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Resumen 
 

Este artículo ofrece un esquema para el cálculo de la movilidad de electrones en una estructura de 

pozo delta dopado, a bajas temperaturas y para campos eléctricos aplicados no muy intensos. El 

análisis se hace para un sistema dopado tipo n, considerando una lámina de impurezas de silicio 

en una muestra de GaAs. Se tiene en cuanta explícitamente el carácter tridimensional de los 

estados electrónicos y de las magnitudes que se miden –en lugar de realizar aproximaciones en 

que se reduzcan las dimensiones del sistema–, lo que facilita la ejecución del cálculo. Se exponen 

los resultados de otros esquemas utilizados y se dan las fórmulas que se emplearán para 

comprobar y comparar nuestros cálculos con los reportados previamente. En la actualidad, se está 

en el proceso de implementación del cálculo numérico, del que se expone el algoritmo que se 

tiene en ejecución. 

 

Palabras Clave: Pozo delta dopado; Nanoestructura semiconductora; Movilidad eléctrica; 

Campo eléctrico 
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Abstract 

This paper offers an scheme for the calculation of the mobility of electrons in a delta doped QW 

considering the conditions of low temperature and low electric field intensity. The system 

considered is a quantum well for electrons in the conduction band made by a silicon impurity 

plane in a sample of GaAs. The 3D character of the electronic states and of the magnitudes 

considered is explicitly tacked into account instead of reducing the dimensionality of the system 

to make the calculations more easy. Other calculations are compared and the formulae obtained 

in our approximation are given. At this moment the numerical calculation is in progress and the 

algorithm to do it is presented.  

 

Keywords: delta doped QW; electric charge mobility; electric field 
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1. Introducción 

 

Un elemento importante para el conocimiento y la predicción del comportamiento de las 

magnitudes de transporte de carga de un sistema semiconductor, es la movilidad de los 

portadores, definida como la respuesta de estos a la acción del campo eléctrico aplicado, que 

resulta en el movimiento. Desde hace alrededor de dos décadas se comenzó el estudio de la 

movilidad de electrones en sistemas delta dopados (puede consultarse, por ejemplo, González 

1994,1996, 1999; Shi 1997; Hai 1995; Hai et al. 1995) como un problema de interés práctico, 

buscando elevar la velocidad de movimiento de los portadores en el sistema y así mejorar la 

respuesta de estos a campos eléctricos externos aplicados. Con esto se podría implementar su uso 

en dispositivos electrónicos de respuesta rápida. Además, el tratamiento dado tiene utilidad como 

elemento teórico de relevancia para comprender la forma en que se mueven y se comportan los 

portadores de carga en estos sistemas y mejorar sus características de uso.  

La dificultad en el estudio de la movilidad de los electrones en un sistema delta-dopado 

tipo n de Si en GaAs proviene del hecho que es la propia distribución de átomos de Si ionizados 

la que condiciona la forma del pozo de potencial en que se confinan estos portadores de carga, 

con varias subbandas ocupadas a bajas temperaturas. Esto ha tornado dicho análisis en un asunto 

complicado, tanto en la banda de conducción (BC) como en la banda de valencia (BV). En los 

reportes (Gaggero 2002; Gaggero 1998), se investiga la forma en que se pueden obtener los 

niveles de energía en un pozo cuántico delta-dopado, sin recurrir al proceso autoconsistente que 

implica la solución simultánea de las ecuaciones de Schrödinger y Poisson para reconstruir el 

potencial y, de esa forma, calcular los estados electrónicos del movimiento en el potencial de las 

impurezas ionizadas. El esquema estudiado por Gaggero et al. fue inicialmente propuesto por 

Ioriatti (Ioriatti 1990) y su significación estriba en que reduce el cálculo de los estados 

energéticos y las funciones de onda de este sistema a un problema relativamente simple, en el que 

se usa una expresión analítica para describir el potencial del pozo. El proceso de determinación 

de la movilidad electrónica en esta clase de sistemas se ha desarrollado desde los finales de los 

años 80 y tuvo su expresión más depurada en los trabajos (González 1994; González 1996). 

El completamiento de la tarea de evaluar la movilidad de portadores se compone de varias 

partes importantes. En el caso específico de un pozo delta-dopado podemos delinear los 

siguientes pasos: i) Calcular los estados energéticos y las funciones de onda correspondientes a 

esos estados. 

Esto se puede hacer utilizando o no el esquema autoconsistente. ii) Efectuar el cálculo de los 

elementos matriciales de la interacción de los electrones con los operadores de interacción 

asociados a los diferentes mecanismos que provocan dispersión en el material (impurezas 

ionizadas, impurezas neutras, fonones de diferentes ramas de oscilación, etc.). Previo a este paso, 

se debe discutir la importancia relativa de cada una de estas interacciones, seleccionando los 

mecanismos más importantes de acuerdo con las condiciones particulares de operación del 

sistema electrónico de baja dimensión. iii) Dentro del problema de la interacción entre los 

portadores y los átomos de impurezas, especialmente, habrá que tener en cuenta el 

apantallamiento del potencial coulombiano de las impurezas asociado al propio gas electrónico. 

Esto se puede realizar en el marco de diferentes aproximaciones, de acuerdo principalmente a la 

forma en que se incluyen los efectos de muchos cuerpos en el sistema. iv) Determinar la 

movilidad de los electrones en la estructura. Una de las vías más directas de realizar este cálculo 

es plantear y resolver la ecuación de Boltzmann para el movimiento de los electrones en la 

aproximación del tiempo de relajación. Esta última cantidad es proporcional a la movilidad de los 

portadores en las condiciones en que fue resuelta la mencionada ecuación de transporte. En 
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(González 1994,1999; Hai et al. 1995) se describe este procedimiento para un sistema delta-

dopado. 

 

En términos generales, los resultados contenidos en los trabajos desarrollados por los 

referidos autores siguen la tendencia de los reportados experimentalmente; pero adolecen de 

determinados defectos que pueden resumirse en lo siguiente: i) Se obtienen saltos en los valores 

de la movilidad cuando se pasa de una concentración de impurezas a otras, lo que no se observa 

en los experimentos (González 1994; Hai 1995). ii) Los valores de la movilidad que se reportan a 

partir del cálculo teórico son muy diferentes (en ocasiones órdenes de magnitud) a los obtenidos 

en los experimentos (González. 1994). iii) Los cálculos que se realizan, aunque incluyen varias 

subbandas ocupadas, no consideran el movimiento de los electrones en tres dimensiones. En otras 

palabras, reducen la descripción de los estados a un problema estrictamente bidimensional y no 

en el espacio (González 1994). Esto tiene consecuencias tanto en la descripción de los estados 

como en las magnitudes que se calculan. 

El presente trabajo describe el proceso seguido por nosotros para obtener de forma teórica 

la movilidad de electrones en un pozo cuántico delta-dopado. Hacemos especial énfasis en 

aquellos elementos que diferencian el enfoque que proponemos con el desarrollado –en el mismo 

esquema del tiempo de relajación– por los autores mencionados arriba, y exponemos sus 

particularidades con un elevado grado de detalle. Se hace de esta manera porque los aspectos 

generales de dicho enfoque son aplicables a una gran mayoría de los sistemas electrónicos cuasi-

bidimensionales. Un elemento clave en el formalismo es la evaluación de la función dieléctrica 

del gas tridimensional de portadores con confinamiento en una dirección espacial, la cual 

contiene la información del apantallamiento de la interacción coulombiana entre todos los 

electrones del gas. En el caso de los sistemas delta-dopados se han obtenido ya algunos 

resultados en ese tema (Rodríguez-Coppola 2010). 

Es preciso hacer notar que, dada la extensión del trabajo en su conjunto, hemos decidido 

presentar en este reporte únicamente la parte concerniente al formalismo. Dejamos para una 

publicación posterior la presentación de los resultados específicos para la movilidad de electrones 

en pozos cuánticos delta-dopados tipo n en GaAs, la cual se estudiará fundamentalmente como 

función de la concentración de átomos de impureza ionizados en el sistema. 

 Para el desarrollo de este propósito se ha dividido el texto en las siguientes partes: la 

sección siguiente se dedica a describir brevemente el proceso de cálculo de los estados 

electrónicos del sistema delta dopado en las condiciones planteadas, utilizando la aproximación 

de Thomas-Fermi (Gaggero 2002). Los resultados de esta evaluación, para el conjunto de pozos a 

modelar, se utilizan como datos iniciales para el cálculo de la interacción de los electrones con 

los procesos de dispersión presentes en el sistema. Las consideraciones para la selección de los 

procesos de dispersión y la forma en que se incluyen en el cálculo los diferentes procesos, se 

describe en la siguiente sección. Posteriormente, se describe el proceso de obtención de los 

tiempos de relajación y su relación con la movilidad de los portadores y se dan las 

consideraciones finales sobre el trabajo realizado. 

 

2. Cálculo de los estados electrónicos de un pozo delta dopado. 
 

El procedimiento más exacto para determinar los estados electrónicos de un δ-DQW requiere 

del proceso autoconsistente de solución de las ecuaciones diferenciales de Schrödinger y de 

Poisson porque el propio potencial asociado a las impurezas ionizadas es el que produce la 
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deformación de la banda de conducción que constituye el pozo de energía potencial que confina a 

los electrones en la vecindad de la capa donde están dispuestas las impurezas (supuesta 

idealmente una monocapa y, en la práctica, resultando normalmente unas pocas capas atómicas 

insertadas en la matriz del semiconductor volumétrico). En la literatura se han realizado 

diferentes alternativas para el análisis de esta situación que tratan de sustituir el tratamiento 

autoconsistente por alguna aproximación que desde el punto de vista cuantitativo conduzca a 

desviaciones importantes de los valores de los niveles de energía con respecto a los 

proporcionados por el sistema de Schrödinger-Poisson. De entre las propuestas nos va a interesar 

aquí la que permite deducir una expresión analítica para el perfil de potencial asociado al δ-

DQW, la cual se deriva de la aplicación de la aproximación de Thomas-Fermi al problema de 

densidad funcional local en una dimensión (Ioriatti 1990; Gaggero, 2002; Gaggero 1998). 

 Debemos comenzar diciendo que consideraremos el sólido descrito dentro de la 

aproximación de función envolvente (EFA) (Bastard (1998)), considerando que las bandas de 

energías permitidas están desacopladas. La ecuación de onda para los electrones es una ecuación 

de Schrödinger con masa efectiva que describe el movimiento de los portadores en el potencial 

provocado por los átomos de impurezas ionizados localizados en una capa atómica. Como el 

potencial colombiano es de largo alcance, la concentración en el plano de las impurezas origina la 

deformación del perfil de energía potencial de la banda en la forma de un pozo de potencial para 

los electrones que tiene un tamaño relativamente grande con respecto a la distancia media 

cuadrática entre los mismos. Esto provoca que ese potencial cause el confinamiento de los 

electrones. La solución autoconsistente de este problema implica resolver simultáneamente las 

ecuaciones: 

 

 

 

 

 

 

 

 

 

 

 Como se observa de (2) el potencial que en el que se mueven los electrones es debido a 

las impurezas ionizadas (se supone que se ionizan el total de los átomos dopantes), VI (z), y a los 

propios electrones que existen en el gas [potencial de hartree, VX (z)]. Esto es cierto cuando la 

cantidad de impurezas no es especialmente alta y cuando la temperatura es baja. En este caso se 

puede y debe usar una descripción del potencial que incluya también los términos de canje y 

correlación para considerar la interacción entre los electrones asociada al principio de Pauli.
1 

Entonces, la aplicación de la aproximación conocida como de Thomas-Fermi resuelve este 

problema autoconsistente arrojando los siguientes potenciales para el δ-DQW: 

 

 

 

                                                           
1
 Esta consideración supone que se tiene en cuenta la interacción electrostática (potencial de Hartree) y la correlación 

del movimiento de los electrones debido al carácter indistinguible de los mismos (potencial de canje y correlación). 
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donde el primer término es el potencial de Hartree y el segundo el término de canje y correlación, 

con los coeficientes ajustados a partir del cálculo descrito en (Gaggero 1998). 

 Existen trabajos que abordan el problema electrónico en estructuras con dopamiento 

deltaico de forma diferente. Esto es, consideran que los átomos de impureza están distribuidos en 

una región de espesor no nulo, a diferencia del caso descrito aquí. Esa descripción debe, en 

principio, dar mejores resultados, pero depende de las demás aproximaciones que se han 

realizado para incorporar otros efectos (González 1996; Hai et al. 1995; Sahu 2000; Sahu 2004). 

Según estos trabajos, estas mejoras de la descripción del sistema no introducen modificaciones 

sustanciales en los resultados de los problemas que se presentan, los que ya fueron descritos en la 

introducción. 

 Si se trabaja a bajas temperaturas puede suponerse que la dispersión por impurezas es el 

mecanismo principal –y predominante– de interacción con los electrones. Por otra parte, cuando 

se trabaja a temperatura ambiente o a altas temperaturas, es necesario incluir el efecto de los 

fonones y su interacción con los electrones. 

 El perfil de potencial que se utiliza en nuestro cálculo se muestra en la figura 1. Este 

potencial tiene usualmente tres o más subbandas en la BC y todas ocupadas a T = 0 K. En rigor, 

el número de estados (subbandas) depende de la densidad de impurezas ionizadas que tenga la 

capa delta dopada. 
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Figura 1: Potencial de un pozo delta-dopado en la BC. Se muestran los potenciales de Hartree 

(VH) y de Canje-correlación (VX), ambos modelados por las expresiones desarrolladas por L. 

Gaggero. 

Este potencial se describe detalladamente en el trabajo Gaggero (2002) 
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Los estados obtenidos en el δ-DQW con este potencial se muestran en la figura 2. Como puede 

verse, para el valor de la concentración n2D empleado, aparecen solamente tres estados ligados en 

el pozo. 

Figura 2: Estados del pozo delta-dopado en la banda de conducción del tipo de Si en GaAs para 

n2D = 1012 cm−2 
 
 
 
 
 
 

3. Cálculo de la movilidad de electrones en un pozo delta 
dopado. 
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La movilidad de baja temperatura μ puede calcularse mediante (González 1994): 

 

 

 

donde μi es la movilidad en la subbanda i-ésima y ni es la concentración de electrones en esa 

subbanda. La movilidad de la subbanda está relacionada con el tiempo de relajación τi a través de 

(González (1994)): 

 

 

donde m∗ 
es la llamada masa efectiva de los electrones en la BC. En el marco de la descripción 

clásica del gas de electrones, la movilidad de los portadores (con masa m∗ y carga e) se define  

como la velocidad de arrastre que los mismos adquieren, por unidad de campo aplicado. Luego 

(Kittel 1996): 

 

 

 

 

 

 

 

 

Esta es la unidad de la movilidad en el sistema de unidades CGS, que es el que se emplea más 

frecuentemente para reportar esta cantidad en la literatura científica. 

El cálculo del tiempo de relajación puede abordarse a partir de evaluar distintas 

expresiones –equivalentes– determinadas bien por el marco representativo (esquema del 

momentum, de la energía, etc.) o por la simetría en el problema (Mitin 1999): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En todos estos casos, las cantidades son las 

llamadas tasas de dispersión (en inglés, scattering rates), que establecen la probabilidad de 

transición de un electrón desde un estado inicial      hacia un estado final       
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producto de un evento de dispersión. Además, en la expresión (19), μ representa el potencial 

químico del sistema estadístico. 

Como se observa, los procesos de relajación tienen relación directa con los mecanismos 

de colisiones mediante los cuales el sistema tiende al equilibrio y, en este caso, se ha supuesto 

que el mecanismo que actúa es la interacción electrostática con los iones. Como es conocido, en 

el límite de muy bajas temperaturas sólo ocurrirán procesos dispersivos que modifican el espectro 

de energías en el entorno de la energía de Fermi. 

En el cálculo de interés debemos hallar τi(E) para obtener la movilidad mediante la 

ecuación (13). Así, usamos la expresión (16) y consideramos que trabajaremos en el caso 

degenerado; para obtener el tiempo de relajación y con él la movilidad como función de la 

concentración de impurezas de la capa delta-dopada. 

Supondremos como se hace habitualmente que tenemos un proceso de dispersión el 

‘astica y escribimos para la magnitud de la correspondiente tasa de dispersión la expresión 

proporcionada por la Regla de Oro de Fermi: 

 

 

 

Los estados monoelectrónicos vienen dados por la expresión: 

 
 
 
donde las ϕn(z) son del tipo de las funciones mostradas en la figura 2. 

Concentrémonos en el elemento de matriz que aparece en la expresión (20), esto es: 

 

 

 

donde hemos hecho explícito que esto corresponde al potencial de una impureza colocada en el 

plano; pero que es necesario sumar por todas las impurezas, dado el carácter de largo alcance de 

la interacción de coulomb. (Esta notación sólo se empleará en esta expresión, porque no es 

necesaria más adelante). 

El potencial correspondiente a esta interacción es el potencial apantallado de una 

impureza que se calcula mediante: (Fernández-Velicia 1996; Rodríguez-Coppola 2000) 

 

 

 

 

 

 

 

 

En todo lo anterior hemos escrito la función dieléctrica inversa expresada en la 

representación de las funciones de largo y corto alcances, desarrollada en (Fernández-Velicia 

1996; Rodríguez-Coppola 2000; Rodríguez-Coppola 2005). Ahí se tiene: las funciones de corto 

alcance (26); las funciones de largo alcance (27); los elementos de la matriz de la función inversa 

dieléctrica (28); la matriz dinámica relacionada con la transición (29); el coeficiente de los 
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elementos de la matriz dinámica (30); la expresión de la matriz dinámica a T = 0 K (31) y los 

elementos de matriz del producto de las funciones de corto y largo alcances (32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Para completar todos los elementos que permiten hacer el cálculo en forma detallada, 

debemos escribir la forma en la que queda el potencial apantallado. Usando (23) tenemos: 

Pero realizando las integrales en forma individual se obtiene, después de sumar con la delta de 

Dirac: 

 

Como puede verse en (33), calcular la función dieléctrica inversa conduce a una expresión 

que combina las funciones del potencial coulombiano con las funciones de onda del sistema 

físico bajo estudio. Este cálculo no es más complejo que otro similar que se haga, mientras que 
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mantiene como característica distintiva el carácter tridimensional de los estados que involucra y 

requiere poner toda la atención en la forma en que se realizan las operaciones. 

Para dar el toque final a este potencial debemos completar la suma por las impurezas y la 

suma por Entonces, llegamos a: 

 

 

 

 

es la expresión entre llaves en el potencial (33). Entonces; Donde   

 
 
 
 

obtiene: en tanto que, por la presencia de la se 

 
 
 

Resta por realizar la suma por todas las impurezas incluidas en el plano de dopaje (suma 

por i). Por ser más directo el resultado, la efectuaremos cuando calculemos el elemento matricial 

del potencial apantallado en el sistema. Ahora, vamos a escribir para el potencial apantallado, 

cuyos elementos matriciales aparecerán en el cálculo de la tasa de dispersión para hallar el tiempo 

de relajación, la expresión: 

 

 

 

 

Antes de presentar con detalle los elementos del formalismo que anteceden al cálculo de la 

movilidad (y que resultan la base del mismo), es importante que describamos la fenomenología 

del proceso. Así, cuando se aplica un campo eléctrico a un sistema semiconductor se produce una 

corriente eléctrica matemáticamente dada por la expresión: 

 

 

 

 

la cual se obtiene partiendo de la idea que la densidad de corriente puede escribirse como 

Entonces, si suponemos que la geometría de la banda se describe en la aproximación 

parabólica,         la suma por             en (35) se realiza en la forma: 

 

 

 

 

 

 

 

 

La dirección en que se calcula la  es la del campo eléctrico,  en tanto el ángulo es 
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el que forma     con el campo. Por consiguiente, 

 

 

 

 

 

Comparando la ecuación anterior con tenemos; 

 

 

 

En las expresiones anteriores vale la pena hacer las siguientes consideraciones: 

 

◊ El campo eléctrico tiene una dirección dada y la densidad de corriente que se calcula está 

en la misma dirección del campo. 

 

◊ La única suposición realizada en el cálculo es que las subbandas del semiconductor tienen 

una forma parabólica. Esto hace más sencillo el problema de calcular la movilidad. 

 

 

◊ La expresión para n
n
 define la concentración areal de portadores en cada subbanda, 

vinculada con la cantidad de estados que existe desde su valor de energía en κ = 0 hasta el 

valor κ
Fn

 correspondiente a cada subbanda. 

 

◊ La expresión de la movilidad hallada juega con el tiempo de relajación de los portadores, 

que en este caso corresponde con la dispersión por impurezas al nivel de la energía de 

Fermi, pero lo que se calcula es el inverso de ese tiempo, que es para el que se tienen 

expresiones, por cierto nada sencillas, en dependencia de la forma en que se produce la 

dispersión de los portadores. 

 

4. Cálculo estadístico de la función de distribución fuera del 

equilibrio 
 

En el procedimiento anterior es necesario trabajar con un sistema que está fuera del 

equilibrio, por lo que la función de distribución que determina la estadística de los electrones 

tiene que ser calculada especialmente en estas condiciones. Para ello se emplea la aproximación 

lineal (Kadanoff 1999) y se considera la función de distribución real. Hacer esta consideración 



Formalismo de cálculo de la movilidad de portadores en un pozo cuántico delta dopado 

Revista Electrónica Nova Scientia, Nº 10 Vol. 5 (2), 2013. ISSN 2007 - 0705. pp: 27 - 50 
40 

representa suponer que el sistema responde linealmente al campo aplicado, lo que ocurre cuando 

este no es muy intenso. Entonces, vamos a tener que: 

 

 Ante un estímulo externo los portadores se mueven, y manifiestan una movilidad, en 

situación de no equilibrio. La distribución de portadores en el equilibrio tiene una función 

de distribución que llamaremos fn
(o)

. Cuando se aplica un campo eléctrico de no mucha 

intensidad para mover los portadores, la función de distribución de no equilibrio cumplirá 

con: 

 

 

Suponiendo que la función de distribución no depende del tiempo, ni de las coordenadas, 

entonces los cambios se producen únicamente por choques (o colisiones), luego: 

 

 

 

 

 

 

 

 

pero: siendo el campo eléctrico; 

 

 

 

 

Por consiguiente, se tiene: 

 

 

 

 

Por otra parte, suponiendo la banda parabólica, el gradiente de la función de distribución 

es:  

 

 

 

 

Con lo cual se escribe: 

 

 

 

 

La ecuación de Boltzmann, en las condiciones enumeradas al inicio de esta sección 

(Kadanoff 1999), plantea que: 
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 Ahora, teniendo en cuenta que: 

 

 

y que los índices de subbanda son mudos porque se suma sobre ellos; al sustituir en el 

miembro izquierdo de (39) el resultado de (38), y en el miembro derecho aquel obtenido 

en (20), al escribir apropiadamente los términos llegamos a: 

 

 

 

 

 

 

Esta expresión se trabajará en la forma siguiente: 

  
◊ Se hace coincidir el eje x con el campo aplicado, entonces: 

 con lo cual el campo eléctrico aparece en ambos miembros de la expresión y se 

puede cancelar. De esta manera, el resultado no depende del campo aplicado. 

 

 

 

 

 

 

 

 

◊ Para tratar el sistema se multiplica por κx, se suma por     y se seleccionan 

adecuadamente las variables mudas para poder escribir: 

 

 

 

 

 

 

 

◊ En el miembro izquierdo de esta última relación tenemos, considerando la 

degeneración por el spin: 

 

 

 

 

 

 

 

◊ Usando lo obtenido como LHS y para el otro miembro el resultado (40), escribimos: 
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Ahora nombramos la siguiente magnitud: 

 

 

 

 

 

 

 

 

con lo que la expresión que resulta de la transformación realizada a la ecuación (39) 

va a quedar en la forma: 

 

 

 

 

En (42) queda por terminar de evaluar el término definido por la expresión (41), a lo que 

dedicaremos la siguiente sección, dada su importancia y las aproximaciones que se deben hacer 

para calcularlo. Esa expresión es el sistema de ecuaciones algebraicas que permite calcular el 

tiempo de relajación de cada subbanda y con ellos la movilidad de la subbanda, para luego poder 

hallar la movilidad total. 

 

5. Cálculo de las movilidades a partir de los tiempos de relajación. 

 
En este punto del análisis debemos discernir cómo calcular los elementos matriciales que 

aparecen en (20) –y se expresan en la forma (22)–; donde se emplea el potencial apantallado dado 

por (34). Además, se usan las expresiones (25) y (24) para acomodar convenientemente el 

resultado hallado y, en ese caso, tenemos: 

 

 

 

 

donde se va a aplicar la propiedad: 
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y se va a introducir la función Π
n,no 

: 
 

 

 

 

donde las diferentes funciones incluidas se definen como: 

 

 

 

 

 

 

Entonces, se obtiene para 
 
 la expresión, 

 

 

 

 

y esto permite escribir la correspondiente expresión para los elementos matriciales de interés en 

la forma: 

 

 

 

 

 

 

 

que es no nulo sólo si                 por lo que va a quedar: 

 

 

 

 

 

 

 

En este punto debemos tener en cuenta que, como el potencial es simétrico y los estados 

monoelectrónicos tienen paridad definida, hay elementos matriciales que se anulan y deben 

seguir las reglas conocidas para el cálculo de los elementos matriciales para               que ya 

estos autores analizamos al calcular la función dieléctrica del pozo delta-dopado (Rodríguez-

Coppola 2010). 
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Ahora, con esta expresión (43) se pueden determinar los elementos matriciales buscados, (41): 

 

pero podemos simplificar la expresión si promediamos mediante la siguiente aproximación: 

 

 

 

 

con lo cual, si usamos una de las superficies para plantear:                    obtenemos: 

 

 

 

 

 

 

 

 

 

Como ya hemos mencionado, emplearemos el esquema utilizado por M. Mora-Ramos en (Mora-

Ramos 2008). Renombramos a (43) en la forma: 

 

 

 

 

 

 

 

dado que este elemento depende, en realidad, de                                                              

Así, vamos a tener para la doble suma por las variables de momentum: 
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Debemos resaltar que esta expresión para Γ
2

mn constituye un coeficiente adimensional que no 

participa en la determinación de las unidades de los términos de interés. Por otra parte, en (41) 

quedan integrales por el momentum que deben completarse mediante el siguiente procedimiento: 

Se efectúa el cambio de coordenadas angulares de (θ, θ′) a (θ, α = θ′ − θ). Por comodidad, 

tomamos θ ∈ (0, 2π) y α ∈ (0, π). Esos cambios gráficamente corresponden a lo mostrado en el 

esquema del sistema de coordenadas mostrado (Ver figura 3). 

 

En este caso tenemos: 

 

 

 

 

Con el cambio de variables angulares y considerando que: 

 

 

 

más la definición 

 

 

 

 

 

las integrales Imn son: 

 

 

 

 

 

 

Las integrales angulares pueden ejecutarse directamente. Recordando que en un proceso 

de dispersión elástica se cumple  entonces: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3: Esquema de la elección del sistema de coordenadas angulares que se emplean en el 

estudio. 
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Ahora, se utiliza el argumento de que a bajas temperaturas sólo los vectores de onda en 

una franja estrecha alrededor de la superficie de Fermi participan en el proceso de dispersión, de 

modo que vamos a escribir              y se tiene: 

 

 

 

así que nos queda solamente por acometer la integración angular por Entonces tenemos: 

 

 

 

 

 

 

 

 

y efectuando se llega a: 

 

Con todo esto, el elemento matricial de interés es, usando (47): 

 

 

 

 

 

 

Al pasar a la evaluación numérica, la expresión que se programará para la obtención de Kmn será: 

 

 

 

 

 

 

 

 

 

 

 

Aquí, la cantidad Jmn(E) es un factor de energía que varía, en tanto H es una constante que 

depende de la concentración de impurezas del plano dopado. 

Debemos significar, de forma general, que los elementos Knm son simétricos dado que 

representan elementos matriciales de un potencial simétrico entre estados monoelectrónicos. Esto 

facilita el cálculo porque simplifica las ecuaciones que hay que usar. Además, como veremos 
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cuando escribamos explícitamente los sistemas de ecuaciones que se requieren para diferentes 

densidades de dopaje, las matrices que hay que usar para resolver los sistemas lineales son 

sencillas porque tienen muchos elementos nulos. Entonces, solamente resta por evaluar una 

integral angular para completar el estudio. Podemos avanzar un poco más si usamos el teorema 

del valor medio para el elemento matricial y escribimos: 

 

 

 

 

 

 

Aquí quedan por ejecutar las integrales: 

 

 

 

 

con lo cual se obtiene: 

 

 

 

 

 

 

En este caso, sólo se tienen contribuciones intrasubbanda a los tiempos de relajación. Esto 

es, se cumple que: 

 

 

 

 

Debe decirse aquí que si nos limitamos al SQL, esto es, considerar solamente la primera 

subbanda tenemos, de forma general, la reproducción del resultado que aparece reportado en 

diversos trabajos anteriores (Mora-Ramos 2008). Esto se obtiene porque ese resultado no 

depende de la forma concreta que tiene el elemento de matriz del potencial apantallado que se 

utiliza en el cálculo del inverso del tiempo de relajación. Por consiguiente, se puede decir que el 

cambio en la forma en que se considera el apantallamiento de la interacción coulombiana entre 

portadores no modifica la forma general del cálculo del tiempo de relajación, aunque sí su valor, 

dado que al resultado que se obtiene le falta incluir la contribución proveniente de ejecutar una 

integración. Esta va a proporcionar diferentes valores de acuerdo a la forma que tenga el 

elemento matricial considerado. 

Para dar un ejemplo de la manera de actuar en el cálculo que resta, debemos considerar el 

problema con varias subbandas ocupadas –y, de hecho, varias subbandas en el rango de energías 

de interés. Veamos: 

En un pozo con n2D = 10
13

 cm−
2
 en GaAs dopado con Si se tienen 6 estados del espectro discreto 

en la BC. Considerando sólo estos estados habrá que tener en cuenta transiciones de todos entre 

sí. Supongamos que sean, de hecho, seis. Entonces este sistema queda: 
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Usando (13) tendríamos, en nuestro caso específico: 

 

 

 

 

 

 

 

Con esto, el algoritmo para el cálculo numérico se resume como: 

 

- Calcular los estados electrónicos del pozo delta dopado correspondiente a una 

determinada concentración de impurezas en el plano. Se determinan las energías y las 

funciones de onda de cada estado. El rango de concentraciones de impurezas debe ser n2D 

= 9×10
11

−10
13

 cm
−2

. El valor de la concentración será uno para cada cálculo hasta el 

final. 

 

- Calcular los elementos matriciales que aparecen en la función dieléctrica con el potencial 

del pozo y con el potencial de interacción coulombiana entre partículas 

 

- Formalizar las expresiones (48) para hallar las integrales que aparecen, usando los 

elementos calculados. 

 

- Formalizar el sistema de ecuaciones algebraicas (51) para hallar los tiempos de relajación 

de cada subbanda y con ellos las movilidades de cada subbanda. 

 

- Hallar la movilidad de baja temperatura del sistema mediante la expresión (53), sumando 

las movilidades de cada subbanda presente en el cálculo. Se debe hacer un gráfico de la 

dependencia de la movilidad del sistema con la concentración de impurezas en la capa 

dopada. Este gráfico es el dado por otros autores (González 1994; Shi 1997). 

 

6. Conclusiones 
 

Después de haber expuesto el procedimiento a desarrollar para obtener la movilidad de los 

portadores en el sistema podemos decir lo siguiente: 

 

- De forma natural el esquema de cálculo conduce a la obtención de una movilidad para los 

portadores en cada subbanda. Como se ve, este valor tiene contribuciones de todas las 

subbandas, aunque estas contribuciones no son visibles en forma sencilla porque 

realmente vienen incluidas en el apantallamiento del potencial para el cálculo de los 

elementos matriciales del potencial de interacción. 
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- Nuestro cálculo demuestra en forma precisa que las contribuciones a la movilidad de los 

portadores en una subbanda no transcurren a través de procesos virtuales en que el 

electrón salta de una subbanda a otra o al continuo y regresa a la subbanda porque estas 

posibles contribuciones resultan nulas, lo que simplifica el sistema algebraico que se 

utiliza para el estudio. Esto, además, significa que las interacciones inmediatas de los 

portadores de carga son solamente entre portadores de la misma subbanda y los demás 

portadores sólo influyen a través del apantallamiento de la interacción que se tiene en 

cuenta. 

 

- Los otros esquemas de cálculo no tienen en cuenta el carácter 3D de los estados y de las 

magnitudes planteadas y ello no permite que puedan dar estas conclusiones sin terminar el 

cálculo completo. 

 

- En nuestro cálculo no se ha tenido en cuenta lo que puede ocurrir con el continuo de 

energía de la banda. En rigor deben poder existir procesos en los que el electrón pase de 

un estado en una subbanda al continuo y de regreso a la subbanda para dar su aporte a la 

contribución; pero supondremos que estas son menores en valor relativo y por ello no las 

consideraremos. 
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