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Formalismo de calculo de la movilidad de portadores en un pozo cuantico delta dopado

Resumen

Este articulo ofrece un esquema para el calculo de la movilidad de electrones en una estructura de
pozo delta dopado, a bajas temperaturas y para campos eléctricos aplicados no muy intensos. El
andlisis se hace para un sistema dopado tipo n, considerando una l&mina de impurezas de silicio
en una muestra de GaAs. Se tiene en cuanta explicitamente el caracter tridimensional de los
estados electronicos y de las magnitudes que se miden —en lugar de realizar aproximaciones en
que se reduzcan las dimensiones del sistema—, lo que facilita la ejecucion del célculo. Se exponen
los resultados de otros esquemas utilizados y se dan las formulas que se emplearan para
comprobar y comparar nuestros calculos con los reportados previamente. En la actualidad, se esta
en el proceso de implementacion del calculo numérico, del que se expone el algoritmo que se

tiene en ejecucion.

Palabras Clave: Pozo delta dopado; Nanoestructura semiconductora; Movilidad eléctrica;
Campo eléctrico
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Abstract

This paper offers an scheme for the calculation of the mobility of electrons in a delta doped QW
considering the conditions of low temperature and low electric field intensity. The system
considered is a quantum well for electrons in the conduction band made by a silicon impurity
plane in a sample of GaAs. The 3D character of the electronic states and of the magnitudes
considered is explicitly tacked into account instead of reducing the dimensionality of the system
to make the calculations more easy. Other calculations are compared and the formulae obtained
in our approximation are given. At this moment the numerical calculation is in progress and the

algorithm to do it is presented.
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1. Introduccion

Un elemento importante para el conocimiento y la prediccion del comportamiento de las
magnitudes de transporte de carga de un sistema semiconductor, es la movilidad de los
portadores, definida como la respuesta de estos a la acciéon del campo eléctrico aplicado, que
resulta en el movimiento. Desde hace alrededor de dos décadas se comenzé el estudio de la
movilidad de electrones en sistemas delta dopados (puede consultarse, por ejemplo, Gonzalez
1994,1996, 1999; Shi 1997; Hai 1995; Hai et al. 1995) como un problema de interés préctico,
buscando elevar la velocidad de movimiento de los portadores en el sistema y asi mejorar la
respuesta de estos a campos eléctricos externos aplicados. Con esto se podria implementar su uso
en dispositivos electrénicos de respuesta rapida. Ademas, el tratamiento dado tiene utilidad como
elemento tedrico de relevancia para comprender la forma en que se mueven y se comportan los
portadores de carga en estos sistemas y mejorar sus caracteristicas de uso.

La dificultad en el estudio de la movilidad de los electrones en un sistema delta-dopado
tipo n de Si en GaAs proviene del hecho que es la propia distribucién de atomos de Si ionizados
la que condiciona la forma del pozo de potencial en que se confinan estos portadores de carga,
con varias subbandas ocupadas a bajas temperaturas. Esto ha tornado dicho andlisis en un asunto
complicado, tanto en la banda de conduccion (BC) como en la banda de valencia (BV). En los
reportes (Gaggero 2002; Gaggero 1998), se investiga la forma en que se pueden obtener los
niveles de energia en un pozo cuantico delta-dopado, sin recurrir al proceso autoconsistente que
implica la solucion simultanea de las ecuaciones de Schrddinger y Poisson para reconstruir el
potencial y, de esa forma, calcular los estados electrénicos del movimiento en el potencial de las
impurezas ionizadas. El esquema estudiado por Gaggero et al. fue inicialmente propuesto por
loriatti (loriatti 1990) y su significacion estriba en que reduce el célculo de los estados
energéticos y las funciones de onda de este sistema a un problema relativamente simple, en el que
se usa una expresion analitica para describir el potencial del pozo. El proceso de determinacién
de la movilidad electrénica en esta clase de sistemas se ha desarrollado desde los finales de los
afios 80 y tuvo su expresion mas depurada en los trabajos (Gonzalez 1994; Gonzélez 1996).

El completamiento de la tarea de evaluar la movilidad de portadores se compone de varias
partes importantes. En el caso especifico de un pozo delta-dopado podemos delinear los
siguientes pasos: i) Calcular los estados energéticos y las funciones de onda correspondientes a
esos estados.

Esto se puede hacer utilizando o no el esquema autoconsistente. ii) Efectuar el calculo de los
elementos matriciales de la interaccién de los electrones con los operadores de interaccion
asociados a los diferentes mecanismos que provocan dispersion en el material (impurezas
ionizadas, impurezas neutras, fonones de diferentes ramas de oscilacién, etc.). Previo a este paso,
se debe discutir la importancia relativa de cada una de estas interacciones, seleccionando los
mecanismos mas importantes de acuerdo con las condiciones particulares de operacién del
sistema electronico de baja dimension. iii) Dentro del problema de la interaccion entre los
portadores y los atomos de impurezas, especialmente, habra que tener en cuenta el
apantallamiento del potencial coulombiano de las impurezas asociado al propio gas electronico.
Esto se puede realizar en el marco de diferentes aproximaciones, de acuerdo principalmente a la
forma en que se incluyen los efectos de muchos cuerpos en el sistema. iv) Determinar la
movilidad de los electrones en la estructura. Una de las vias mas directas de realizar este calculo
es plantear y resolver la ecuacién de Boltzmann para el movimiento de los electrones en la
aproximacion del tiempo de relajacion. Esta ultima cantidad es proporcional a la movilidad de los
portadores en las condiciones en que fue resuelta la mencionada ecuacion de transporte. En
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(Gonzalez 1994,1999; Hai et al. 1995) se describe este procedimiento para un sistema delta-
dopado.

En términos generales, los resultados contenidos en los trabajos desarrollados por los
referidos autores siguen la tendencia de los reportados experimentalmente; pero adolecen de
determinados defectos que pueden resumirse en lo siguiente: i) Se obtienen saltos en los valores
de la movilidad cuando se pasa de una concentracion de impurezas a otras, lo que no se observa
en los experimentos (Gonzélez 1994; Hai 1995). ii) Los valores de la movilidad que se reportan a
partir del calculo tedrico son muy diferentes (en ocasiones drdenes de magnitud) a los obtenidos
en los experimentos (Gonzalez. 1994). iii) Los célculos que se realizan, aunque incluyen varias
subbandas ocupadas, no consideran el movimiento de los electrones en tres dimensiones. En otras
palabras, reducen la descripcion de los estados a un problema estrictamente bidimensional y no
en el espacio (Gonzalez 1994). Esto tiene consecuencias tanto en la descripcion de los estados
como en las magnitudes que se calculan.

El presente trabajo describe el proceso seguido por nosotros para obtener de forma teorica
la movilidad de electrones en un pozo cuéntico delta-dopado. Hacemos especial énfasis en
aquellos elementos que diferencian el enfoque que proponemos con el desarrollado —en el mismo
esquema del tiempo de relajacion— por los autores mencionados arriba, y exponemos sus
particularidades con un elevado grado de detalle. Se hace de esta manera porque los aspectos
generales de dicho enfoque son aplicables a una gran mayoria de los sistemas electrénicos cuasi-
bidimensionales. Un elemento clave en el formalismo es la evaluacion de la funcion dieléctrica
del gas tridimensional de portadores con confinamiento en una direccion espacial, la cual
contiene la informacion del apantallamiento de la interaccion coulombiana entre todos los
electrones del gas. En el caso de los sistemas delta-dopados se han obtenido ya algunos
resultados en ese tema (Rodriguez-Coppola 2010).

Es preciso hacer notar que, dada la extension del trabajo en su conjunto, hemos decidido
presentar en este reporte Unicamente la parte concerniente al formalismo. Dejamos para una
publicacién posterior la presentacion de los resultados especificos para la movilidad de electrones
en pozos cuanticos delta-dopados tipo » en GaAs, la cual se estudiara fundamentalmente como
funcion de la concentracion de atomos de impureza ionizados en el sistema.

Para el desarrollo de este proposito se ha dividido el texto en las siguientes partes: la
seccion siguiente se dedica a describir brevemente el proceso de célculo de los estados
electronicos del sistema delta dopado en las condiciones planteadas, utilizando la aproximacién
de Thomas-Fermi (Gaggero 2002). Los resultados de esta evaluacién, para el conjunto de pozos a
modelar, se utilizan como datos iniciales para el calculo de la interaccion de los electrones con
los procesos de dispersion presentes en el sistema. Las consideraciones para la seleccién de los
procesos de dispersion y la forma en que se incluyen en el célculo los diferentes procesos, se
describe en la siguiente seccion. Posteriormente, se describe el proceso de obtencién de los
tiempos de relajacién y su relacion con la movilidad de los portadores y se dan las
consideraciones finales sobre el trabajo realizado.

2. Calculo de los estados electronicos de un pozo delta dopado.

El procedimiento mas exacto para determinar los estados electrénicos de un 5-DQW requiere
del proceso autoconsistente de solucion de las ecuaciones diferenciales de Schrodinger y de
Poisson porque el propio potencial asociado a las impurezas ionizadas es el que produce la
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deformacion de la banda de conduccion que constituye el pozo de energia potencial que confina a
los electrones en la vecindad de la capa donde estan dispuestas las impurezas (supuesta
idealmente una monocapa Yy, en la practica, resultando normalmente unas pocas capas atomicas
insertadas en la matriz del semiconductor volumétrico). En la literatura se han realizado
diferentes alternativas para el andlisis de esta situacion que tratan de sustituir el tratamiento
autoconsistente por alguna aproximacion que desde el punto de vista cuantitativo conduzca a
desviaciones importantes de los valores de los niveles de energia con respecto a los
proporcionados por el sistema de Schrodinger-Poisson. De entre las propuestas nos va a interesar
aqui la que permite deducir una expresion analitica para el perfil de potencial asociado al o-
DQW, la cual se deriva de la aplicaciéon de la aproximacion de Thomas-Fermi al problema de
densidad funcional local en una dimension (loriatti 1990; Gaggero, 2002; Gaggero 1998).

Debemos comenzar diciendo que consideraremos el solido descrito dentro de la
aproximacion de funcion envolvente (EFA) (Bastard (1998)), considerando que las bandas de
energias permitidas estdn desacopladas. La ecuacion de onda para los electrones es una ecuacion
de Schrdédinger con masa efectiva que describe el movimiento de los portadores en el potencial
provocado por los atomos de impurezas ionizados localizados en una capa atdbmica. Como el
potencial colombiano es de largo alcance, la concentracion en el plano de las impurezas origina la
deformacion del perfil de energia potencial de la banda en la forma de un pozo de potencial para
los electrones que tiene un tamafio relativamente grande con respecto a la distancia media
cuadratica entre los mismos. Esto provoca que ese potencial cause el confinamiento de los
electrones. La solucion autoconsistente de este problema implica resolver simultaneamente las
ecuaciones:

i

~ L V4 Vi) = Ev M
2m*
Vi(2) = Vi(2)+ Vx(2) @
d?Vy 4re
(]72 — : [/)inlp(Z) -+ /)(‘(Z)] (3)
/)imp(z) == “Ud(z) (4)
emrise : : LD
pe(2) = ——= ) (Er — E;)0(Er — E;)|¢s|° (5)
Th* =

Como se observa de (2) el potencial que en el que se mueven los electrones es debido a
las impurezas ionizadas (se supone que se ionizan el total de los &tomos dopantes), V, (z) y a los
propios electrones que existen en el gas [potencial de hartree, Vy (z)]. Esto es cierto cuando la
cantidad de impurezas no es especialmente alta y cuando la temperatura es baja. En este caso se
puede y debe usar una descripcion del potencial que incluya también los términos de canje y
correlacién para considerar la interaccion entre los electrones asociada al principio de Pauli.*
Entonces, la aplicacion de la aproximacion conocida como de Thomas-Fermi resuelve este
problema autoconsistente arrojando los siguientes potenciales para el 5-DQW:

! Esta consideracion supone que se tiene en cuenta la interaccion electrostatica (potencial de Hartree) y la correlacion
del movimiento de los electrones debido al carcter indistinguible de los mismos (potencial de canje y correlacion).
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~2 o
Vr(z) = —m —c <1 + i—l - (7]2] + 20)* - In [1 + %D X
.
RCEEEN @
v = €e*(m*)¥%/(15meh?), (7)
2 = [ad(m*)%?/(1572eh3 Nyp)) Yo, (8)
a = 3,867vV2yh2(974/3)3/(14m*), )
b = 14v2m*(3/97%)/3/(10vh3), (10)
c = 30V2yh*/(2m*) (11)

donde el primer término es el potencial de Hartree y el segundo el término de canje y correlacion,
con los coeficientes ajustados a partir del calculo descrito en (Gaggero 1998).

Existen trabajos que abordan el problema electronico en estructuras con dopamiento
deltaico de forma diferente. Esto es, consideran que los atomos de impureza estan distribuidos en
una region de espesor no nulo, a diferencia del caso descrito aqui. Esa descripcion debe, en
principio, dar mejores resultados, pero depende de las demas aproximaciones que se han
realizado para incorporar otros efectos (Gonzélez 1996; Hai et al. 1995; Sahu 2000; Sahu 2004).
Segun estos trabajos, estas mejoras de la descripcidn del sistema no introducen modificaciones
sustanciales en los resultados de los problemas que se presentan, los que ya fueron descritos en la
introduccion.

Si se trabaja a bajas temperaturas puede suponerse que la dispersién por impurezas es el
mecanismo principal —y predominante— de interaccion con los electrones. Por otra parte, cuando
se trabaja a temperatura ambiente o a altas temperaturas, es necesario incluir el efecto de los
fonones y su interaccién con los electrones.

El perfil de potencial que se utiliza en nuestro calculo se muestra en la figura 1. Este
potencial tiene usualmente tres 0 mas subbandas en la BC y todas ocupadas a T = 0 K. En rigor,
el nimero de estados (subbandas) depende de la densidad de impurezas ionizadas que tenga la
capa delta dopada.
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Figura 1: Potencial de un pozo delta-dopado en la BC. Se muestran los potenciales de Hartree
(Vy) y de Canje-correlacion (V), ambos modelados por las expresiones desarrolladas por L.
Gaggero.

Este potencial se describe detalladamente en el trabajo Gaggero (2002)
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obtenidos en el 5-DQW con este potencial se muestran en la figura 2. Como puede

verse, para el valor de la concentracion n,, empleado, aparecen solamente tres estados ligados en

el pozo.
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Figura 2: Estados del pozo delta-dopado en la banda de conduccion del tipo de Si en GaAs para
thp — 1012 Crn_2

3. Célculo de la movilidad de electrones en un pozo delta
dopado.
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La movilidad de baja temperatura u puede calcularse mediante (Gonzalez 1994):

- i M (Er)
t 25T
donde w; es la movilidad en la subbanda i-ésima y n; es la concentracion de electrones en esa

subbanda. La movilidad de la subbanda esta relacionada con el tiempo de relajacion z; a través de
(Gonzalez (1994)):

(12)

e

#i(E) = =i (E) (13)
donde m~es la Ilamada masa efectiva de los electrones en la BC. En el marco de la descripcion
clasica del gas de electrones, la movilidad de los portadores (con masa m* y carga e) se define
como la velocidad de arrastre que los mismos adquieren, por unidad de campo aplicado. Luego
(Kittel 1996):

He = F
ne’r o
o = Nelle = En el rango de aplicacion de la ley de Ohm.
m
er _ ] cm? . -
fo = e = — ampos no intensos.
B m / V-s P

Esta es la unidad de la movilidad en el sistema de unidades CGS, que es el que se emplea méas
frecuentemente para reportar esta cantidad en la literatura cientifica.

El célculo del tiempo de relajacion puede abordarse a partir de evaluar distintas
expresiones —equivalentes— determinadas bien por el marco representativo (esquema del
momentum, de la energia, etc.) o por la simetria en el problema (Mitin 1999):

1
- = Z W (i, B 16, B) fl 15, B); (14)
T ",,.".'%“.’%
1 o '0".‘9 r = =, g
- = > e ey (Noy Bo; Ny B) fo(no, K), (15)
T =i By
o Ko K
1 En _'0 = En < r - i KR
— = Z o (Fo) — (%) Wi(ne, Bo; 1 B) [o(ns; B), (16)
T & En,(Ro)
No,n, Ko, K
fo(noy Bo) = folno, Bo) [1 — fo(n, K)] para bajas temperaturas; (17)
1
fo(no, Ko) = ———y (18)
1 +exp {—“Z[(;) }
G(R) = E.(R)—u En caso degenerado . = Ep. (19)

En todos estos casos, las W(n,, K.;n,K)f.(n,, K) cantidades son las
Ilamadas tasas de dispersion (en inglés, scattering rates), que establecen la probabilidad de
transicion de un electron desde {n,,%,} un estado inicial {n £} hacia un estado final
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producto de un evento de dispersion. Ademas, en la expresion (19), u representa el potencial
quimico del sistema estadistico.

Como se observa, los procesos de relajacion tienen relacion directa con los mecanismos
de colisiones mediante los cuales el sistema tiende al equilibrio y, en este caso, se ha supuesto
que el mecanismo que actla es la interaccion electrostatica con los iones. Como es conocido, en
el limite de muy bajas temperaturas sélo ocurrirdn procesos dispersivos que modifican el espectro
de energias en el entorno de la energia de Fermi.

En el célculo de interés debemos hallar 7(E) para obtener la movilidad mediante la
ecuacion (13). Asi, usamos la expresion (16) y consideramos que trabajaremos en el caso
degenerado; para obtener el tiempo de relajacion y con él la movilidad como funcion de la
concentracion de impurezas de la capa delta-dopada.

Supondremos como se hace habitualmente que tenemos un proceso de dispersion el
‘astica y escribimos para la magnitud de la correspondiente tasa de dispersion la expresion
proporcionada por la Regla de Oro de Fermi:

2 ~ 9c . =
W (n,,Bo;n, RB) = ]—Tr](n,,, Ro| Hint|R, n)|*0[En, (R) — En(R)] (20)
[
Los estados monoelectronicos vienen dados por la expresion:
1 s,
Rn)y=1 z=—d¢,(2)eFP 2n
| ) L ”_Ji \/g i,( )

donde las ¢n(z) son del tipo de las funciones mostradas en la figura 2.
Concentrémonos en el elemento de matriz que aparece en la expresion (20), esto es:

(o Bo| Hint| R, m) = > €{F~FIP(n, &,|VA(B, 2)

J

B, n). (22)

donde hemos hecho explicito que esto corresponde al potencial de una impureza colocada en el
plano; pero que es necesario sumar por todas las impurezas, dado el caracter de largo alcance de
la interaccién de coulomb. (Esta notacién sélo se empleara en esta expresion, porque no es
necesaria mas adelante).

El potencial correspondiente a esta interaccion es el potencial apantallado de una
impureza que se calcula mediante: (Fernandez-Velicia 1996; Rodriguez-Coppola 2000)

Vielw, 7) = / PFE w7 Vi (w, 7); 23)
i " . . 2me? eid-(P-p) -
Ve(w, ¥) = Vigp(w, p, 2) = — < ZZ e-d-l, (24)
i q
E w7, 7') = € (w,R; 2,7) =0(z — 2) + Y Lu(R, 2) M, (w, R)S, (7). (25)

En todo lo anterior hemos escrito la funcion dieléctrica inversa expresada en la
representacion de las funciones de largo y corto alcances, desarrollada en (Fernandez-Velicia
1996; Rodriguez-Coppola 2000; Rodriguez-Coppola 2005). Ahi se tiene: las funciones de corto
alcance (26); las funciones de largo alcance (27); los elementos de la matriz de la funcion inversa
dieléctrica (28); la matriz dindmica relacionada con la transicion (29); el coeficiente de los
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elementos de la matriz dinamica (30); la expresion de la matriz dinamicaa T = 0 K (31) y los
elementos de matriz del producto de las funciones de corto y largo alcances (32).

S,(2) = On(2)dm(z) v=n,m; (26)
N 27 res=pied]
Ly (R, 2)= - de/ @M ELE () (27)
M, (w,R) = [P—‘ —4A] ; (28)
Nz
P;t(wv E) = f("')[[\”(u‘fu) - ["(IU'~H1)]: (29)
X m*e?kpy,
) = ———; 30
) = o, (30)
u+vu?—1si|ul > 1y R{u} <0
K(u) u—vu?—1si|ul > 1y R{u} >0 ; (31)
u—iyu?—1si|u| <1

hw + ihd £ [(hzrﬁ/?m*) 4+ Em — 5,,]
(ﬁ2h72/27n*) EF ~

U+

Biuliy= A2 | Sld 2”/@/(12 e 8, ()5, (2). (32)

Para completar todos los elementos que permiten hacer el calculo en forma detallada,
debemos escribir la forma en la que queda el potencial apantallado. Usando (23) tenemos:

arp” /dz” e R(P-P) {5(2 —2")+ > Lu(R, 2) M, (w, R)S, (2 )} Ve(w, ", 2")

JS nv

o e S j'ﬂ( _'1/“—'1)
LTS fao || openoo 1T

s q

Ve(w, 7)= [

x{ z2—2")+ > LR, 2)M,,(w,R)S,(z ”)}e'll':”l'

Qv

Pero realizando las integrales en forma individual se obtiene, después de sumar con la delta de
Dirac:

Vi (w, 7 27“ ZZ e~iq-P+p 5(g+¢3){e—q':i LN VEAR, ,Z)M,,.,(w.g)v,ﬁ,(q)}.(33)

* q pv

Como puede verse en (33), calcular la funcién dieléctrica inversa conduce a una expresion
que combina las funciones del potencial coulombiano con las funciones de onda del sistema
fisico bajo estudio. Este calculo no es mas complejo que otro similar que se haga, mientras que
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mantiene como caracteristica distintiva el caracter tridimensional de los estados que involucra y
requiere poner toda la atencion en la forma en que se realizan las operaciones.
Para dar el toque final a este potencial debemos completar la suma por las impurezas y la

—

suma por g. Entonces, llegamos a:

2/1(’ .00

= ZZ “APPI §(R + §)Qg)-

g ¢

Donde Q(q) es laexpresion entre llaves en el potencial (33). Entonces;

o2re? S

e eS (2m)?

3 . 1 L 3 5 N
/ d’g> - €T PP §(K + §)Q(q);
P
en tanto que, por la presencia de la se o‘(fé+cj), obtiene:

n‘i p-i—p :
e s Z e Qk) :

Resta por realizar la suma por todas Ias impurezas incluidas en el plano de dopaje (suma
por i). Por ser mas directo el resultado, la efectuaremos cuando calculemos el elemento matricial
del potencial apantallado en el sistema. Ahora, vamos a escribir para el potencial apantallado,
cuyos elementos matriciales apareceran en el calculo de la tasa de dispersién para hallar el tiempo
de relajacion, la expresion:

Vr(w, ) = "Z ek f’*’”{e Y Lu(R, 2 M, (w, )VE,,(H)}. (34)

2me o

Antes de presentar con detalle los elementos del formalismo que anteceden al calculo de la
movilidad (y que resultan la base del mismo), es importante que describamos la fenomenologia
del proceso. Asi, cuando se aplica un campo eléctrico a un sistema semiconductor se produce una
corriente eléctrica matematicamente dada por la expresion:

+  2e?K? i F ] -
F=0 S k() o (Br)OEr — £u(R)] = o F, (35)
S = (i )

n,K

la cual se obtiene partiendo de la idea que la densidad de corriente puede escribirse como J =
en(¥). Entonces, si suponemos que la geometria de la banda se describe en la aproximacion
parabllica, ¢.(&) =¢&. +(**)/e2n); la suma por gz en (35) se realiza en la forma:

y ' on oo
Z~~E P /(12_' b_ / / kdrdf - - -
z (2m)2. " a2 lo Jo

2 0 1 2n
% -9 ey 2 e ‘_' I's
/0 df cos” 0 [2 + 1 sin 29}

0

La direccion en que se calculala 5 es la del campo eléctrico, F. en tanto el &ngulo es
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el que forma & con el campo. Por consiguiente,

- 2( ﬁ gn — 2
ki ,,FF/.I)F—E,,“)
o lﬁ29(777 QZ = (0 | Q)

(Er)F ((Er — £,)0(Ep — £,))

2

2 2
- &

m m*

Comparando la ecuacion anterior con ¢ = mefi, tenemos;

n, — (’” )(h, _ £,)8(Er —E,):
h?

etn(EFr)

Hn =
m*

En las expresiones anteriores vale la pena hacer las siguientes consideraciones:

0 El campo eléctrico tiene una direccion dada y la densidad de corriente que se calcula esta

en la misma direccion del campo.

¢ La unica suposicion realizada en el célculo es que las subbandas del semiconductor tienen
una forma parabdlica. Esto hace mas sencillo el problema de calcular la movilidad.

0 La expresion para N define la concentracion areal de portadores en cada subbanda,
vinculada con la cantldad de estados que existe desde su valor de energia en x = 0 hasta el

valor K, correspondiente a cada subbanda.

¢ La expresion de la movilidad hallada juega con el tiempo de relajacion de los portadores,
que en este caso corresponde con la dispersion por impurezas al nivel de la energia de
Fermi, pero lo que se calcula es el inverso de ese tiempo, que es para el que se tienen
expresiones, por cierto nada sencillas, en dependencia de la forma en que se produce la

dispersion de los portadores.

4. Calculo estadistico de la funcion de distribucién fuera del

equilibrio

En el procedimiento anterior es necesario trabajar con un sistema que estd fuera del
equilibrio, por lo que la funcién de distribucion que determina la estadistica de los electrones
tiene que ser calculada especialmente en estas condiciones. Para ello se emplea la aproximacién
lineal (Kadanoff 1999) y se considera la funcion de distribucion real. Hacer esta consideracion
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representa suponer que el sistema responde linealmente al campo aplicado, lo que ocurre cuando
este no es muy intenso. Entonces, vamos a tener que:

*

Ante un estimulo externo los portadores se mueven, y manifiestan una movilidad, en
situacion de no equilibrio. La distribucion de portadores en el equilibrio tiene una funcién
de distribucién que Ilamaremos f,®. Cuando se aplica un campo eléctrico de no mucha
intensidad para mover los portadores, la funcion de distribucion de no equilibrio cumplird

con:
ff!. = ff(?O) + Af‘n'

Suponiendo que la funcién de distribucion no depende del tiempo, ni de las coordenadas,
entonces los cambios se producen unicamente por chogues (o colisiones), luego:

af, 0K ;
i n i g (0)‘
( ot >choque’ ot K/f”

Ok 10p Fa
ot  hot h’

pero: f, — _.p, siendo F el campo eléctrico;

0K e =
B _ﬁF' (36)
Por consiguiente, se tiene:
Fu(R) = S10(R) + G r(Fe)F - Vg fo @7

Por otra parte, suponiendo la banda parabdlica, el gradiente de la funcion de distribucion
es:

Vief® = of) OE, _ h’R (0f0) |
KIn OE” IR m* aE” ,
Con lo cual se escribe:
afn eh , = (‘)f(o)
% =" F\oE, ) 38
( o >F””ql’f‘ n)_*n < OEI) (38)

La ecuacién de Boltzmann, en las condiciones enumeradas al inicio de esta seccién
(Kadanoff 1999), plantea que:

OAfr
ot

= Y {W(m, &0, R)A (K, 1) = W(n, Bim, &) A (R, D)} (39)

m,K’
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Ahora, teniendo en cuenta que:

y 9 £(0)
Ao = fuR) - fOR) = “ﬁF"E((?'f” )w,,).

m* oF,

y que los indices de subbanda son mudos porgue se suma sobre ellos; al sustituir en el
miembro izquierdo de (39) el resultado de (38), y en el miembro derecho aquel obtenido
en (20), al escribir apropiadamente los términos llegamos a:

eh ,, = Of© B 5 O .
—— (R F)5p— =2 (L) 5 o l(m, & Hiln, &) [n'.ng;,,T,,,(b,,,)_
'n

Esta expresion se trabajara en la forma siguiente:

0 Se hace coincidir el eje # con el campo aplicado, entonces:  #-F = k. F'y &"-F = i, F,
con lo cual el campo eléctrico aparece en ambos miembros de la expresion y se
puede cancelar. De esta manera, el resultado no depende del campo aplicado.

) (0) 27
K (()fE” — ( T) Z |(m, K| Hp|n, s
m,K'
xR (B - e H (8] 1B () - Eu(R)
T OE,,, 'm m 3 aEn In n m n .
¢ Para tratar el sistema se multiplica por ., se sumapor y £ Se seleccionan

adecuadamente las variables mudas para poder escribir:

2 = y (0)
B & f(())fEn - ?:T Z ) |(m, K'| Hine |1, E>[2(H‘lf"’.lr — kK Zo””l)gg:n .
K m,K' K
X Tm(Em)(S[Em(’;I) = E,,(I_‘.':)] (40)

¢ En el miembro izquierdo de esta Gltima relacion tenemos, considerando la
degeneracion por el spin:

A afn())
LHS = —Z e
” S(m*)?
= X 0lEr ~ BR)) = > (e ~ B)O(Er ~ E),

¢ Usando lo obtenido como LHS y para el otro miembro el resultado (40), escribimos:
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(Er — E,)O(Er — E,) = > [m, K| Hipn, B)|* x

m*)2
S(”l ) m,K' K

()f()

2 VOE,, (k) — E,(R)].
)Em Tm(Fm)( [Fm<K') Fn(""’)]

X (H.l-h',.,r = Hf-dnm)

Ahora nombramos la siguiente magnitud:

om2h3 o
KaslB) = o It Z |(m, &! | Hing |10, BY? (Kokly, — K20mn) X
777 =, -
() (0) . .
(()fEm ) ()[F,”(K/) - En(K/)]; (4I)

con lo que la expresion que resulta de la transformacion realizada a la ecuacion (39)
va a quedar en la forma:

(EF - En)(—)(EI - En) = Z ]\’mn(EF)Tm(EF)- (42)

m

En (42) queda por terminar de evaluar el término definido por la expresion (41), a lo que
dedicaremos la siguiente seccion, dada su importancia y las aproximaciones que se deben hacer
para calcularlo. Esa expresion es el sistema de ecuaciones algebraicas que permite calcular el
tiempo de relajacion de cada subbanda y con ellos la movilidad de la subbanda, para luego poder
hallar la movilidad total.

5. Célculo de las movilidades a partir de los tiempos de relajacion.

En este punto del analisis debemos discernir como calcular los elementos matriciales que
aparecen en (20) —y se expresan en la forma (22)—; donde se emplea el potencial apantallado dado
por (34). Ademas, se usan las expresiones (25) y (24) para acomodar convenientemente el
resultado hallado y, en ese caso, tenemos:

= ZLN 2 \-[/1 1/( )v}flz(h.,)] («“ ,,(Z)}

nv

donde se va a aplicar la propiedad:

S/dzﬁe RotK')-p — AR, — R—K/)
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y se va a introducir la funcion m .

Mop,(K) = — / dzo, (2 [ 4 37 L,(R, 2) My (@0, B) Vi () | 90(2),

uv
donde las diferentes funciones incluidas se definen como:

| ",
Lin(k50) = = /dzq‘): (2)pn(z) €714,

“377110.;1(';,) - /dfwc/,t( ) )Snno(z)-

Entonces, se obtiene para Il (K’) laexpresion,

Hn.n(,(’;,) = non + Z ‘3””0 1 \[1 1/( I;’)V/;,,(H,I),

g

y esto permite escribir la correspondiente expresion para los elementos matriciales de interés en
la forma:

2
(1 RolVi (3,21 ) = () €2 Ay = = ) (L, 01

+ Z fnn /1 4\-[;1 1/("" K’) /1‘3!/(""',)}:

pv

que es no nulo sélosi ' = K, — K, por lo que va a quedar:

2me

2 e b
En) = ( ¢ ) Ze’(n”_mpi {Lpn(Ro — K,0)+

pv

En este punto debemos tener en cuenta que, como el potencial es simétrico y los estados
monoelectronicos tienen paridad definida, hay elementos matriciales que se anulan y deben
seguir las reglas conocidas para el célculo de los elementos matriciales para  [3,.(K) que ya
estos autores analizamos al calcular la funcion dieléectrica del pozo delta-dopado (Rodriguez-
Coppola 2010).
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Ahora, con esta expresi()n (43) se pueden determinar los elementos matriciales buscados, (41):

[\’mn(E) — 777 ( 2 Z Z el {Erz.(,r‘:(ﬁc) — F‘{-. 0)+

—c

£ Bl )\1u,,(w,,so—,s)vE,,(,zO—,z)}

uv

—

X 5[Em( /) - En(’%)}(hlh’ - Hf‘-dnm);

&

pero podemos simplificar la expresion si promediamos mediante la siguiente aproximacion:

— — —

Zze R e p_p?)> = —"T\'rhn.pa

con lo cual, si usamos una de las superficies para plantear: N.p = Npmp/S, obtenemos:

= €4h:3;Nr2D
KuulB) = W Z

2o

{ E'n,u‘n('?’u = 'z$ 0)+

( e — . — — — f7(7?)
+ Z ;‘31171.,,,;1('(‘"0 - K’)A[u.u(wﬁ Ko — R)VEV('{O . H‘)} ((DE
v m

X (5[Em (K?’) . En (Fi)] (H‘.T/{(- = Hf,(snrn.)- (44)

&

Como ya hemos mencionado, emplearemos el esquema utilizado por M. Mora-Ramos en (Mora-
Ramos 2008). Renombramos a (43) en la forma:

—

2 (R,k,0) = TR — K| = |(m, &|Vr(B, 2)|R, n)|?

2
= H Ly (K — R, 0) + " Bung (K — R)YM,,., (w, & — R) Vg, (K — E)H ,

iz

dado que este elemento depende, en realidad, de  |§ — &'|> = |&|> + |&/|> — 2|K||K/| cos 6.
Asi, vamos a tener para la doble suma por las variables de momentum:

KonlB) = S0 5 L1200 (V2) 618 (7) = En(R) 5, = 28m)
mn\+~/) — 2(771 ()2 v mn\f; K, O oE,, m\ K n\K)|[\KaRy — KpOmn
KR
452 C ez [ 2o / / f 200208
L = /d /d KT? (K, K, )k coscos @ — K2 cos? 06 ,,] X

X

Ofn -, ;
(OT) 31w (R) ~ B(R)]
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Debemos resaltar que esta expresion para I, constituye un coeficiente adimensional que no
participa en la determinacion de las unidades de los términos de interés. Por otra parte, en (41)
quedan integrales por el momentum que deben completarse mediante el siguiente procedimiento:
Se efectla el cambio de coordenadas angulares de (0, ) a (6, o = 6’ — 6). Por comodidad,
tomamos 6 € (0, 27) y a € (0, ). Esos cambios graficamente corresponden a lo mostrado en el
esquema del sistema de coordenadas mostrado (Ver figura 3).

0.«
J (W)

Con el cambio de variables angulares y considerando que:

En este caso tenemos:
06/00 06/06'

da /00 0a /Ol ‘ =

1o
-1 1

cos ' = cos(a + #) = cos acos ) — sin asin #

mas la definicion
9 f(O)

}/nm(’{'f H/) = (ﬁ) 5[E,,,(K,’) e EH(R{)] = O[El - Em(gl)]d[Em(

-
/

) . En»('%)]-

las integrales Iy, son:

452 00 00 T T 3 g
Iy = —— kdk K dk do | daTlz (kK «) X
4 mn
(2m)4 Jo 0 0 0
2

x [kK/ (cos? B cos a — cos B sin O sin ) — k% 0% 08| Yo (K, K)

Las integrales angulares pueden ejecutarse directamente. Recordando que en un proceso

de dispersion elastica se || = |K'|, cumple entonces:
IR — K> = 2|R|*(1 — cosa) = 4|R|?sin® a/2
YA >
®

L

Figura 3: Esquema de la eleccion del sistema de coordenadas angulares que se emplean en el
estudio.

>

Xx
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Ahora, se utiliza el argumento de que a bajas temperaturas sélo los vectores de onda en
una franja estrecha alrededor de la superficie de Fermi participan en el proceso de dispersion, de
modo que vamos a |x| =~ xp, escribir y se tiene:

Dol ~ ";ll) =T2,(k,&',a) =T2 (2kpsina/2); (45)

mn mn

asi que nos queda solamente por acometer la integracion angular por . Entonces tenemos:

AnS? ‘ R0
Ly, = 70 / do T2 (2/~cFSin(r/2)/

, -
i 2R o
—t = h‘(lh‘/ K'dK'[k“Omn — kK cos a] X
(2/() 0 0 0

X O[Er — Ep(K)]0|Em(K') — En(R)]

47 2 ox ;
= (;—,§1 / do Fyznn(QHF sin ("'/2)(Il<nm =+ I‘Z.nm); (46)
7 0
y efectuando se llega a:
m* 352 T )
[nm = [l.n‘m 7 IQ,mn % /0 d(l rfnn(Qh‘-F Sill 0/2) X

X \/Ep + &, — 2&,, {\/Ep + & — 2&0.0mn — \/ Er — &, cOS (1}(.47)

Con todo esto, el elemento matricial de interés es, usando (47):

: etm*S2N.
K nm(EF) — thfl)@[EF - (‘:,”]\/EF . En . 25111 X

X ﬂl"rz 2K si /2 [ E +gn_26msnm_ E _gm 05 (v
/0 da T's  (26Fsin(a/2)) \/ P , Omn — \/ EF COS (x

Al pasar a la evaluacion numérica, la expresion que se programara para la obtencion de K, sera:

(48)

[\'mu(EF) == H " ']mn(EF);
e*m*S2N, D
8m3e2h’

Jon(Ep) = OEp — E\/Er + &0 — 26, [ da T2, (26psin(a/2)) x

mmn
0

[\/E].‘ + &En — 2E0m0mn — \/ Er — & COS a} )

2

X

Aqui, la cantidad Jnn(E) es un factor de energia que varia, en tanto H es una constante que
depende de la concentracion de impurezas del plano dopado.

Debemos significar, de forma general, que los elementos K., son simétricos dado que
representan elementos matriciales de un potencial simétrico entre estados monoelectronicos. Esto
facilita el calculo porque simplifica las ecuaciones que hay que usar. Ademas, como veremos
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cuando escribamos explicitamente los sistemas de ecuaciones que se requieren para diferentes
densidades de dopaje, las matrices que hay que usar para resolver los sistemas lineales son
sencillas porque tienen muchos elementos nulos. Entonces, solamente resta por evaluar una
integral angular para completar el estudio. Podemos avanzar un poco mas si usamos el teorema
del valor medio para el elemento matricial y escribimos:

- 1 lx
]\'””I(EF) ~ H(—)[EF = g,,,]\/EF + gn = 28;71,1\,‘”” (\/§HF> / : 1( 1 = X
J=144/1—F

x [o Ay 38— 2 e — 5] . (49)

Aqui quedan por ejecutar las integrales:

/1 Lt + Vilid ndo tenem L wdv 0
=7 dlido cuando tenemos n = m — =0
=1 AL = )

con lo cual se obtiene:

[\'nm(EF> ~ [{G[EF - gm]\/EF = gll - 251:1F2 (\/5"'17> X

mn

X f—ll 71(—{% {(smn \/EF =5 gn e 25111 —Z EF - gm} . (50)

En este caso, solo se tienen contribuciones intrasubbanda a los tiempos de relajacion. Esto
es, se cumple que:

Kun(Ep) ~ HO[Ep —&,)(Ep — )T}, (V2p)
Kun(Br) = 0 Sin # m.

Debe decirse aqui que si nos limitamos al SQL, esto es, considerar solamente la primera
subbanda tenemos, de forma general, la reproduccion del resultado que aparece reportado en
diversos trabajos anteriores (Mora-Ramos 2008). Esto se obtiene porque ese resultado no
depende de la forma concreta que tiene el elemento de matriz del potencial apantallado que se
utiliza en el calculo del inverso del tiempo de relajacion. Por consiguiente, se puede decir que el
cambio en la forma en que se considera el apantallamiento de la interaccion coulombiana entre
portadores no modifica la forma general del calculo del tiempo de relajacion, aunque si su valor,
dado que al resultado que se obtiene le falta incluir la contribucién proveniente de ejecutar una
integracion. Esta va a proporcionar diferentes valores de acuerdo a la forma que tenga el
elemento matricial considerado.

Para dar un ejemplo de la manera de actuar en el calculo que resta, debemos considerar el
problema con varias subbandas ocupadas —y, de hecho, varias subbandas en el rango de energias
de interés. Veamos:

En un pozo con nyp = 103 cm—2 en GaAs dopado con Si se tienen 6 estados del espectro discreto
en la BC. Considerando s6lo estos estados habra que tener en cuenta transiciones de todos entre
si. Supongamos que sean, de hecho, seis. Entonces este sistema queda:
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(EI - En)(—)(EF - En) = ]\',,,,(Ep)T,,(E[F)
(EF - En)(_)(EF _ E”)

(Er) = - 51
T‘( [) ]\nn(EF) ( )
Usando (13) tendriamos, en nuestro caso especifico:
o |(|(EF - EII)G)(EF — En)
/IH(EI‘) - m* - I\V;III(EF) (52)
|(5" 6 (EF‘ = E,)@(EF = E,)
_ . 3
H m* - Y. n; Iz::l' ' K;i(Er) (23)

Con esto, el algoritmo para el calculo numérico se resume como:

- Calcular los estados electrénicos del pozo delta dopado correspondiente a una
determinada concentracion de impurezas en el plano. Se determinan las energias y las

funciones de onda de cada estado. El rango de concentraciones de impurezas debe ser Nyp
= 9x10M-10" cm™2. El valor de la concentracién serd uno para cada célculo hasta el
final.

- Calcular los elementos matriciales que aparecen en la funcion dieléctrica con el potencial
del pozo y con el potencial de interaccion coulombiana entre particulas

- Formalizar las expresiones (48) para hallar las integrales que aparecen, usando los
elementos calculados.

- Formalizar el sistema de ecuaciones algebraicas (51) para hallar los tiempos de relajacién
de cada subbanda y con ellos las movilidades de cada subbanda.

- Hallar la movilidad de baja temperatura del sistema mediante la expresion (53), sumando
las movilidades de cada subbanda presente en el célculo. Se debe hacer un grafico de la
dependencia de la movilidad del sistema con la concentracion de impurezas en la capa
dopada. Este grafico es el dado por otros autores (Gonzalez 1994; Shi 1997).

6. Conclusiones

Después de haber expuesto el procedimiento a desarrollar para obtener la movilidad de los
portadores en el sistema podemos decir lo siguiente:

- De forma natural el esquema de calculo conduce a la obtencion de una movilidad para los
portadores en cada subbanda. Como se ve, este valor tiene contribuciones de todas las
subbandas, aunque estas contribuciones no son visibles en forma sencilla porque
realmente vienen incluidas en el apantallamiento del potencial para el célculo de los
elementos matriciales del potencial de interaccion.
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- Nuestro calculo demuestra en forma precisa que las contribuciones a la movilidad de los
portadores en una subbanda no transcurren a través de procesos virtuales en que el
electron salta de una subbanda a otra o al continuo y regresa a la subbanda porque estas
posibles contribuciones resultan nulas, lo que simplifica el sistema algebraico que se
utiliza para el estudio. Esto, ademas, significa que las interacciones inmediatas de los
portadores de carga son solamente entre portadores de la misma subbanda y los demés
portadores solo influyen a través del apantallamiento de la interaccion que se tiene en
cuenta.

- Los otros esquemas de célculo no tienen en cuenta el caracter 3D de los estados y de las
magnitudes planteadas y ello no permite que puedan dar estas conclusiones sin terminar el
calculo completo.

- En nuestro calculo no se ha tenido en cuenta lo que puede ocurrir con el continuo de
energia de la banda. En rigor deben poder existir procesos en los que el electron pase de
un estado en una subbanda al continuo y de regreso a la subbanda para dar su aporte a la
contribucion; pero supondremos que estas son menores en valor relativo y por ello no las
consideraremos.
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