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Adquisicion de conceptos espaciales en un agente auténomo artificial a través de simulaciones internas

Resumen

La robdtica mévil que hace uso de vision artificial tradicional, es capaz de estimar la distancia a
los objetos del entorno basandose en el uso de un modelo de camara. Esta estimacion consiste en
el calculo de un valor numérico a partir de los pardmetros de la camara y de relaciones
geométricas. Sin embargo, este valor necesita ser interpretado por el disefiador o algin otro
agente externo. En la investigacion presentada en este articulo demostramos que un agente
autonomo es capaz de adquirir conceptos basicos de su relacion con el mundo a traves de su
interaccidn con éste, obviando asi la necesidad de una interpretacion externa. En particular nos
centramos en dos conceptos, el primero es distancia a, y se refiere a la distancia, en términos de
comandos motrices, que el agente debera recorrer para colisionar con un obstaculo. En segundo
lugar, exploramos el concepto de pasabilidad, mediante el cual el agente es capaz de discernir,
entre dos pasajes de diferente tamafio, por cudl de ellos puede pasar sin colisionar. Sostenemos
gue estos conceptos no recaen en un mecanismo que lleva a cabo calculos geométricos sino mas
bien en procesos de simulacion sensoriomotriz codificados en el funcionamiento de un modelo
interno. Para lograr esto, hacemos uso de teorias provenientes de las ciencias cognitivas, en
particular proponemos el uso de modelos directos. Estos modelos, conocidos como predictores
proveen al agente con predicciones sensoriomotrices de sus propias acciones. Los modelos
directos proveen al agente con representaciones formadas por asociaciones de diferentes
modalidades. En este caso en particular, el sistema usa las modalidades de informacion visual,
informacion téctil, e informacion motriz. Estas provenientes de una cdmara estereo, un arreglo de
sonares y los actuadores del agente, respectivamente. El trabajo estd enmarcado dentro de la
robotica cognitiva, area de investigacion que sostiene que la naturaleza de los comportamientos
humanos es tal que éstos no pueden ser pre-programados por un disefiador. En su lugar lo que se
busca es que los agentes artificiales sigan una linea de desarrollo similar a la de los seres
humanos, aprendiendo a través de la interaccion con su medio y explotando el conocimiento que
esta interaccion les provee. Los resultados obtenidos con los experimentos proveen bases sélidas
en la basqueda de comportamientos mas complejos en agentes capaces de interactuar con su
medio ambiente de manera auténoma obteniendo conocimiento cimentado en sus propias

caracteristicas sensoriomotrices.
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Abstract

In mobile robotics, using artificial vision, one is capable of estimating distance to objects in the
environment by means of a camera model. This estimation consists in the calculation of a
numerical value based on a number of camera parameters and geometric relations. However, this
value needs to be interpreted by the designer or some other external agent. In the work presented
here we show how an autonomous agent is capable of acquiring basic spatial concepts about the
environment it interacts with. The acquired concepts do not need an external interpretation. In
particular, the research focuses on two concepts, the first is distance to, and refers to the distance,
in terms of motor commands, the agent must travel before it collides with an obstacle. The
second concept is passability, the use of which allows the agent to choose between two passages
where only one of them is wide enough for the agent to pass through. These concepts do not rely
on a mechanism performing geometrical calculations but on a sensorimotor simulation process
coded as an internal model. To achieve this we make use of theories coming from cognitive
science, namely we propose the use of forward models. These models, provide the agent with the
sensorimotor predictions of its own actions by means of representations constructed on multi-
modal associations. In this particular case, the system makes use of the visual, tactile and motor
modalities, coming from a stereo camera, an array of sonars and the agent actuators, respectively.
The work presented is set in the cognitive robotics framework, a research area that holds the
nature of human behaviour to be too complex to be implemented as pre-programmed and hard-
wired by a designer. Instead, the aim is to have agents follow a developmental line similar to that

of human beings, learning through interaction with their environment and exploiting the

Revista Electrénica Nova Scientia, N° 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 127 — 161
-129 -

Nova Scientia



Adquisicion de conceptos espaciales en un agente auténomo artificial a través de simulaciones internas

knowledge coming from this interaction. The results obtained in our experiments provide solid
ground in the search for more complex agents capable of autonomous interaction, obtaining

knowledge grounded on their own sensorimotor capabilities.

Keywords: cognitive robotics, sensorimotor simulation
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1. Introduccion

El sistema presentado en este trabajo pretende que un agente artificial aprenda dos conceptos
espaciales basicos. El primero lo hemos denominado “distancia a” y se refiere a una nocién de
distancia a los obstaculos que se encuentran en su ambiente. En segundo lugar investigamos el
concepto de ““pasabilidad™ y se refiere a una nocién mediante la cual el agente puede discernir
por cual, de entre dos pasajes de diferente tamafio, puede pasar sin colisionar.

Trabajamos bajo el supuesto de que la percepcidn de distancia no recae en un mecanismo que
realiza un célculo geometrico sino mas bien en un proceso de simulacion sensoriomotriz (Turvey,
2004, Braund, 2007). Este proceso de simulacion es llevado a cabo por un modelo directo, el cual
es un modelo interno capaz de crear asociaciones sensoriomotrices de la interacciéon del agente
con el ambiente. El uso de estos modelos permite al agente aprender conceptos espaciales basicos
en términos de sus capacidades y caracteristicas propias a diferencia de métodos tradicionales de
robotica y vision artificial en donde este tipo de conocimiento es codificado en los agentes por un
disefiador.

La investigacion reportada en este articulo se encuentra enmarcada en la robética cognitiva.
Aqui, se busca estudiar e implementar modelos y teorias, provenientes de las ciencias cognitivas,
en agentes artificiales, con el doble proposito del disefio sintético. En primer lugar, dotar a
agentes con capacidades cognitivas basicas para interactuar con su ambiente, en segundo lugar, al
implementar modelos cognitivos, se espera poder tener un impacto en el desarrollo de la teoria
detras de éstos (Pfeifer y Scheier, 1999).

El resto de esta seccion estd dedicada a dar el contexto de la investigacion desarrollada, la
seccion 2 describe lo que significa para un agente natural la percepcion de distancia, asi como las
formas tradicionales de resolver este problema en vision artificial, cerrando la seccion
describiendo el enfoque con el que se ha estudiado desde la robdtica cognitiva. En la seccion 3 se
presenta el agente artificial usado para la implementacion, asi como el sistema propuesto. La
seccion 4 presenta los experimentos y resultados obtenidos que sirven como prueba de concepto

del sistema. Finalmente, en la seccion 5 se concluye el articulo.

1.1 Inteligencia Artificial
Hasta principios de los afios 90, la inteligencia artificial estuvo influenciada por la propuesta de
Newell y Simon en la cual la cognicion era reducida a un simple procesamiento de informacion
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mediante la manipulacion formal de simbolos abstractos (Newell y Simon, 1976). Esta forma de
entender la cognicion predomind en la mayoria de los laboratorios de inteligencia artificial,
donde era practica estdndar hacer la analogia directa entre la forma en que se entendia el
procesamiento de informacion en el cerebro y en las computadoras. Por esta razon la cognicion
fue estudiada a través del uso de algoritmos computacionales donde ésta era considerada lineal y
unidireccional, llevando la informacion de entrada a una caja negra de procesamiento para
terminar en una salida que era ejecutada en el medio ambiente. Esta concepcién
representacionalista y simbolica de la cognicion nunca estuvo libre de criticas desde diferentes
areas del conocimiento incluyendo a la filosofia y la psicologia.

Un parteaguas importante en la historia de la inteligencia artificial fue el ejercicio mental del
“cuarto chino” propuesto por el filésofo John Searle (Searle, 1980). Con este experimento Searle
expone a los sistemas de computo manipulando simbolos abstractos como carentes de
significado, capaces de manejar sintaxis pero no semantica.

Mas tarde Stevan Harnad formula el problema de la cimentacion de simbolos (Harnad, 1990)
y propone una solucién a éste. Para Harnad, la cimentacion de simbolos es el problema de como
las palabras adquieren su significado y propone una arquitectura hibrida basada en redes
neuronales para tratar de solucionarlo. Al mismo tiempo, Harnad propone que los agentes
mismos deberian ser los encargados de extraer las caracteristicas relevantes del ambiente, para asi
lograr que los conceptos mentales obtengan significado.

Estos dos trabajos son muy influyentes en la inteligencia artificial al sefialar temas que no
estaban considerados en esta comunidad. Estas y otras criticas, propiciaron la bisqueda de un
nuevo enfoque para el estudio de los procesos cognitivos que subyacen al fendmeno de la

inteligencia natural en miras de su implementacién en agentes artificiales.

1.2 Robotica Cognitiva

Al mismo tiempo, en la robética, la vision puramente representacionalista de la inteligencia fue
criticada entre otros por Rodney Brooks, quien propuso la implementacion en agentes autbnomos
de una arquitectura basada en actividades formadas por modulos (Brooks, 1991). Cada uno de
estos modulos interactia con el ambiente tanto para su entrada como para su salida y al mismo
tiempo tiene un funcionamiento completo, esto es, cada médulo codifica un comportamiento

especifico. Ademas cada modulo que se afiade a la arquitectura, se conecta con los mddulos
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existentes. El principio tedrico de la arquitectura es que comportamientos cada vez mas
complejos se sobreponen, interactuan y hacen uso de los comportamientos existentes. La
principal aportacion de esta idea es que se deja de lado el uso de un procesador central que forma
las representaciones necesarias para que el agente pueda interactuar con su entorno. Brooks
critico fuertemente la concepcion representacionalista de la inteligencia, proponiendo la
interaccidon con el ambiente como el primer factor a considerar para el desarrollo de agentes
inteligentes. Ademas de esto, es a Brooks a quien se le acredita la propuesta de que la mejor
representacion del mundo es el mundo mismo (Brooks, 1991).

Por otro lado, la obtencion de comportamientos o habilidades mas complejas en los agentes
artificiales no es una tarea sencilla. Habilidades cognitivas como la atencion, el pensamiento
abstracto, la memoria y la categorizacion, entre otras, han sido todo un desafio para la
inteligencia artificial debido a su compleja naturaleza.

Por ejemplo, la categorizacién es una habilidad que desarrollamos a pesar de la gran
variabilidad en la representacion sensorial que origina un objeto. Sin embargo, este proceso es
observado durante el desarrollo de comportamientos exploratorios en bebés (Rochat, 1989), en el
cual la percepcion y la accion estan involucradas en la recoleccion de informacion de una forma
activa y simultanea a través de las diferentes modalidades sensoriales, con el propésito de
reconocer y categorizar a los objetos en funcion de los usos potenciales que éstos pueden llegar a
ofrecer para el agente que interactta con ellos (Gibson, 1950).

En la robotica, los trabajos de Scheier y Lambrinos (1996) y Pfeifer and Scheier (1997)
muestran precisamente como esta habilidad de categorizar y reconocer objetos puede ser lograda
en un agente artificial a través de un proceso de coordinacion sensoriomotriz. La contribucion
principal de estos trabajos consistio en mostrar como se reduce de manera significativa la
complejidad del proceso de categorizacion al considerarla desde esta perspectiva, en lugar de
intentar predefinir las categorias o de incluir un sensor especifico para cada tipo de objeto.

Dentro de las ciencias cognitivas se ha acufiado el término cognicion cimentada
(Barsalou, 2008) para agrupar las diferentes posturas que sostienen que los procesos cognitivos
estan intimamente vinculados a la interaccion del agente con el entorno, resaltando el papel que
desempefia el cuerpo, el ambiente y la accién en la cognicion (Wilson, 2002).

Es todo esto lo que ha llevado a la investigacion en inteligencia artificial al uso de agentes

artificiales autbnomos como plataformas de prueba y experimentacién, dando origen a una nueva
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forma de estudio acerca de la cognicion. Asi mismo, se ha entendido que los comportamientos
necesarios para que los agentes autonomos sean capaces de interactuar con su entorno son
demasiado complejos para poder ser codificados de manera directa, disefiados por un
programador. Actualmente, se busca que los agentes artificiales obtengan comportamientos
inteligentes a través de la interaccién con su medio ambiente, imitando el desarrollo que los
agentes naturales siguen durante su crecimiento. Por tal motivo, la robética cognitiva ha tratado
de traer a su area de investigacion modelos provenientes de las ciencias cognitivas. Estos
modelos, se espera ayuden a tener agentes artificiales capaces de interactuar con su entorno y
adaptarse a las situaciones dinamicas de éste. A su vez estos agentes deberan servir como
plataformas de experimentacion y evaluacion de las diversas hipétesis acerca de la cognicién que
se originan en las ciencias cognitivas.

Diversos trabajos han mostrado de forma explicita el vinculo y la forma de trabajo entre la
robdtica y las ciencias cognitivas. Pfeifer describid varios ejemplos del uso de agentes artificiales
como plataformas de investigacion en torno a la inteligencia en Pfeifer (2002). La recopilacion
reportada en Lungarella et al. (2003) muestra con numerosos casos de estudio como se relacionan
y complementan estas disciplinas en la investigacion en torno al desarrollo de procesos
cognitivos. Finalmente, en Pezzulo et al. (2012) se ha propuesto un marco tedrico que busca
unificar el lenguaje en torno al estudio de la cognicién mediante el uso de la modelacion

computacional y la implementacion de estas propuestas en agentes artificiales.

2 Relaciones Espaciales
Los humanos hacemos uso de diversas pistas visuales a través de las cuales nos es posible
obtener la distancia a la cual estan ubicados los objetos en nuestro entorno. Estas pistas son
obtenidas a partir de la informacion que llega a cada una de nuestras retinas y pueden ser
clasificadas en pistas monoculares, binoculares y oculomotrices (ver Goldstein, 2010, cap. 10).
Las pistas monoculares son aquellas que nos permiten inferir la distancia a los objetos
observados a partir de una sola imagen gracias a la informacion que ésta contiene. Entre éstas se
encuentran: el tamafio relativo, la brillantez, la superposicion, la perspectiva, la altura en el plano
y las sombras.
Entre las pistas oculomotrices se distinguen la acomodacion del cristalino y los movimientos

de vergencia de ambos 0jos. Sin embargo, la pista que brinda la informacion mas importante para
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determinar la distancia a los objetos proviene de percibir una escena con ambos 0jos desde una
perspectiva ligeramente distinta. Esto se conoce como disparidad binocular y es la responsable
de originar el fendbmeno denominado estereopsis (Julesz, 1971), es decir, la impresion de
profundidad que se crea en el cerebro cuando se percibe una escena. A diferencia de las pistas
monoculares, la estereopsis es un proceso que no depende de las pistas contenidas en la
informacion pictorica, sino que por el contrario depende de la disparidad de las representaciones
en la retina de los objetos observados.

Recientes trabajos en las ciencias cognitivas apuntan a que la percepcion de distancia en los

seres humanos no se genera a través de un proceso geométrico. En su lugar encontramos:

1. Asociacion de informacion multi-modal. La percepcion de distancia es el resultado de la
asociacion de informacion proveniente de diferentes modalidades incluidas la modalidad
motriz, la visual y la tactil (Braund, 2007).

2. Hacemos uso de unidades relativas que estan escaladas (cimentadas) a nuestras propias
dimensiones corporales y no un sistema dimensional absoluto (Proffitt, 2006).

3. Los usos potenciales que adquieren los objetos para el observador son obtenidos mediante
la interaccion agente-ambiente; son estos usos los que definen el concepto de espacio y no
simplemente entidades como puntos, lineas o planos pertenecientes a una geometria
abstracta (Gibson, 1950).

4. La preparacion de la accion (Wexler y Boxtel, 2005) y las propiedades del entorno (Lappin
et al., 2006) son aspectos suficientes para modificar de forma directa la percepcion del
espacio que se forma el observador.

2.1 Soluciones Clasicas

En las areas de robotica y vision artificial, tradicionalmente la estimacion de la distancia ha sido
estudiada dentro del marco de la geometria. Como analogia a la vision binocular se ha trabajado
con un par de camaras estéreo (dos camaras sobre el mismo plano), separadas entre si por una
distancia conocida y cuyos ejes Opticos son paralelos. Con esta configuracion es posible calcular
la ubicacion exacta de cada uno de los objetos de la escena que se esta observando (Marr7 y
Poggio, 1979; Faugeras, 1993; Moons, 1998). En general, estos métodos buscan encontrar la

correspondencia de caracteristicas relevantes que aparecen en ambas imagenes, tales como
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bordes o segmentos de lineas, correlacion entre regiones de pixeles, transformaciones de Fourier
y métodos de minimizacion de energia (Alvarez et al., 2002). El resultado de esta
correspondencia es el Illamado mapa de disparidad representado por una imagen en niveles de
gris cuya intensidad esta en funcion de la distancia a los objetos. Aunque estos métodos son muy
precisos, dependen de un delicado proceso de calibracion de las camaras en las que la
intervencion del usuario es indispensable. Asi mismo, la medida de distancia representada en el
mapa de disparidad depende de los parametros de cada una de las cdmaras y de las condiciones
luminicas del entorno.

En el contexto de la robdtica cognitiva un detalle significativo es que el célculo de la distancia
a partir de este enfoque geométrico, es una cantidad dimensional que necesita ser interpretada por

un agente externo.

2.2 Enfoque desde la Robdtica Cognitiva

Dentro de la robdtica cognitiva, diversos trabajos han enfrentado el problema de adquirir una
nocion de distancia y capacidades espaciales cimentadas en las capacidades del robot. A través de
métodos de evolucion artificial, Nolfi y Marocco (2001) obtuvieron agentes artificiales capaces
de discriminar visualmente entre objetos de diferente tamafio y ubicados a diferentes distancias
exhibiendo una estrategia de coordinacion sensoriomotriz.

Una herramienta conceptual que encapsula las ideas y principios de la cognicion cimentada y
la cognicion corporizada son los Modelos Directos. Estos fusionan naturalmente diferentes
modalidades sensoriales y motrices. Originalmente propuestos en la teoria de control clasico
(Jordan y Rumelhart, 1992), los modelos directos han sido adoptados en las ciencias cognitivas
para explicar el funcionamiento de diferentes comportamientos cognitivos de bajo nivel en
agentes naturales (Blakemore et al., 1998). Un modelo directo (forward model) es un predictor,
que recibe como entrada una situacion sensorial a un tiempo t (St), y un comando motriz a un
tiempo t (M:) y proporciona como salida la situacion sensorial resultante al tiempo  t+ 1 (S t+1).
El comando motriz es una copia eferente, esto tiene como consecuencia y ventaja que puede o no
ser ejecutado en el mundo real. Es asi que una secuencia de comandos motrices no ejecutados
provee a los agentes con una simulacion interna de una cadena de eventos. Los modelos directos
permiten a un agente hacer predicciones acerca de sus acciones para poder elaborar estrategias de

control y al mismo tiempo evitar situaciones no deseadas. Las predicciones realizadas
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proporcionan a los agentes una nocion de las relaciones espaciales de los objetos existentes en su
entorno.

Implementaciones de estos modelos para adquirir nociones espaciales se han usado para
navegacion segura en un agente autdbnomo como en el trabajo de Hoffmann y Méller (2004),
donde se utiliza la prediccion de situaciones sensoriales con el fin de dotar a un agente artificial
con la capacidad de conocer su posicién respecto al centro, en un entorno de obstaculos
dispuestos alrededor de éste en forma circular.

Posteriormente Hoffmann implementd un modelo directo que provee a un robot con las
consecuencias sensoriales visuales de llevar a cabo una accion. En base a la prediccion de
imagenes omnidireccionales (imagenes con un campo visual de 360 grados) de la escena, el autor
establece una métrica para la estimacion de distancia (Hoffmann, 2007). Las predicciones
sensoriales del modelo son usadas para construir una ruta de navegacion con el fin de atravesar
un camino de obstaculos o en dado caso, determinar si éstos estan dispuestos en una
configuracién de un camino cerrado. En otro trabajo, Méller and Schenck (2008) hacen uso de
modelos directos en un agente artificial para predecir las coordenadas de obstaculos en un
ambiente virtual. Usando estos modelos el agente es capaz de predecir las nuevas coordenadas
del centro de los obstéaculos tras la ejecucion de diferentes comandos motrices (izquierda, frente y
derecha). Cabe resaltar que en estos trabajos, los autores utilizan pixeles como unidad de
medicion no relacionada a las capacidades sensoriomotrices del agente.

En un trabajo relacionado, Escobar et al., (2012) llevaron a cabo la implementacion de un
modelo directo que realiza predicciones visuales y tactiles de las acciones de un agente. Los
autores hacen uso de los métodos tradicionales de vision artificial para calcular el mapa de
disparidad a partir de dos imagenes del mismo instante, tomadas por una camara estereoscopica.

Finalmente, Gaona et al., (2012) presentaron un modelo directo que lleva a cabo predicciones
visuales y tactiles de acciones, los autores reportan un sistema capaz de llevar a cabo hasta tres
simulaciones internas o predicciones de largo plazo asi como predicciones tactiles.

Es importante resaltar, en referencia a Escobar et al., (2012) y Gaona et al., (2012) que estos
son antecesores de lo que se presenta en este trabajo. A pesar de que los experimentos parecieran

similares, conceptualmente, el trabajo actual intenta retirar al disefiador un paso mas.
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2.3 Solucion propuesta

En este trabajo, proponemos que la obtencion de una nocion de distancia deberia estar basada en
las capacidades sensoriomotrices propias del agente. De forma especifica, hacemos uso de un
modelo directo para simular una secuencia de acciones y sus consecuencias sensoriales, esta
simulacion puede ser usada por el agente para estimar la distancia a obstaculos en su ambiente.
Nuestra propuesta presenta las siguientes caracteristicas clave tomando en cuenta las ideas
descritas en la Sec. 2:

» Llevar a cabo simulaciones internas.

* No hacer uso de los modelos tradicionales de vision artificial (por ejemplo un célculo
geomeétrico de la disparidad).

 Utilizar unidades de medida basadas en las capacidades sensoriomotrices del agente.

3 Disefio del Sistema

El trabajo reportado aqui se implement6 en un robot movil Pioneer 3D-X (Figura 1). Este robot
tiene dos ruedas laterales y una rueda que gira libremente ubicada en la parte posterior para darle
estabilidad mientras se desplaza. El agente cuenta con un arreglo de sonares dispuestos en forma
de anillo capaces de reportar la distancia a los objetos en un rango de 0 a 5000 mm. El sistema de
vision esta compuesto por una camara estéreo que proveen imagenes a color de 320 x 240 pixeles

(en la Figura 2 se observa un ejemplo de estas imagenes).

Figura 1: Agente artificial: Robot Pioneer 3-DX con un arreglo de sonares y una camara estéreo en el frente

Revista Electrénica Nova Scientia, N° 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 127 — 161
-138 -

Nova Scientia



Gaona-Romero, W. et al.

( a ) Imagen izquierda ( b ) Imagen derecha
(320 x 240) (320 x 240)

Figura 2: Imagenes obtenidas del sistema estéreo.

La representacion esquematica del modelo directo propuesto se observa en la Figura 3. Este
recibe como entrada una situacion sensorial al instante t (St) compuesta por las imagenes
izquierda (li,) y derecha (l4) provenientes del par estéreo. Asi mismo recibe un comando motriz a
ejecutar My, éste puede ser un movimiento hacia adelante o giros hacia la izquierda o derecha. El
modelo directo proporciona una prediccion de lo que sucederia si el comando motriz fuese
ejecutado. En la salida al instante t + 1, la situacion sensorial predicha (S t+1) estd compuesta por
dos modalidades. La modalidad visual esta dada por las imagenes izquierda y derecha (i, ld) t+1,
mientras que la modalidad tactil T"w+1 esta dada por un estado binario de los parachoques del
robot, indicando si hay o no colision con un obstaculo. Aungue el robot cuenta con sensores de
choque, por razones practicas estos valores se obtuvieron de umbralizar los valores de los
sonares.

Un modelo directo provee al agente con la posibilidad de construir predicciones de largo
plazo (PLP). Una PLP es un proceso de simulacion interna que permite conocer de forma
anticipada las consecuencias sensoriales de ejecutar una serie de comandos motrices. Esto
consiste en utilizar la prediccion del estado visual (li, 14)" junto con un nuevo comando motriz M
al instante t + 1 como entradas al modelo obteniendo las predicciones para el instante t + 2.

Idealmente, este proceso se puede repetir hasta que se considere necesario.
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(L.Ig)e Y (4, frg‘.):+l
———— ——
Modelo -
M, Directo T

Figura 3: Esquema del modelo directo propuesto. La entrada estd compuesta por las imagenes izquierda y
derecha (li, 14) y el comando motriz (M) al tiempo t. La salida estd compuesta por la predicciéon de las
imagenes izquierda y derecha (li, 14)" y el estado tactil (T)" al tiempo t + 1.

En nuestro caso, la combinacion de 3 diferentes comandos motrices permite la construccion de
diferentes PLPs. Estas combinaciones pueden ser representadas en una grafica de arbol, donde el
nodo inicial es el estado visual actual del robot y cada rama es derivada a partir del comando

motriz a ejecutarse (ver Figura 4).

{;ll':- ﬂ_ﬁ .
,{}.u & ~

-~
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I.Iﬁ'
I' P
f.:t.f l. :
.

Figura 4: Representacion del modelo directo como un arbol de predicciones.

3.1 Preparacion de los Datos de Entrada

La asociacion de las imagenes y el comando motriz implica un problema de alta dimensionalidad
debido a que cada una de las imagenes provenientes del par estéreo tiene un tamafio de 320x240
pixeles, resultando en un total de 153,600 datos. Para reducir el tamafio de este espacio de entrada
se utilizaron dos estrategias: la eleccion de una region de interés (RDI) y la implementacion de un
algoritmo de “fovealizacion” (ver Figura5).

La eleccién de la RDI tiene como objeto seleccionar la porcion de la imagen de entrada (Ver
Figura 5a) con mayor relevancia para las dimensiones y capacidades motrices del agente en su
interactuar con el entorno. Por ejemplo, el robot tiene una altura de 30 cm por lo que objetos mas
altos de esto no afectan su navegacion segura. La RDI elegida se muestra en la Figura 5b;
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tomando como referencia el origen en la parte superior de la imagen, la RDI comienza en la
coordenada vertical del pixel 95 y termina en el pixel 239. A la RDI se le realizd un proceso de
segmentacion para resaltar la informacion relevante para el agente, esto es, obstaculos en su

camino en una tarea de navegacion.

( a) Imagen original ( b ) Region de interés
(320 x 240) (RDI) (310 x 145)

( d ) RDI fovealizada
( ¢ ) RDI umbralizada (32 x 10) (Esc. §:1)

Figura 5: Procesamiento de las imagenes de entrada

En primer lugar, se obtuvo una imagen de la RDI en valores de intensidad al seleccionar, en
base a su histograma, el canal de color que representa con mayor contraste a los obstaculos sobre
el fondo del entorno. A diferencia del canal utilizado generalmente (rojo) se optd por el canal
correspondiente a la tonalidad del color verde, Gnicamente por las caracteristicas de las imagenes
proporcionadas por la cdmara. En segundo lugar, se le realizd un recorte con umbral utilizando el
método de Otsu (1975) El resultado es una imagen en la que los obstaculos de la escena aparecen
en niveles de gris mientras que el fondo aparece de color negro, ver Figura 5c.

La segunda estrategia consistio en implementar un algoritmo de fovealizacién estableciendo
una analogia con el ojo humano, éste presenta una mayor densidad de células fotorreceptoras en
la region conocida como fdovea. El resultado de esta operacion es que las partes centrales de la

imagen son representadas con un mayor numero de pixeles mientras que las periféricas aparentan
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estar desvanecidas. Este proceso es analogo a tener un sensor de camara con diferentes
resoluciones para diferentes areas de la escena, mayor en el centro y menor en la periferia.

Para tal efecto se eligio el método de mapeo exponencial dimensionalmente independiente?
(Peters y Sowmya, 1998) consistente en un muestreo exponencial en las direcciones vertical y
horizontal. El muestreo producido es tal que se realiza una seleccion de puntos méas densa hacia el
centro de la imagen que en su periferia. El resultado de aplicar esta fovealizacion a la RDI se
puede apreciar en la Figura 5d cuyas dimensiones son ahora de 32 x 10 pixeles, logrando asi una
reduccion de la informacion visual de 153,600 a 320 pixeles.

El espacio motriz del agente consiste en un conjunto de 3 acciones, girar 5° a la derecha,
moverse hacia adelante 15 cm o girar 5° a la izquierda. Cada uno de estos comandos motrices se
transformé a un vector de 15 valores mediante el uso de 3 funciones gaussianas con igual
desviacion estandar =1 pero con distinta media x, © = 3 para el giro hacia la izquierda, u = 7
para el movimiento hacia adelante y finalmente x = 11 para el giro hacia la derecha. Las curvas
de la codificacion de los comandos motrices se pueden observar en la. Figura 6. La codificacion
de los comandos motrices por un vector de 15 valores esta basada en buscar un equilibrio en los
efectos que las tres modalidades (visual, tactil y motriz) deberan tener en el aprendizaje para cada

una de las redes (ver seccion 3.2).

== [zquierda
Frente
—de— [lerecha

0.581

0.6 |

Valores

0.4}

0.2

b
o 1 2 3 4 5 46 7 8B 9 1011 12 13 14
ITnidades del vector

Figura 6: Codificacion del comando motriz

! Traduccion libre de los autores: Dimensionally-Independent Exponential Mapping
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3.2 Sistema de Redes Neuronales Artificiales

El modelo directo (ver Figura 3) fue codificado a través de un sistema de redes neuronales
artificiales (RNA) tipo perceptron multicapa para realizar una prediccion simétrica local. Esto
significa que cada red recibe de cada imagen de entrada una region de 12 x 2 pixeles y un vector
de 15 datos que codifica al comando motriz y produce regiones de 2 x 2 pixeles para cada una de
las imagenes de salida y para el estado tactil, a excepcion de las regiones predichas para la
primera y Ultima columna, las cuales son de 2 x 1 pixeles. El objetivo de este ajuste es lograr que
las regiones de salida correspondan a la parte central de las regiones de entrada. En la Figura 7 se
observa en color azul la conexidn tipica de una de las redes que predicen una region de 2 x 2
pixeles y en color rojo la conexion de una de las redes para una region de 2 x 1 pixeles.

Dado que el tamafio de las regiones de entrada es mayor que el de las regiones de salida,
existe un traslape, en la direccion horizontal, en todas las regiones de entrada a excepcion de los
bordes izquierdo y derecho en donde 4 redes reciben la misma informacion de entrada. Como
resultado, se obtuvo un sistema compuesto por 85 redes neuronales artificiales distribuidas en una
malla de 17 redes en el sentido horizontal y 5 redes en el sentido vertical.

El protocolo de recoleccion de patrones para el entrenamiento consistié en la preparacion de
una arena con el robot ubicado en el centro y obstaculos cilindricos de diametros 6.5, 11.5y 16.5
cm, dispuestos alrededor de éste. Se recolectaron 5727 patrones durante la ejecucion de 150
trayectorias de movimientos en el entorno. Cada trayectoria se llevo a cabo seleccionando un
comando motriz (adelante, izquierda, derecha) de forma aleatoria en cada paso. La trayectoria
terminaba si se reportaba una sefial de colision por alguno de los 4 sonares frontales o si se
alcanzaba la ejecucion de 50 pasos sin presentarse una colision. La sefial de colision se representd
mediante una variable binaria que tomaba el valor de 1 cuando se detectaba un obstaculo a menos
de 500 mm (medida que equivale al tamafio del robot) o de 0 en caso contrario. En cada paso de
las trayectorias se almaceno el par de imagenes proveniente de la camara estéreo antes y después
de ser ejecutado el comando motriz, el propio comando motriz y el estado de colision. El
entrenamiento de las redes fue realizado por medio de una variacién del algoritmo estandar de
retro-propagacion del error conocido como retro-propagacion fuerte (resilient back-propagation)

(Riedmiller y Braun, 1993), el cual es comparativamente mas rapido y eficiente.
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4. Experimentos
Con el objeto de explotar la habilidad del agente de llevar a cabo predicciones sensoriomotrices

utilizando el modelo directo, se estudié el desarrollo de dos conceptos espaciales basicos:

distancia a 'y la pasabilidad.

4.1 Adquisicién del concepto distancia a
La capacidad del agente para estimar distancia como un concepto cimentado esta intimamente

relacionada a su habilidad para realizar PLPs y la calidad de éstas. Esto es, en una escena, el
agente lleva a cabo una PLP la cual incluye la prediccion de los estados visuales y tactiles
futuros. La evaluacion de estas predicciones sensoriomotrices puede considerarse como el
concepto “en X pasos colisiono”. Aqui X pasos es una distancia en el sentido de que cada paso

estd relacionado a un comando motriz de desplazamiento en términos de las capacidades del

agente.

107

Figura 7: Distribucion esquematica de la conexidn de 2 redes neuronales artificiales que codifican el modelo directo. En
azul se muestra la conexion tipica de las redes del sistema y en rojo se aprecia la conexién para las redes de la primera y
Gltima columna.
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4.1.1 Andlisis de una PLP

En la Figura 8, se muestra un escenario en donde el agente se sitia frente a un obstaculo. El
agente colisionaria con el obstaculo si se desplazara 5 comandos motrices hacia adelante o lo que
es lo mismo una distancia de 75 cm.

Las imagenes capturadas por el par estéreo y sus correspondientes fovealizaciones para la
situacion mostrada en la Figura 8 se pueden observar en la Figura 9. Se aprecia como el obstaculo
esta desplazado con respecto al centro en la imagen derecha y en menor grado en la imagen
izquierda. Las imagenes fovealizadas repiten esta caracteristica siendo el desplazamiento de
mayor magnitud en la imagen izquierda donde la representacion del obstaculo se magnifico por el

efecto del proceso mismo de fovealizacion.

Figura 8: Entorno de prueba para la estimacion de distancia a. Se indican las distancias minima (15 cm) y maxima (225
cm) durante el experimento, las cuales equivalen respectivamente, a la ejecucion de 1 y 15 movimientos hacia adelante por
parte del agente.

{ a ) Imagen izquierda (b ) Imagen derecha

( ¢ ) Imagen fovealizada /. ( d ) Imagen fovealizada /.
Figura 9: Iméagenes originales y fovealizadas de la situacion inicial con el obstaculo ubicado a 75 cm.
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Las predicciones visuales resultantes se observan en la Figura 10. Durante la primera
prediccidn correspondiente al instante t + 1 y hasta la prediccion en t + 5 se puede observar como
el obstaculo va ocupando cada vez una mayor area en el extremo derecho para la imagen
izquierda y de forma inversa para la imagen derecha. Implicando asi, que conforme avanzan los
instantes de la PLP, la representacién del obstaculo en las predicciones se va desplazando hacia el
centro del agente. A partir del instante t + 5, se puede ver que la representacién del obstaculo
alcanzo los extremos en ambas iméagenes. A partir de t + 7, surge de manera significativa ruido y

falsas regiones en cada una de las predicciones.
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Figura 10: Imagenes izquierda y derecha, resultantes de una prediccion de largo plazo (PLP). La prediccion es de 15
movimientos hacia adelante con un obstaculo situado a 75 cm.
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De forma correspondiente con las predicciones visuales mostradas en la Figura 10, las
predicciones del estado tactil para la misma situacién se muestran en la Figura 11. Cada una de
estas graficas fueron codificadas usando un mapa de calor, donde la minima activacién
corresponde al valor de 0 y esté indicado por las zonas de color azul, mientras que el maximo
valor corresponde a 1 indicado por las zonas de color rojo.

El primer aspecto a resaltar es el hecho de tener valores continuos en un rango de [0-1],
contrario a los valores binarios codificados durante el entrenamiento, donde 1 representd una
colisién y 0 cualquier otro caso (Ver seccion 3). La activacion es mayor en las regiones que
corresponden a la posicion de los obstaculos, lo cual codifica un mapeo directo en los estados
tactiles, basado en la entrada visual. Este fendmeno emergente fue reportado y controlado
anteriormente en Gaona et al., 2014.

Al analizar estas graficas se observa que desde el instante t + 1 hasta el t + 3 existe una
activacion en la region central llegando a un maximo en el instante t + 5 donde la gran mayoria
de las activaciones se muestran en color rojo. A partir del instante t + 6 la forma de las gréaficas
en estos mapas de calor ya no describe una estructura definida y se mantienen fluctuando hasta el
final de la PLP. Cabe recordar que la Figura 10 y Figura 11 muestran resultados de PLP cuando
el obstaculo esta localizado a t + 5. Este hecho se puede observar en la prediccion tactil del
sistema, donde a partir de una activacion promedio méxima (0.83), esta fluctlda sin
necesariamente mostrar una correlacién con las predicciones visuales. Esto es, a partir de la
prediccion producida al instante t+6 tanto la informacion visual como la tactil reportan solamente

ruido.
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Figura 11: Representacion tridimensional para las predicciones del estado tactil (T*) en cada uno de los instantes de
la PLP de 15 movimientos hacia adelante con el obstaculo ubicado a 75 cm.

4.1.2 PLP para diferentes distancias
Para evaluar el modelo y su capacidad de prediccion se llevaron a cabo predicciones a largo plazo

para obstaculos situados a diferentes distancias del agente. EI primer obstaculo se coloco a 15 cm
y se llevé a cabo una predicciéon de 15 movimientos hacia adelante. En seguida el obstaculo se
colocé a 30 cm del agente llevandose a cabo la misma PLP. Este procedimiento se repitio

incrementalmente cada 15 cm hasta que el obstaculo se encontr6 a 225 cm del agente.
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Para cada movimiento simulado y para cada PLP se registraron las predicciones visuales y
tactiles. En la Figura 8 se muestra la escena cuando el obstaculo se encuentra a 5 comandos
motrices de distancia y las distancias minimas y maximas a las cuales se ubicé el obstaculo para
este analisis.

Con el proposito de caracterizar el desempefio del sistema, se calculé el promedio de la
activacion del estado tactil en cada instante de las PLPs. En la Figura 12 se muestra este valor

promedio para 9 de las 15 diferentes distancias del obstaculo.

-

Activacidn

Instantes de la simmlacion

—a— alsidculo o 15 cm
—B— abstdculo a 45 om
—d— abaticulo a 75 em
#- abstacnlo a 106 cm
o alstdenlo o 135 cm
#— abstdculo a 150 cm
—S— ahatdculo a 1BLH cm
—=—ahbstdcnlo a 195 cm
A obstaculo a 225 cm
O Punto de colision

Figura 12 Activacion promedio del estado tactil para 9 de las 15 PLP simuladas

En primer lugar, se puede ver que en cada una de las curvas, la activacion se incrementa a
medida que el instante simulado se acerca al punto de colisién con el obstaculo, alcanza un
maximo y disminuye ligeramente en el instante correspondiente a la colision para posteriormente
decrecer rapidamente y mantenerse oscilando alrededor de cierto valor.

En segundo lugar, se puede apreciar que para las posiciones en las que el obstaculo se
encuentra a menos de 10 movimientos para colisionar, el punto en el que ocurriria la colisién
(indicado en la figura como un circulo rodeando un punto en cada serie de datos) se correlaciona
con los valores de mayor activacion de las predicciones tactiles. A partir de la posicion del
obstaculo que corresponde a una distancia de 11 movimientos, la activacion promedio no
aumenta de manera significativa ni antes ni después del punto de colision. De aqui que el maximo
numero de instantes simulados para obtener una PLP que pueda anticipar una posible colision de

manera confiable, es de 10.
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Finalmente, el valor de la maxima activacion, en cada una de las PLPs donde el obstéaculo se
ubicé a menos de 150 cm del agente, se encuentra alrededor de 0.8. Estableciendo de esta
manera, un valor umbral para indicar un estado de colision en el instante donde éste se presenta o
en el inmediatamente posterior. El hecho de que este valor sea el mismo para cada una de estas
pruebas, da cuenta de la capacidad del sistema para estimar la distancia a un obstaculo en funcion

del nmero de movimientos antes de que presente una colision.

4.2 Adquisicion del concepto pasabilidad

El objetivo de este experimento es mostrar coémo, desde la robdtica cognitiva, es posible proveer
a un agente artificial con la capacidad para juzgar la “pasabilidad” de una apertura. Este
concepto de “pasabilidad”™ es similar al de ““distancia a” descrito en el experimento anterior.

En humanos se ha encontrado que disponemos de una medida escalada a nuestras
dimensiones corporales para juzgar el ancho de una apertura. Especificamente se encontré una
relaciéon que da cuenta de la habilidad para juzgar la “pasabilidad” en términos de las
dimensiones corporales de cada persona en base al ancho de los hombros y al ancho de la
apertura que se pretende atravesar (Warren y Whang, 1987).

Haciendo uso de las asociaciones multi-modales aprendidas, el agente es capaz de generar
estructuras de tipo arbol basadas en la representacion del modelo directo a manera de nodo (ver
Figura 4). El andlisis de las predicciones tactiles es suficiente para dotar al agente con el concepto
de “ pasabilidad”

El experimento consiste en situar al agente frente a dos aperturas o entradas, donde una de
ellas es mas pequefia que el tamafio de su cuerpo y la otra de mayor tamarfio (Ver Figura 13).
Generando un arbol basado en las PLPs, éste podria determinar cual de ellas es por la que puede
pasar sin colisionar y cual no; esto sin la necesidad de ejecutar de forma explicita una secuencia
de acciones.

En este contexto, este experimento se dividié en dos etapas. Una etapa inicial de caracter
exploratorio y otra de correccion de la trayectoria. EI propésito de la primera etapa es reconocer
la ubicacién de la apertura por la que el agente podria pasar y comenzar a dirigirse hacia ella.
Durante la segunda etapa se corrige el curso de la trayectoria para que el agente logre pasar a

través de la apertura sin colisionar con los bordes de la misma.
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Figura 13: Ambiente para el estudio del concepto de pasabilidad. El agente se encuentra situado frente a una escena
visual que muestra dos aperturas, segln la imagen por la de la izquierda el agente no puede pasar mientras que por la
de la derecha si.

Para la primera etapa se construye un arbol de predicciones de profundidad 10 y de 11 ramas
(ver Figura 14a), esto se logra al realizar 11 diferentes PLPs con 10 instantes de simulacion cada
una, esto es, para cada PLP se simulan 10 comandos motrices. La direccion de las flechas indica
el tipo de comando motriz elegido en cada paso de la simulacion. Por ejemplo, la rama 1 indica la
simulacion de 5 giros hacia la derecha y en seguida 5 movimientos hacia adelante (d-d-d-d-d-a-a-
a-a-a), la rama 6 indica 10 movimientos hacia adelante (a-a-a-a-a-a-a-a-a-a) y la rama 11, 5 giros

La eleccion de estas ramas para el arbol de predicciones, obedecio al hecho del aumento
exponencial del nimero de éstas a medida que aumenta la profundidad del &rbol (para una
profundidad de 10 existen: 3'° = 59049 ramas). Por esta razon se eligieron tnicamente las ramas
que indican los comandos motrices mas relevantes para el agente, es decir, aquellas en donde
predominan los movimientos hacia adelante, ya que éstos son los Gnicos en los que se podrian
presentar colisiones. La profundidad de 10 niveles corresponde al maximo numero de instantes
simulados con los que se puede anticipar una colisién de manera confiable (ver Figura 12 de la
seccion 4.1.2).

Una vez que se realizaron las 11 PLPs se eligio la de menor activacion tactil y se ejecutaron
Unicamente los movimientos indicados por esta rama hasta el instante t+6. Esto permite llevar a
cabo correcciones de la trayectoria mediante un segundo arbol de predicciones en caso de ser
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necesario. La eleccidon del instante t+6 para disparar el segundo arbol es porque asegura que
cualquiera que haya sido la rama con menor activacién, como minimo se ejecute un movimiento
hacia adelante (e.g. las ramas en los extremos del arbol).

Para la segunda etapa se ejecuta un arbol de predicciones de profundidad 3 y 3 ramas: (d-a-
a), (a-a-a) y (i-a-a), donde d significa un giro a la derecha, a un movimiento hacia adelante e i un
giro a la izquierda (ver Figura 14b). La eleccion de una profundidad de 3 niveles estuvo de
acuerdo al umbral de colision que se fijo durante el entrenamiento del sistema, de tal forma que si
se llega a elegir la rama central del arbol (a-a-a), la distancia total recorrida por el agente (450
mm) sea la maxima posible antes de superar al umbral de colision (500 mm) descrito en la

seccion 3.2.
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Figura 14: Arboles de exploracion inicial y para la correccion de trayectoria con profundidad de 10 y 3 niveles, (a)
y (b)) respectivamente.

4.2.1 Primera etapa: Predicciones para una exploracion inicial
Con el objeto de caracterizar el desempefio del arbol de predicciones inicial se muestra la gréafica

de las activaciones promedio acumuladas para cada una de las ramas que lo conforman, (ver
Figura 15).
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En primer lugar se observa que la rama con mayor activacion es la rama 6 del arbol, siendo la
rama critica ya que si se llegaran a ejecutar los movimientos hacia adelante indicados por ésta,
Ilevaria a que el agente colisione con el grupo de obstaculos en la parte central.

En segundo lugar, las ramas de menor valor son las del extremo derecho del arbol (9, 10 y
11), con un valor de activacion acumulada menor a 1.50. Estas indican una serie de movimientos
que dirigirian al agente hacia la apertura por la que puede pasar, sin embargo la rama con la
minima activacion acumulada es la rama 10 (i-i-i-i-a-a-a-a-a-a), con un valor final de 1.24.

Finalmente se muestra en una linea resaltada el instante t + 6, el cual fija el maximo nimero

de movimientos a ejecutarse e inicia la etapa de correccion de la trayectoria.

5.0

—— rama 1

. |- £ - ramma 2

51 //' d— rama 3
e -+ - rama 4

., o 4— rama b
1.5 /" —@— rama b
ra & rauna 7

1 ,r'/ ramsa &
,’ —&— rama 4

;f —— rama 10

3.5 —@— rama 11

]

Activacion promedio aeumulada

1 2 3 ) ] fi 7 & 9 10

Instantes de 1a simylacidn

Figura 15: Activaciones promedio acumuladas del arbol de predicciones para la primera etapa. Se resalta el instante t + 6.

4.2.2 Segunda etapa: Predicciones para correccion de trayectoria
La tarea restante consiste en corregir el curso de la trayectoria a través de la ejecucion del arbol

de predicciones de profundidad 3 (Figura 14b).
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La primera PLP en llevarse a cabo es la correspondiente a la rama 2 del arbol (a-a-a) con el
objeto de determinar si al final de los 3 movimientos el agente llegaria a colisionar, es decir, si la
activacion promedio acumulada para la prediccion tactil superara el valor de 0.8. En caso de que
sucediera esto, se llevarian a cabo las PLPs para las otras 2 ramas del arbol con el objeto de
determinar cual tendria la menor activacion acumulada. En caso contrario, el agente Unicamente
ejecuta la secuencia de movimientos indicados por esta rama.

Al inicio de esta segunda etapa, la PLP de la rama 2 supero el valor de 0.8, haciendo
necesaria la realizacion del arbol de predicciones con sus 3 ramas. La grafica que indica la
activacion promedio acumulada para este arbol se muestra en la Figura 16, en la que se aprecia
que la rama 2 supera el valor umbral, mientras que la rama 1 (d-a-a) es la que tiene el valor

minimo.

4.2.3 Ruta seguida por el agente

La trayectoria seguida por el agente se ilustra en el &rbol de la Figura 17) donde se muestran las
activaciones promedio acumuladas en cada instante de la secuencia de movimientos ejecutados
por el agente. El color de cada nodo es proporcional a la activacion donde el azul y el rojo

codifican los valores de minimo y méximo, respectivamente.

1
= rama |
== rama 2
(0,5 | | == rama 3

L,

4

.2

Activacidn promedio acumulada

0

1 2 o

Instantes de la simlacion

Figura 16: Activaciones promedio acumuladas para el arbol de predicciones durante la correccion de la trayectoria del agente.
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Figura 17: Arbol de las activaciones promedio acumuladas durante toda la trayectoria.

En el caso del arbol de predicciones correspondiente a la etapa de exploracion inicial, se
observa que la rama con menor valor al instante t + 10 es la rama 10. Debido a esto, se ejecutaron
la secuencia de movimientos (i-i-i-i-a-a) indicados por esta rama. Se puede observar la tendencia
que tuvieron las demas ramas de PLPs, de las cuales la rama 6 presenta el valor de mayor
activacion mientras que las ramas 9, 10 y 11 son las que tienen un menor valor.

En seguida, el agente lanz6 un arbol de predicciones de profundidad 3 y corrigid su
trayectoria al elegir la rama 1 que corresponde a la secuencia: d-a-a. Posteriormente el agente
ejecutd Unicamente movimientos hacia adelante, ya que ninguna de las PLP para la rama central
de estos arboles supero el valor umbral de colision fijado en 0.8, por lo que el agente no necesito

realizar otra correccion adicional en el curso de su trayectoria, logrando de esta forma pasar a
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través de la apertura correcta. El video del experimento se puede encontrar en el siguiente
vinculo: http://youtu.be/rEBNrrAymv4.

5 Conclusiones

El trabajo presentado constituye un esfuerzo mas por estudiar modelos provenientes de las
ciencias cognitivas a través de su implementacion en agentes artificiales (Pfeifer, 2002). Todo
esto, dentro del marco de trabajo de la cognicion cimentada (Barsalou, 2008), la cual enfatiza el
papel que desempefia el cuerpo, el entorno y los procesos motrices para la estructuracién vy el
surgimiento de habilidades cognitivas en los agentes.

Este trabajo se origin0 a partir de diversos estudios acerca de la percepcion de distancia en
los humanos, los cuales proponen que ésta no es una capacidad generada a traves de un proceso
geomeétrico, sino que por el contrario es el resultado de la asociacion multi-modal (Braund, 2007),
expresado en términos de unidades escaladas a nuestro cuerpo e influenciado por la accién
(Proffitt, 2006).

El objetivo principal fue desarrollar un modelo capaz de dotar a un agente artificial con la
capacidad de adquirir una nocion de distancia a los objetos de su entorno. Este se bas6 en la
implementacién de un modelo directo, el cual provee de forma anticipada las consecuencias
sensoriales de un comando motriz que se pretende llevar a cabo. El estado sensorial fue
representado a través de las modalidades visual y tactil, mientras que el espacio motriz por tres
movimientos diferentes, un movimiento hacia adelante y giros hacia la izquierda y derecha.

En los experimentos realizados, se encontré que las predicciones realizadas por el modelo
directo para la modalidad tactil estuvieron en un rango continuo de [0-1], a pesar que durante la
fase de entrenamiento ésta fue codificada con un valor binario representando un estado de
colisién o no colision, este aspecto resultd ser una caracteristica emergente del sistema que le
permitié al agente realizar una asociacion multi-modal de la informacion visual y tactil percibida.

El modelo implementado le proporciond al agente la capacidad para realizar un juicio
perceptual de la distancia a un objeto, en funcion del nimero de movimientos que podria ejecutar
antes de que ocurra una colision.

En el primer experimento se colocd un Unico obstaculo frente al agente a diferentes
distancias en intervalos de 15 cm. Para cada una de las distancias el agente llevo a cabo

predicciones de largo plazo (PLP). El proposito de esto fue observar el valor presentado por las
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predicciones tactiles y caracterizar lo que llamamos un concepto de distancia a colision
cimentado en las capacidades sensoriomotrices del agente. Este concepto resultd ser consistente
con un valor constante para la activacion promedio de la modalidad tactil para PLPs de hasta 10
simulaciones. Este valor umbral, es un aspecto que va acorde con uno de los principios de disefio
de agentes artificiales completos que se propone en Pfeifer y Scheier, (1999) y concerniente al
principio del valor, el cual establece la existencia de alguna medida intrinseca que le indique al
agente la conveniencia de experimentar una determinada situacion sensorial.

Una vez cimentado este concepto se disefid un experimento buscando escalar la complejidad
de los procesos cognitivos. La tarea del agente consistié en determinar de entre dos pasajes 0
entradas por cuél de ellos podia pasar sin colisionar. Para lograr esto el agente utiliza lo que nos
atrevemos a llamar un concepto de pasabilidad. Haciendo uso de PLPs, el agente encontro el
mejor camino de manera segura antes de ejecutar ningiin movimiento explicito. Este experimento
se relaciona al reportado en humanos por Warren y Whang (1987). Para tal efecto se implementd
un arbol de 11 PLPs con secuencias de 10 combinaciones distintas de los tres movimientos del
repertorio motriz del agente. Se mostré como las ramas de PLP que indicaban una secuencia de
movimientos hacia la apertura mas amplia, presentaron los valores menores de activacion tactil,
mientras que las demas ramas tuvieron valores mayores. La maxima activacion correspondi6 a la
secuencia de acciones que conducirian a una colision con los obstaculos frente al agente. En
seguida, se realizd una correccion de la trayectoria en plena ejecucion de ésta, gracias a la
implementacion de un arbol de PLPs de 3 ramas y 3 combinaciones de los tres movimientos. Esto
le permitid al agente anticipar una futura colision con uno de los bordes de la apertura y terminar
la tarea de manera exitosa.

Es importante resaltar las principales diferencias con trabajos relacionados en el area y que
estan vinculadas a las caracteristicas especificadas en la seccion 2.3. A diferencia de los trabajos
reportados en Hoffmann (2007) y en Méller y Schenck (2008), el modelo reportado aqui utiliza
una unidad de medicién que esta basada en las caracteristicas propias del agente, como son las
unidades de movimiento, es decir, en X pasos ocurrira una colisién. El sistema no necesita de
una calibracion o interpretacion externa pues relaciona el espacio sensorial con las acciones que
es capaz de realizar. Asi, 3 movimientos hacia adelante o 3 comandos motrices se convierten para
el observador en 45 cm. Esta unidad de medicién es tomada por Escobar et al., (2012) en su

implementacién de un modelo directo, sin embargo, los autores usan los métodos de la vision
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artificial tradicional para resolver el problema geométrico que se presenta al calcular el mapa de
disparidad. En el modelo presentado aqui, este mapa no es necesario ya que se toman las
imagenes tal como son obtenidas de la camara estereoscopica.

Lo mismo es presentado por Gaona et al. (2012) donde el modelo directo toma dos imagenes
y predice los cambios de éstas, asi como una situacion tactil. Sin embargo, este sistema ofrece
una prediccion muy inferior a la presentada en este trabajo. Nuestro sistema lleva a cabo
predicciones visuales de hasta 10 pasos como se muestra en la seccion 4. Més aun, la prediccion
tactil estd construida de manera que simula el mapa de disparidad obtenido por otros metodos,
manteniendo una alta correlacién con las imagenes reales y predichas.

Sin lugar a duda, el trabajo a futuro en términos de comportamientos mas complejos
presenta retos importantes. Creemos que estos experimentos proveen bases sélidas para la
cimentacion de conceptos y acciones en agentes artificiales, abriendo discusiones importantes
sobre la toma de decisiones y la posibilidad de planificacion. Estamos seguros de que la
investigacion de comportamientos de bajo nivel usando informacion motriz y sensorial cimentada
en los agentes y sus capacidades es un fundamento necesario para continuar en la busqueda de
agentes inteligentes y autobnomos. Entre otras, una de las direcciones que esta investigacion debe
tomar es la de predicciones de acciones de otros agentes. Una vez que un agente ha aprendido su
esquema sensoriomotriz y sus capacidades en esos términos, deberd entonces ser capaz de
entender las acciones de otros agentes (Oztop et al., 2006). Todo esto dentro del marco de la
robotica cognitiva, la interaccion de los agentes con su ambiente y las representaciones y

predicciones sensorimotrices.
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