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 Método de Perturbación y Aproximación de Laplace-Padé como una herramienta novedosa para encontrar soluciones 
aproximadas en el problema de Troesch 

Resumen 
 

En este artículo el Método de Perturbación (PM) es empleado para obtener una solución 

aproximada para el problema de Troesch. Además describiremos el uso de la Transformada de 

Laplace y la Aproximación de Padé para trabajar con las series truncadas obtenidas por el 

Método de Perturbación, y así obtener soluciones aproximadas compactas. Finalmente se propone 

una tabla comparativa entre la solución propuesta y otras soluciones reportadas en la literatura: 

Método de Descomposición de Adomian, Método de Perturbación Homotópica, Método de 

Análisis Homotópico y la solución numérica exacta. Los resultados muestran que nuestra 

solución es la más exacta (Error Relativo Absoluto Promedio 81.705648354 10x − ). 

 

Palabras clave: Ecuación de Troesch, Ecuación Diferencial no lineal, Método de Perturbación, 

Transformada de Laplace, Aproximación de Padé 
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Abstract 

 

In this article, Perturbation Method (PM) is employed to obtain an approximate solution for 

Troesch equation. In addition, we will describe the use of Laplace transform and Padé 

transformation to deal with the truncated series obtained by the PM method, in order to obtain 

handy approximations. Finally a table of comparison, between proposed solution, and other 

solutions reported in the literature: Adomian’s Decomposition Method (ADM), Homotopy 

Perturbation Method (HPM), Homotopy Analysis Method (HAM) and exact numerical solution, 

shows that our solution is the most accurate one (Average Absolute Relative Error  
81.705648354 10x − ). 

 

Keywords: Troesch Equation, Nonlinear Differential Equation, Perturbation Method, Laplace 

transform, Padé transformation 
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1. Introduction 

 

Troesch equation is relevant in physics because it models the confinement of a plasma column by 

radiation pressure. Therefore, it is important to search for accurate solutions for this equation. 

Unfortunately, it is difficult to solve nonlinear differential equations, like many others that appear 

in the physical sciences. 

The perturbation method (PM) is a well established method; it is among the pioneer techniques to 

approach various kinds of nonlinear problems. This procedure was originated by S. D. Poisson 

and extended by J. H. Poincare. Although the method appeared in the early 19th century, the 

application of a perturbation procedure to solve nonlinear differential equations was performed 

later on that century. The most significant efforts were focused on celestial mechanics, fluid 

mechanics, and aerodynamics [1, 2, 54, 55]. 

In general, it is assumed that the differential equation to be solved can be expressed as the sum of 

two parts, one linear and the other nonlinear. The nonlinear part is considered as a small 

perturbation through a small parameter (the perturbation parameter). The assumption that the 

nonlinear part is small compared to the linear is considered as a disadvantage of the method. 

There are other modern alternatives to find approximate solutions to the differential equations 

that describe some nonlinear problems such as those based on: Variational approaches [5-7, 29], 

Tanh method [8], Exp-function [9, 10], Adomian’s decomposition method [11-16,40], Parameter 

expansion [17], Homotopy perturbation method [3,4,18-28,31-36,39,45,46,48-53,56,57] and 

Homotopy analysis method [30,47], among many others. 

Although the PM method provides in general, better results for small perturbation 

parameters 1ε << , we will see that our approximation has good accuracy, even for big values of 

the perturbation parameter. Finally, we will couple the PM and Padé methods, in order to express 

the results of perturbation method in a handy way.  

The paper is organized as follows. In Section 2, we introduce the basic idea of the PM method. 

Section 3 will provide a brief introduction to the Padé approximation. For Section 4, we provide 

an application of the PM method. Section 5 shows an approximate solution to the Troesch 

equation by using Laplace-Padé approximation. Section 6 discusses the main results obtained. 

Finally, a brief conclusion is given in Section 7. 
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2. Basic idea of Perturbation Method. 

Let the differential equation of one dimensional nonlinear system be in the form 

 ( ) ( ) 0L x N xε+ = .                                                                                          (1)  

Where we assume that x is a function of one variable ( )x x t= , ( )L x  is a linear operator which, in 

general, contains derivatives in terms of t , ( )N x is a nonlinear operator, and ε  is a small 

parameter.  

Considering the nonlinear term in (1) to be a small perturbation and assuming that the solution 

for (1) can be written as a power series in the small parameterε . 
2

0 1 2( ) ( ) ( ) ( ) ...x t x t x t x tε ε= + + +                                                                       (2) 

Substituting (2) into (1) and equating terms having identical powers of ε , we obtain a number of 

differential equations that can be integrated, recursively, to find the values for the functions: 0( )x t , 

1( )x t , 2 ( )x t … 

 

3. Padé Aproximation.  

A Rational approximation to ( )f x on ,a b   is the quotient of two polynomials ( )NP x and ( )MQ x  of 

degrees N  and M , respectively. We use the notation , ( )N MR x to denote this quotient. 

The , ( )N MR x Padé approximations to a function are given by [41,43] 

( )
( )

N
NM

M

P xR Q x= ,                      a x b≤ ≤  .                                                        (3)   

The method of Padé requires that ( )f x and its derivatives be continuous at 0x = . The polynomials 

used in (3) are  
2

0 1 2 ,( ) ... ( ) N
N NP x p p x p x p x x= + + + +                                                            (4) 

2
0 1 2( ) ... ( ) N

N NQ x q q x q x q x x= + + + + .                                                             (5) 

The polynomials in (4) and (5) are constructed so that ( )f x and , ( )N MR x agree at 0x = and their 

derivatives up to N M+ agree at 0x = . In this case 0( ) 1Q x = , the approximation is just the 

Maclaurin expansion for ( )f x . For a fixed value of N M+ the error is smallest 

when ( )NP x and ( )MQ x have the same degree or when ( )NP x has degree one higher than ( )MQ x .  
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Notice that the constant coefficient of ( )MQ x is 0 1q − . This is permissible, because it can be noted 

that 0 and , ( )N MR x do not change when both ( )NP x and ( )MQ x are divided by the same constant. 

Hence the rational function , ( )N MR x has 1N M+ + unknown coefficients. Assume that ( )f x is 

analytic and has the Maclaurin expansion. 

 
2

0 1 2( ) ... ...k
kf x a a x a x a x= + + + + +                                                                       (6) 

And from the difference ( ) ( ) ( ) ( )M Nf x Q x P x Z x− =  

0 0 0 1
.

M N
i i i i

i i i i
i i i i N M

a x q x p x c x
∞ ∞

= = = = + +

       
              

− =∑ ∑ ∑ ∑                                                                (7) 

The lower index 1j N M= + + in the summation on the right side of (7) is chosen because the 

first N M+ derivatives of ( )f x and , ( )N MR x should agree at 0x = . 

When the left side of (7) is multiplied and the coefficients of the powers of ix  are set equal to 

zero for 0,1,2,..., ,k N M= + the result is a system of 1N M+ + linear equations. 

 

 

1 0 1 1 0,q a a p+ − =  

2 0 1 1 2 2 0,q a q a a p++ − =                                                                                   (8) 

3 0 2 1 1 2 3 3 0,q aq a q a a p+ ++ − =  

1 1 0M N M M N M N Nq a q a a p− − − −+ − = , 

and  

1 1 2 1 2... 0,M N M M N M N Nq aq a q a a− + − − + ++ + ++ =  

2 1 3 1 1 3... 0,M N M M N M N Nq aq a q a a− + − − + + ++ + ++ =  

…                                                                                                             (9) 

 

 

0 0 0,a p− =

1 1 1... 0.M N M N N M N Mq aq a q a a+ + + ++ + ++ =
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Notice that in each equation the sum of the subscripts on the factors of each product is the same. 

This sum increases consecutively from 0 to N M+ . The M equations in (9) involve only the 

unknowns: 1q , 2q ,…, Mq and must be solved first. Then the equations in (8) are used successively 

to find 1p , 2p ,…, Np [41]. 

 

4. Approximate solution of Troesch Equation.   

The equation to solve is  

sinh( ) 0y yε ε′′− = ,       0 1x≤ ≤ ,   (0) 0y = ,     (1) 1y = ,                               (10) 

whereε is known as Troesch,s parameter. 

It is possible to find a handy solution for (10) by applying PM. Identifying terms: 

( ) ( )L y y x′′= ,                                                                                            (11) 

sinh( ) ( )N y yε= − ,                                                                                     (12) 

andε with the PM parameter.  

Since the parameter is embedded into the nonlinear operator ( )N y , we express the right hand side 

of (12), in terms of Taylor series expansion as it is shown  
4 3 6 5 8 7

2 ...6 120 5040
y y yy y ε ε εε +′′ = + + +                                                                 (13)  

Assuming a solution for (13) in the form 

2 3 4
0 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ...y x y x y x y x y x y xε ε ε ε= + + + + + ,           (see (2))              (14)   

and equating the terms with identical powers of ε , it can be solved for 0( )y x , 1( )y x , 2 ( )y x ,…, and 

so on. Later it will be seen that, a very good result is obtained, by keeping up to eighth order 

approximation. 
0)ε                   0 0y′′ = ,                                                                                         (15) 

1)ε                   1 0y′′= ,                                                                                         (16) 

2)ε                   2 0y y′′ = ,                                                                                       (17) 

3)ε                   3 1y y′′= ,                                                                                        (18) 
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4 )ε                   
3
0

4 2 6
yy y +′′ = ,                                                                                (19) 

5)ε                   
2
0 1

5 3 2
y yy y +′′= ,                                                                              (20) 

6)ε                   
2 2 5
0 1 0 2 0

6 4

3 3
6 120

y y y y yy y
 + + +′′= ,                                                      (21) 

7 )ε                   
2 3 4

3 0 1 0 1 2 0 1
7 5

3 6
6 24

y y y y y y y yy y
 + + + +′′ = ,                                             (22)  

8)ε       
2 2 2 4 3 2 4 2 73 3 3 6 5 90 4 2 1 0 2 0 1 3 0 2 0 1 0 1 0

8 6 6 120 5040

y y y y y y y y y y y y y y y y
y y

+ + + + +
′′ = + + +

       ,                   (23) 

                                                              

 In order to fulfill the boundary conditions from (10), it follows that 0(0) 0y = ,    

0 (1) 1y = , 1(0) 0y = , 1(1) 0y = , 2 (0) 0y = , 2 (1) 0y = , 3(0) 0y = , 3(1) 0y = , 4 (0) 0y = , 4 (1) 0y = , and so 

on. Thus, the results obtained are       

                         0 ( )xy x= ,                                                                                       (24)  

                         1( ) 0xy = ,                                                                                       (25) 

                         
3

2 ( ) 6 6
x xy x = − ,                                                                                      (26)  

                         3 ( ) 0xy = ,                                                                                       (27) 

                         
5 3

4 ( )
60 36 90
x x xxy − += ,                                                                        (28) 

                        5 ( ) 0xy = ,                                                                                               (29)  

                    
7 5 3

6
13 51( )
5040 180 540 45360

x x x xxy − + += ,                                                       (30)  

                        7 ( ) 0xy = ,                                                                                               (31)  

                    
9 7 5 3

8
55459 13 23 51 202821( )

125000000 10080 21600 272160 500000000
x x x x xxy − + + −= ,                        (32)  
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                                                                  

By substituting (24)-(32) into (14), we obtain an approximate solution to (10), as it is shown 
9 8 6 8 4 6 8 2 4 6 8

7 5 355459 13 13 23 51( )
125000000 5040 10080 60 180 21600 6 36 540 272160

xx x x xy ε ε ε ε ε ε ε ε ε ε     
+ − + − + + − + + +     
     

=  

          
2 4 6 851 2028211

6 90 45360 500000000
xε ε ε ε 

+ − + + − 
 

.                                                                    (33)  

We consider as a case of study, the following values of the Troesch,s 

parameter: 0.5ε = , 1ε = , 1.5ε =  , 2ε = , so that  

7 9 7 5 391 5303 16704627 2784143( ) 8.665468 10
2580480 5529600 418037760 2903040

y x x x x x x x−= + + + + , ( 0.5)ε =        (34) 

 

9
7 5 355459 13 487037 1101001 105746803( )

125000000 10080 40000000 7812500 125000000
xx x x x xy + + + += ,              ( 1)ε =         (35) 

 

9
7 5 311370828 9477 267543 107130195 198496453( )

1000000000 2580480 5529600 418037760 290304000
xx x x x xy − + + += ,      ( 1.5)ε =     (36) 

 

9
7 5 3221836 52 124 808 479224431( )

1953125 315 675 2835 1000000000
xx x x x xy − + + += .                              ( 2)ε =        (37) 

 

5. An approximate solution by using Laplace-Padé transformation and PM Method. 
 

In this section we will describe the use of Laplace transform and Padé transformation [40] to deal 

with the truncated series (34), (35), (36) and (37) obtained by PM, in order to obtain handy 

approximate solutions to equation (10), keeping the same domain of the original problem [56]. 

First, Laplace transformation is applied for example, to series (34) and then 1/ x  is written in 

place of s in the equation obtained. Then Padé approximant [4/4] is applied and 1/s is written in 

place of x . Finally, by using the inverse Laplace transformation, we obtain the modified 

approximate solution. 
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4 869
54 434 245

85 116( ) 573
x xy x Sinh Sinh   

   
   

= + .                                                    (38) 

Then, applying the same procedure to the series (35), (36) and (37), we obtain the following al-

ternative expressions. 

1 73 15 16( ) 178 27 17 17
x xy x Sinh Sinh   

   
   

= + ,                                                               (39) 

 

37 30 659
16 47 1 49( ) 12

x xy x Sinh Sin   
   
   

= + ,                                                                 (40) 

 

85 31 8641
18 70 1 106( ) 11

x xy x Sinh Sin   
   
   

= + .                                                             (41) 

  
                                                                                                                     

6. Discussion 

 

The fact that the PM depends on a parameter which is assumed small, suggests that the method is 

limited. In this work, the PM method has been applied to the problem of finding an approximate 

solution for the nonlinear differential equation which describes the Troesch,s problem. Table 1 

shows the comparison between exact solution given in [42], and approximations (34), (38), ADM 

[44], HPM [45], HPM [46] and HAM [47] for the case 0.5ε = . It is clear that (34), has the best 

accuracy and also the lowest Average Absolute Relative Error (A.A.R.E) 81.705648354 10x − , 

followed by HAM [47], with accuracy 62.51374 10x − , despite of the fact that HPM, ADM and HAM 

methods are considered more general and difficult to use. Table 2 shows that for 1ε = , our 

approximations (35) and (39) were the best. In particular PM possesses the lowest A.A.R.E 
52.379908276 10x − , although 1ε =  cannot be considered as small.   

The PM method provides in general, better results for small perturbation parameters 1ε <<  (see 

(1)) and when are included the most number of terms from (2). To be precise,ε  is a parameter of 

smallness, that measures how greater is the contribution of linear term ( )L x than the one 

of ( )N x in (1).  From the approximations (34), (35), (36), (37), as well as of Figure 1, it is clear 

that the term proportional to x  ( 0 ( )xy x= ), is the contribution to the approximation of the linear 

operator (see (15) and (24)) besides, they are the dominant terms in the approximate solutions, 

even for the big values of: 0.5ε = , 1ε = , 1.5ε =  and 2ε = . This happens because Troesch, s 
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problem is defined in [0,1] (see (10)); in that interval 3 5 7 9,, ,x x x x x> , for (0,1)x∈ . Also, the 

coefficients of powers: 3 5 7 9, , ,x x x x of the aforementioned equations (34)-(37) are small, 

compared with that of x .  

Figure 1 shows the comparison between approximate solutions (34) and (35) for 0.5ε = and 

1ε = respectively, and the exact solutions given in [42]. Besides, the same Figure compares (36) 

( 1.5)ε =  and (37) ( 2)ε =  with the four order Runge Kutta numerical solution of (10), for the 

same values ofε . It can be noticed that, figures are very similar in all cases, of which is clear the 

accuracy of results (34)-(37) as approximated solutions for (10).  

 

 
Fig 1: Comparison of proposed solution (34) (solid line) for 0.5ε = , 1ε = , 1.5ε =  and 2ε = ;  
with  0.5ε =  (solid square), 1ε =  (solid circles) reported in [42]; 1.5ε =  (empty square) and 

2ε = (diagonal-cross) calculated by using four order Runge Kutta. 
 

We employed Laplace transform and Padé transformation to obtain the approximate solutions of 

equation (10), given by (38)-(41). Although some precision is lost compared with PM 

approximations, expressions (38)-(41) are handier and computationally more efficient than (34)-

(37). In fact from tables 1 and 2, we conclude that our PM Padé expressions are also competitive. 

For 0.5ε = , (38) has an acceptable accuracy, since it’s A.A.R.E 52.720152702 10x − , is better than 
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the ones of ADM [44] and HPM [45], while for 1ε = , (39) is even better, when it is compared 

with the other approximations, having the second best A.A.R.E 45.51616232 10x −  as it had been 

already  mentioned.  

Unlike other methods, our approximate solution (33) does not depend of any adjustment 

parameter, for which, it is in principle, a general expression for Troesch, s problem.  

 

It is important to remark, that further research may be focused on the development of a sensitivity 

analysis for the solutions emanating from the perturbation method (PM), since it is possible that 

small perturbations on the coefficients change the accuracy of the approximate solutions.  

 

x Exact[8] PM PM-Pade ADM[44] HPM[45] HPM[46] HAM[47] 

0.1 0.0959443493 0.0959443459 0.0959417697 
0.0959383534 0.0959395656 0.095948026 0.0959446190 

0.2 0.1921287477 0.1921287413 0.1921235763 0.1921180592 0.1921193244 0.192135797 0.1921292845 
0.3 0.2887944009 0.2887943925 0.2887866136 0.2887803297 0.2887806940 0.288804238 0.2887952148 
0.4 0.3861848464 0.3861848373 0.3861744075 0.3861687095 0.3861675428 0.386196642 0.3861859313 
0.5 0.4845471647 0.4845471566 0.4845340266 0.4845302901 0.4845274183 0.4845599 0.4845485110 
0.6 0.5841332484 0.5841332428 0.5841173497 0.5841169798 0.5841127822 0.584145785 0.5841348222 
0.7 0.6852011483 0.6852011458 0.6851824083 0.6851868451 0.6851822495 0.685212297 0.6852028604 
0.8 0.7880165227 0.7880165229 0.7879948277 0.7880055691 0.7880018367 0.788025104 0.7880181729 
0.9 0.8928542161 0.8928542178 0.8928293923 0.8928480234 0.8928462193 0.892859085 0.8928553997 

        A.A.R.E    81.705648354 10x − 52.720152702 10x −  53.47802 10x −        53.57932 10x −     52.44418 10x −      62.51374 10x −     

Table 1: Comparison between (34), exact solution [42], and other reported approximate solutions, using 0.5ε = . 
  
x Exact[8] PM PM-Pade ADM[44] HPM[45] HPM[46] HAM[47] 
0.1 0.0846612565 0.0846573641 0.0847051491 0.084248760 0.0843817004 0.084934415 0.0846732692 
0.2 0.1701713582 0.1701639663 0.1702606304 0.169430700 0.1696207644 0.170697546 0.1701954538 
0.3 0.2573939080 0.2573838801 0.2575316283 0.256414500 0.2565929224 0.258133224 0.2574302342 
0.4 0.3472228551 0.3472115676 0.3474137007 0.346085720 0.3462107378 0.348116627 0.3472715981 
0.5 0.4405998351 0.4405890267 0.4408496855 0.439401985 0.4394422743 0.44157274 0.4406610140 
0.6 0.5385343980 0.5385257349 0.5388488010 0.537365700 0.5373300622 0.539498234 0.5386072529 
0.7 0.6421286091 0.6421230701 0.6425088996 0.641083800 0.6410104651 0.642987984 0.7526899495 
0.8 0.7526080939 0.7526055378 0.7530430509 0.751788000 0.7517335467 0.753267551 0.7526899495 
0.9 0.8713625196 0.8713619354 0.8718119297 0.870908700 0.8708835371 0.871733059 0.8714249118 

        A.A.R.E    52.379908276 10x −  45.51616232 10x −   .002714577       .002320107          002044737        0.019244326  

Table 2: Comparison between (35), exact solution [42], and other reported approximate solutions, using 1ε = . 
 

7.  Conclusion 
 
This work showed that some nonlinear problems can be adequately approximated by using the 

PM method, even for large values of the perturbation parameter; as it was done for the Troesch, s 

problem described by (10). The fact that the term proportional to x, is the dominant one in 

approximations: (34), (35), (36), (37), even for the big values ofε , contributed to the success of 
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the method for this case and could be useful to apply it in similar cases, instead of using other 

sophisticated and difficult methods. Finally we showed that, it is possible to use a novel 

technique that coupled the PM method and the Padé–Laplace transformation to obtain, handy 

approximate solutions of equation (10), given by (38)-(41). In all cases, the numerical and 

graphical results show that the proposed solutions have good accuracy.  
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