlab, mientras que las Memorias 

Morfológicas Min fueron implementadas en Java y para el resto de los modelos se empleó la 

herramienta Weka (Hall et al., 2009, p. 10). En la tabla 3 se presenta el desempeño promedio de 

los algoritmos (calculado con el método de validación K Fold Cross Validation con K=10), en los 

veinte conjuntos de datos.  

 

Tabla 3. Desempeño de los modelos de clasificación en los Bancos de Datos seleccionados. 

Datasets C. de 

Heaviside  

Memorias 

morfológicas  

min 

IB1 IBK 

K=3 

Naive 

Bayes 

Multilayer 

Perceptron  

SVM SMO RBF Logistic 

Appendicitis 88.57 84.02 82.07 83.96 85.84 85.84 80.18 87.73 83.96 86.79 

Australian 76.81 76.81 80.72 85.79 76.95 84.34 55.51 85.5 84.06 86.81 

Banana 78.37 78.37 87.24 88.39 61.11 77.09 90.24 55.16 74.26 56.07 

Bupa 96.84 96.84 62.89 61.73 55.36 71.59 59.42 58.26 64.34 68.11 

Cleveland 96.12 96.12 57.79 55.77 54.78 53.13 54.12 60.06 57.09 61.38 

Columna 

Vertebral 
96.77 95.48 78.38 71.29 83.22 85.48 48.38 74.51 83.22 85.8 

Glass  91.9 91.9 70.56 71.96 48.59 67.75 68.69 56.07 63.55 64.01 

Haberman 76.53 70.34 68.3 71.56 76.14 68.28 73.52 73.52 73.85 73.85 

Heart 78.51 71.41 74.81 77.4 83.7 82.22 55.55 83.7 83.7 82.59 

Ionosfera 92.22 92.22 86.03 84.9 82.05 92.02 93.44 87.75 90.31 88.03 

Iris plant 97.33 96.66 95.33 95.33 96 97.33 96.66 96 95.33 96 

Magic 81.14 81.14 80.93 83.2 72.68 85.87 65.88 79.15 78.42 79.07 

New-

Thyroid 

91.77 91.77 97.21 93.48 96.74 96.74 75.81 89.76 95.34 96.74 

Phoneme 90.93 90.87 90.19 88.63 76.03 80.97 83.77 77.23 77.7 75.11 
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Pima 

Indians 

diabetes 

96.98 96.98 70.18 72.65 76.3 75.39 65.1 77.34 75.39 77.29 

Ring 90.43 90.43 75.05 71.75 97.97 91.06 50.46 76.43 97.82 75.81 

Segment-test 94.56 94.32 94.69 92.59 86.41 94.07 41.11 92.22 88.39 93.82 

Unbalanced  87 87 97.66 98.36 90.77 98.13 98.59 98.59 98.59 96.49 

Wine 72.64 74.28 94.94 94.94 97.19 97.19 44.38 98.31 98.31 97.19 

Wisconsin 97.15 97.15 95.27 96.42 96.13 95.71 95.99 96.71 95.99 96.56 

 
 

A partir de estos valores se realizó el test de Wilcoxon. Los resultados de la prueba de rangos con 

signo de Wilcoxon se presentan en la Tabla 4; mientras que en la Tabla 5 se presentan los valores 

estadísticos de contraste obtenidos de la prueba de Wilcoxon. 

 

Tabla 4. Prueba de rangos con signo de Wilcoxon. 

 N Rango 
promedio 

Suma de 
rangos 

Memorias morfológicas  
vs C. de Heaviside 

Rangos negativos 7a 4,43 31,00 
Rangos positivos 1b 5,00 5,00 
Empates 12c   

Total 20   

IB1 vs C. de Heaviside Rangos negativos 14d 10,86 152,00 
Rangos positivos 6e 9,67 58,00 
Empates 0f   

Total 20   

IBK K=3 vs C. de 
Heaviside 

Rangos negativos 14g 10,64 149,00 
Rangos positivos 6h 10,17 61,00 
Empates 0i   

Total 20   

Naive Bayes vs C. de 
Heaviside 

Rangos negativos 14j 11,57 162,00 
Rangos positivos 6k 8,00 48,00 
Empates 0l   

Total 20   

Multilayer Perceptron  vs 
C. de Heaviside 

Rangos negativos 12m 10,25 123,00 
Rangos positivos 7n 9,57 67,00 
Empates 1o   

Total 20   
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SVM vs C. de Heaviside Rangos negativos 17p 11,29 192,00 
Rangos positivos 3q 6,00 18,00 
Empates 0r   

Total 20   

SMO vs C. de Heaviside Rangos negativos 16s 10,19 163,00 
Rangos positivos 4t 11,75 47,00 
Empates 0u   

Total 20   

RBF vs C. de Heaviside Rangos negativos 14v 10,14 142,00 
Rangos positivos 6w 11,33 68,00 
Empates 0x   

Total 20   

Logistic - C. de Heaviside Rangos negativos 15y 10,40 156,00 
Rangos positivos 5z 10,80 54,00 
Empates 0aa   

Total 20   

a. Memorias morfológicas  < C. de Heaviside 
b. Memorias morfológicas  > C. de Heaviside 
c. Memorias morfológicas  = C. de Heaviside 
d. IB1 < C. de Heaviside 
e. IB1 > C. de Heaviside 
f. IB1 = C. de Heaviside 
g. IBK K=3 < C. de Heaviside 
h. IBK K=3 > C. de Heaviside 
i. IBK K=3 = C. de Heaviside 
j. Naive Bayes < C. de Heaviside 
k. Naive Bayes > C. de Heaviside 
l. Naive Bayes = C. de Heaviside 
m. Multilayer Perceptron  < C. de Heaviside 
n. Multilayer Perceptron  > C. de Heaviside 
o. Multilayer Perceptron  = C. de Heaviside 
p. SVM < C. de Heaviside 
q. SVM > C. de Heaviside 
r. SVM = C. de Heaviside 
s. SMO < C. de Heaviside 
t. SMO > C. de Heaviside 
u. SMO = C. de Heaviside 
v. RBF < C. de Heaviside 
w. RBF > C. de Heaviside 
x. RBF = C. de Heaviside 
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y. Logistic < C. de Heaviside 
z. Logistic > C. de Heaviside 
aa. Logistic = C. de Heaviside 
 
 

Tabla 5. Estadísticos de contraste de la prueba de Wilcoxona. 

 MM 
Min 

IB1  IBK K=3  NB MLP SVM -  SMO -  RBF -  Logisti
c -  

Z -1,820b -1,755b -1,643b -2,128b -1,127b -3,248b -2,165b -1,381b -1,904b 
Sig. 
asintót. 
(bilateral) 

,069 ,079 ,100 ,033 ,260 ,001 ,030 ,167 ,057 

a. Prueba de los rangos con signo de Wilcoxon 
b. Basado en los rangos positivos. 
 

De acuerdo con los valores presentados en las tablas 3, 4 y 5, es posible afirmar que el 

Clasificador de Heaviside supera a las Memorias Morfológicas Min, al clasificador 1NN, al 

clasificador Naive Bayes, a las SVM, al clasificador SMO y a la función logística con un 90% de 

confianza. Cabe destacar que con un 95% de confianza el clasificador de Heaviside supera al 

Naive Bayes, a las SVM y al modelo SMO.  
 

Discusión y conclusiones 

En este trabajo se ha presentado un nuevo modelo de clasificación supervisada de patrones, el 

cual está basado en la función de Heaviside; es muy importante mencionar que tras una extensa 

investigación, en el estado del arte no se encontraron modelos inteligentes de clasificación de 

aptrones cuya base teórica esté dada por la función de Heaviside.  

 

El modelo de clasificador propuesto destaca por el hecho de que trabaja con patrones enteros no 

negativos, los cuales pueden ser obtenidos a partir de patrones con valores reales mediante un 

proceso de transformación. Por ello, es posible representar las componentes de los patrones en 

cualquier sistema numérico con base mayor que 1.  

 

De igual forma el modelo propuesto en este trabajo, presenta dos operaciones originales, las 

cuales están basadas en la función de Heaviside: la operación L de aprendizaje, y la operación C 
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de clasificación de patrones. En este artículo se presentaron los fundamentos matemáticos de 

ambas operaciones y algunas de sus propiedades más importantes. 

 

Después de probar el Clasificador de Heaviside en varios bancos de datos y de comparar sus 

resultados con los obtenidos por algunos de los modelos más importantes de clasificación de 

patrones, se destaca el hecho de que el Clasificador de Heaviside es bastante competitivo. 

También es importante resaltar que se sustentó la validez de los experimentos realizados 

mediante una prueba no paramétrica.  

 

Además, se está trabajando en ajustes al algoritmo que podrían incrementar de manera importante 

su rendimiento y performance. Esto posibilitaría su aplicación en problemas de clasificación de 

patrones donde se requiere un elevado rendimiento y una gran eficacia. Se podría mejorar la 

eficiencia a través de la implementación del algoritmo en FPGA. 
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Anexo 

 

A continuación se muestra el algoritmo (en pseudocódigo) del Clasificador de Heaviside en su 

modo HI, el cual tiene tres etapas principales: preprocesamiento, transformación de los patrones, 

entrenamiento (aprendizaje) y clasificación, sin contar la función principal que es en donde se 

establece la secuencia de las operaciones a realizar. 

 

Función Principal() 

 B=leerBancodeDatos() 

 B=Preprocesamiento(B) 

 Base b=elegirBaseB() 

 B=TransformarBaseB(B, base b) 

 [A,P]=dividirBancoDatos(B) //Aplicar método de validación de RP 

 M=Entrenamiento(Conjunto de aprendizaje A) 

 Clasificación(Modelo de clasificador M, Conjunto de prueba P) 

Fin  

 
Función Preprocesamiento(Bando de Datos B) 

 Para cada patrón 𝑥𝑥 ∈ 𝐵𝐵 hacer 

  Min=minimo(x) //Obtener componente mínima de cada patrón 

  Si x<0 

   Para i=1:dimensión(x)-1 //No contar la etiqueta de clase 

    𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀 

   Fin 

  Fin 

 Fin  

  

 Si hayComponentesDecimales(B) 

  d=buscarMaximoNumeroDecimales(B); 

 Fin 

  

 Por cada patrón 𝑥𝑥 ∈ 𝐵𝐵 hacer 
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  Para i=1:dimensión(x)-1 

   𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∗ 10𝑑𝑑  

  Fin 

 Fin 

Regresar B 

Fin  

 

Función TransformarBaseB (Banco de Datos B, base b) 

 Por cada patrón 𝑥𝑥 ∈ 𝐵𝐵 hacer 

  Para i=1: columnas(B)-1 hacer //recorrer las componentes del patrón 

   𝑥𝑥𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑖𝑖 , 𝑏𝑏) //Convertir la componente a base b 

  Fin 

 Fin 

Fin 

 

Función Entrenamiento (Conjunto de aprendizaje A) 

M=null 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = |𝐴𝐴|//Calcular el número de patrones en A 

Por cada patrón 𝐴𝐴𝑘𝑘 ∈ 𝐴𝐴 hacer 

𝑀𝑀𝑘𝑘 = 𝐿𝐿(𝐴𝐴𝑘𝑘, (𝐴𝐴𝑘𝑘)𝑡𝑡)𝑛𝑛×𝑛𝑛//Matriz de nxn 

 Fin 

𝑀𝑀 = � 𝐿𝐿(𝐴𝐴𝑘𝑘, (𝐴𝐴𝑘𝑘)𝑡𝑡)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑘𝑘=1

 

Regresar M 

Fin 

 
Función Clasificación (Modelo de clasificador M, Conjunto de prueba P) 

 Por cada patrón 𝑃𝑃𝑑𝑑 ∈ 𝑃𝑃 hacer 

  Calcular 𝑅𝑅 = 𝑀𝑀⋓𝐶𝐶 𝑃𝑃𝑑𝑑 donde 𝑅𝑅𝑖𝑖 = (𝑀𝑀⋓𝐶𝐶 𝑃𝑃𝑑𝑑)𝑖𝑖 = ⋁ 𝐶𝐶�𝑚𝑚𝑖𝑖𝑖𝑖,𝑃𝑃𝑗𝑗𝑑𝑑�𝑛𝑛
𝑗𝑗=1  

  Buscar en A el patrón recuperado R o en su defecto un patrón cercano a R. 

Asignar a 𝑃𝑃𝑑𝑑 la clase del patrón encontrado en A para R. 
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Fin 

Fin 

El modo HS del Clasificador de Heaviside puede obtenerse aplicando dualidad en las 

funciones de entrenamiento y de clasificación.   
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