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RESUMO 
Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNA) e máquinas de vetor de suporte (MVS) na 
modelagem volumétrica em povoamentos de eucalipto. Utilizou-se dados oriundos de plantios comerciais não desbastados, localizados 
em quatro municípios na mesorregião sul do estado do Amapá e foram disponibilizados por uma empresa privada. Foram ajustados 
modelos volumétricos consagrados na literatura e comparados com a técnica de MVS e de RNA. Os dados foram divididos em 80% 
para treinamento e 20% para validação dos modelos, as mesmas variáveis dendrométricas utilizadas pelos modelos de regressão (dap e 
altura) foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das MVS, foram utilizadas quatro configurações, formadas 
a partir de duas funções de erro e duas funções de Kernel. Para configuração, treinamento e generalização das RNA, foi utilizado o 
software NeuroForest - Volumetric, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer 
Perceptron (MLP) e Funções de Base Radial (RBF). A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNA 
e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os volumes individuais observados e estimados (ryŷ), a raiz 
quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Considerando os resultados, 
MVS e RNA obtiveram desempenho ligeiramente melhores, comparados à metodologia tradicional, nas estimativas de volume individual, 
demonstrando serem técnicas que se adequaram bem para aplicações na área de mensuração e manejo florestal. 

PALAVRAS CHAVE: análise de regressão, aprendizado de máquina, volumetria. 

ABSTRACT 
This study aimed to evaluate the performance of artificial neural networks (ANN) and support vector machines (SVM) in volumetric 
modeling in eucalyptus stands. Data from commercial plantations, located in four municipalities in the southern mesoregion of the state 
of Amapá, were used and were provided by a private company. Volumetric models established in the literature were adjusted and 
compared with the SVM and ANN techniques. Data were divided into 80% for training and 20% for model validation. The same 
dendometric variables used by the regression models (DBH and height) were used by the SVM and ANN. For training and generalization 
of the SVM, four configurations were used, formed from two error functions and two Kernel functions. For configuration, training, and 
generalization of the ANN, the NeuroForest-Volumetric software was used, in which network configurations such as Adaline (Adaptive 
Linear Element) were used; Multilayer Perceptron (MLP) and Radial Base Functions (RBF). The quality of the adjustments of the 
regression models, and of the methodologies using ANN and SVM, were evaluated using the correlation coefficient between the observed 
and estimated individual volumes (ryŷ), the root mean square error, expressed as a percentage of the mean (RMSE%), and graphical 
analysis of residues (Res%). Considering the results, SVM and ANN performed slightly better, compared to the traditional methodology, 
in individual volume estimates, demonstrating that they are techniques that are well suited for applications in the area of measurement 
and forest management. 

KEYWORDS: regression analysis, machine learning, volumetry. 
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INTRODUÇÃO 
Os inventários florestais são um componente integral do 
monitoramento e gestão de recursos naturais (Fankhauser 
et al., 2018). Os inventários florestais são tradicionalmente 
realizados por meio de amostragem de campo intensiva, 
com o objetivo de fornecer aos gestores uma compreensão 
da composição e estrutura de uma floresta (Goodbody et 
al., 2017). 

Estimar os volumes das árvores individuais é, na 
maioria das vezes, a principal finalidade dos levantamentos 
florestais, notadamente quando se trata de povoamentos 
destinados para fins comerciais (Machado e Figueiredo-
Filho, 2009). 

As estimativas volumétricas podem ser obtidas por 
meio de fatores de forma, quociente de forma, equações de 
volume, equações de múltiplos volumes ou de afilamento 
(Burkhart e Tome, 2012; Campos e Leite, 2017). A equação 
de volume é a forma mais usual de realizar a estimação do 
volume. Ela é uma expressão em que o volume da madeira 
é apresentado como função de outras grandezas ou 
variáveis da árvore (normalmente o diâmetro a altura do 
peito e a altura) que podem ser medidas e estimadas por 
meio não destrutivo (Batista et al., 2014). Porém nos 
últimos anos, as equações volumétricas têm sido utilizadas 
em estudos comparativos juntamente com aplicações de 
ferramentas da inteligência artificial, haja vista os bons 
resultados obtidos em alguns trabalhos na ciência florestal, 
dada à sua flexibilidade no treinamento e modelagem das 
relações entre variáveis, capacidade de aprendizado de 
informações de um conjunto de dados e a generalização 
desse aprendizado para dados desconhecidos (Binoti et al. 
2016; Bonete et al., 2019; Abreu et al., 2020). 

Avaliar novas abordagens de modelagem preditiva é 
uma importante ação na busca por modelos mais precisos 
e na superação de problemas comuns às técnicas 
convencionais. Os avanços nas técnicas computacionais, 
como algoritmos de aprendizado de máquina, têm sido cada 
vez mais utilizados para modelar dados biológicos. Esses 
algoritmos permitem o uso de dados categóricos, com 
ruídos estatísticos (outliers) e dados incompleto, portanto, 

podem atender às necessidades sob diferentes cenários de 
conjunto de dados (Breiman, 2001). O aprendizado de 
máquina, de acordo com Bell (2015), é um ramo da 
inteligência artificial, no qual são efetuados sistemas que são 
induzidos a aprender por meio de dados a serem treinados, 
computacionalmente, o modelo vai aprendendo por meio 
de aperfeiçoamentos com a experiência no decorrer do 
tempo. Recentemente, uma nova cultura de modelagem 
estatística - aprendizado de máquina - ganhou impulso e foi 
aplicada para resolver questões desafiadoras em diversas 
áreas da ciência e tecnologia (Dalla-Corte, 2020). 

As redes neurais artificiais (RNA) são ferramentas do 
aprendizado de máquina, que segundo Feltrin (2019) 
apresentam neurônios que estão ligados por meio de 
estrutura de entradas, intermediárias e saída. No qual esse 
neurônio se denomina Perceptron, que matematicamente 
efetua interpretação de dados de entradas, além dos pesos 
empregados sobre eles e as funções de ativação para o 
processamento final, basicamente se apresentando como 
um neurônio biológico, no qual as RNA são baseadas em 
sistemas biológicos com objetivo de execução de uma 
determinada tarefa (Haykin, 2007; Bulinaria, 2016). 

Para Haykin (2007), as Máquinas de Vetores de 
Suporte (Support Vector Machines) compreendem um 
algoritmo de aprendizagem de máquina supervisionado, 
isto é, um algoritmo com capacidade de explorar um 
conjunto de dados de treinamento a fim de descobrir 
relações entre os atributos (variáveis independentes) e uma 
variável alvo (dependente). 

OBJETIVOS 
Com a necessidade de estimativas mais precisas, haja vista 
a potencialidade da aplicação das MVS e das RNA, o 
objetivo do presente estudo é aplicar essas metodologias na 
modelagem de volume individual com casca em 
povoamentos de eucalipto, efetuando comparação dos 
métodos com a modelagem tradicional. 

MATERIAIS E MÉTODOS 
Os dados desse estudo são de plantios comerciais não 
desbastados de Eucalyptus urophylla St Blake, com idades 
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variando entre 22 meses e 88 meses, localizados em quatro 
municípios (Ferreira Gomes, Itaubal, Porto Grande e 
Tartarugalzinho) da mesorregião sul do estado do Amapá. 
O clima equatorial úmido ou tropical super úmido, 
marcado por altas temperaturas, e elevados índices 
pluviométricos (média anual de 2500 mm), a temperatura 
média varia entre 36 °C a 20 °C. Em linhas gerais os solos 
contidos nas áreas operacionais são distróficos, altamente 
coesos, com baixa fertilidade. O relevo predominante nas 
áreas operacionais é o plano a suave ondulado, com 
altitudes variando de 30 m a 120 m. 

Foi realizada a cubagem rigorosa de 214 árvores-
amostra, onde seus respectivos diâmetros foram 
mensurados ao longo do fuste em posições fixas, nas 
seguintes medidas: 0 cm (base); 0,50 m; 1,0 m; 2,0 m e a 
partir desse ponto de 2,0 m em 2,0 m até o diâmetro 
mínimo de 4,0 cm, sendo o volume individual determinado 
pelo método de Smalian.  

Foram ajustados os modelos de Schumacher e Hall 
(1933) na sua forma linearizada (1) e o modelo de Spurr 
(1952) (2). 

𝑙𝑙𝑙𝑙𝑙𝑙 =  𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑙𝑙ℎ +  𝜀𝜀𝜀𝜀              (1) 

𝑣𝑣 =  𝛽𝛽0 + 𝛽𝛽1𝑑𝑑2ℎ +  𝜀𝜀𝜀𝜀                         (2) 

Em que:  
v = Volume total com casca (m³) 
d= Diâmetro a 1,30 m de altura (cm) 
h = Altura total (m) 
βis = Coeficientes a serem estimados 
εi = erro aleatório 

As amplitudes mínimas, máximas e médias das variáveis 
dendrométricas utilizadas para estimar o volume são 
apresentadas na tabela 1. 

Utilizou-se 80% dos dados para ajuste/treinamento (n 
= 171), e 20% para validação/generalização (n = 43) das 
estimativas de volumes individuais obtidos pelas 
metodologias avaliadas no presente trabalho. Tanto para 
MVS quanto para RNA, as variáveis de entrada foram o dap 

e a altura, sendo o volume total com casca a variável de 
saída. Para o treinamento e generalização de todas as 
estimativas de volume individual com a técnica MVS, foram 
utilizadas quatro configurações, formadas a partir de duas 
funções de erro e duas funções de Kernel, sendo que as 
funções de erro foram: função do tipo I (3) e do tipo II (7). 

Função do tipo I: 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1
2 

 .𝑊𝑊𝑇𝑇𝑤𝑤 + 𝐶𝐶.∑ 𝜉𝜉𝜉𝜉 + 𝐶𝐶.∑ 𝜉𝜉𝜉𝜉 ∗𝑁𝑁
𝑖𝑖−1

𝑁𝑁
𝑖𝑖−1     (3) 

Sujeito as seguintes restrições:  

𝑊𝑊𝑇𝑇 .𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖  ≤ ε + ξ𝑖𝑖 𝜉𝜉𝑖𝑖                   (4) 

yi – 𝑊𝑊𝑇𝑇 .𝜙𝜙(𝑥𝑥𝑖𝑖) − 𝑏𝑏)  ≤ ε + 𝜉𝜉𝜉𝜉                   (5) 

ξ𝑖𝑖, ξ𝑖𝑖 ∗≥  0, i = 1, . . . N, ε ≥ 0                    (6) 

Em que: 
w = vetor de coeficientes 
C = parâmetro de penalidade do erro 
ξ𝑖𝑖 𝜉𝜉𝜉𝜉 ∗variáveis de folga que caracterizam, respectivamente, 

o erro acima e abaixo do 𝜀𝜀− tubo 
i = casos de treinamento 
N = número total de casos de treinamento 
𝜙𝜙. (𝑥𝑥𝑖𝑖)= kernel utilizado 
b = bias 
𝑦𝑦i = dados de saída 
ε = erro máximo admitido 

Função do tipo II: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1
2 

 .𝑊𝑊𝑇𝑇𝑊𝑊 − 𝐶𝐶 �𝑣𝑣. 𝜀𝜀 + 1
𝑁𝑁

.∑ 𝜉𝜉𝜉𝜉 +𝑁𝑁
𝑖𝑖−1

𝐶𝐶.∑ (𝜉𝜉𝜉𝜉 + 𝜉𝜉𝜉𝜉 ∗)𝑁𝑁
𝑖𝑖−1 �                                                        (7) 

Sujeito as seguintes restrições: 

(𝑊𝑊𝑇𝑇 .𝜙𝜙. (𝑥𝑥𝑖𝑖) + 𝑏𝑏) − 𝑦𝑦𝑖𝑖  ≤ 𝜀𝜀 + 𝜉𝜉𝜉𝜉 )              (8) 
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𝑦𝑦𝑦𝑦 – (𝑊𝑊𝑇𝑇 .𝜙𝜙. (𝑥𝑥𝑖𝑖) + 𝑏𝑏)  ≤ 𝜀𝜀 + 𝜉𝜉𝜉𝜉 ∗             (9) 

ξ𝑖𝑖, ξ𝑖𝑖 ∗≥  0, i = 1, . . . N, 𝜀𝜀 ≥ 0               (10) 

em que: 
𝑣𝑣 = parâmetro que regula o número de vetores de suporte 

As quatro configurações de MVS utilizadas foram função 
de base radial (RBF) e linear, tipo I e tipo II, apresentadas 
matematicamente conforme tabela 2.  

Para as redes neurais, utilizou-se configurações de 
redes do tipo Adaline (Adaptive Linear Element); multilayer 
perceptron (MLP) e funções de base radial (radial basis function-
RBF), tendo como arquitetura genérica, a camada de 
entrada são as variáveis independentes utilizadas na 
regressão convencional, uma camada intermediária com n 
neurônios e uma camada de saída (volume). 

Utilizou-se o algoritmo Resilient Propagation na sua 
variação RPROP+ por ser um algoritmo eficiente em 
trabalhos recentes na área florestal (Tavares-Júnior et al., 
2019; Freitas et al., 2020; Silva et al., 2020).  

A definição do número ideal de neurônios da camada 
intermediária foi realizada conforme Bonete (2020), foi 
avaliada a função de ativação sigmoidal na camada oculta, 
combinando com a função sigmoidal e logarítmica na 
camada de saída, observando-se a ineficiência ou a não 
capacidade de ajuste da rede quando na presença de poucos 
neurônios na camada intermediária, bem como valores 
baixos da raiz quadrada do erro quadrático médio 
percentual (RMSE%) no treinamento e valor crescente da 
RMSE% na validação, quando na presença de muitos 
neurônios na camada intermediária. O número de 
neurônios na camada intermediária é responsável, 
principalmente, pela extração de características de não 
linearidade dos dados (Leite et al., 2016).

 
 
 
TABELA 1. Informações das variáveis dendrométricas para estimativa de volume individual 

Variável 
Ajuste/Treinamento Validação/Generalização 

Mín. Máx. Média Mín. Máx. Média 

Dap(cm) 6,3 23,7 13,4 5,8 21,5 13,8 

Ht(m) 12 26,7 19,7 10 25,7 19,3 

Volume (m³) 0,02 0,447 0,145 0,02 0,327 0,149 

DAP = diâmetro à altura de 1,30 m; Ht = altura total; V = volume. 

 
 
 
TABELA 2. Funções de Kernel testadas nas máquinas de vetor de suporte. 

Tipo de Kernel Funções Parâmetros        Nº 

Linear 𝐾𝐾�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗� - (11) 

RBF 𝐾𝐾�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗� = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝛾𝛾�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�� γ (12) 

Em que: K(Xi.-Xj) = ⟨𝜙𝜙(𝑋𝑋𝑋𝑋)|𝜙𝜙(𝑋𝑋𝑋𝑋)⟩ e representa a função de Kernel aplicada aos dados de entrada; ꝩ= parâmetro de forma; d = grau do polinômio; C = parâmetro de penalidade 
do erro.  
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Como critério de parada do treinamento das redes foi 
adotada a formatação padrão do software Neuro 4.0, em que 
a RNA interrompe o ajuste dos pesos ao atingir o erro 
médio de 0,0001 ou 3000 ciclos de treinamento. 

A qualidade dos ajustes dos modelos de regressão e das 
estimativas foram avaliadas utilizando-se o coeficiente de 
correlação entre os volumes individuais observados e 
estimados (ryŷ), a raiz quadrada do erro médio, expresso em 
porcentagem da média (RMSE%) e distribuição gráfica dos 
resíduos, demonstrados na tabela 3. E para verificar a 
significância dos parâmetros estimados dos modelos de 

regressão, utilizou-se o teste t a 5% de probabilidade de 
erro.  

O ajuste das regressões e o treinamento da máquina de 
vetor de suporte foram efetuados utilizando o software R (R 
Core Team, 2019), por meio do pacote e1071 (Meyer et al., 
2019). E as redes neurais artificiais foram treinadas 
utilizando o software NeuroForest –Volumetric. 

RESULTADOS E DISCUSSÃO 
Na tabela 4 estão os resultados dos ajustes dos modelos de 
volume comercial com casca. Todos os modelos tiveram 
parâmetros significativos (p < 0,05) pelo teste t.

 
 
 
TABELA 3. Estatísticas utilizadas para avaliar o desempenho dos modelos de regressão, das MVS e das RNA 

Estatísticas Fórmulas Nº 

Coeficiente de correlação 𝑟𝑟𝑌𝑌𝑌𝑌� =
∑ 𝑦𝑦𝑖𝑖𝑦𝑦�𝑖𝑖 −

(∑ 𝑦𝑦�𝑖𝑖). (∑ 𝑦𝑦𝑦𝑦𝑛𝑛
𝑖𝑖=1 )𝑛𝑛

𝑖𝑖=1
𝑛𝑛

𝑛𝑛
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖2 −
(∑ 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 .∑ 𝑦𝑦�𝑖𝑖𝑛𝑛

𝑖𝑖=1 − (∑ 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 ]𝑛𝑛

𝑖𝑖=1

 (13)  

Raiz quadrada do erro quadrático 
médio (%)       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅% =

100
𝑦̄𝑦𝑖𝑖

�∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛  (14) 

Resíduo       𝑅𝑅𝑅𝑅𝑅𝑅 % =  
(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)
𝑦𝑦𝑦𝑦    . 100 (15) 

Em que: yi = valores observados; 𝑦𝑦�𝑖𝑖  = valores estimados; 𝑦̄𝑦𝑖𝑖  média dos valores da variável dependente e n é o número total de observações.       

 
 
 
TABELA 1. Coeficientes estimados e estatísticas utilizadas para avaliar o desempenho do ajuste dos modelos volumétricos na estimação 
do volume individual. 

Autor/Fonte Modelo Coeficientes ryŷ RMSE% Nº 

Schumacher e Hall (1933) 
 

 

β0 = -9,9085574 

0,9917 7,92 4 β1 = 1,68596775 

β2 = 1,168174 

Spurr (1952) 
  

 

β0 = 0,0170752 

0,9899 8,73 5 β1 = 0,00003107 

 

Em que: βis = coeficientes estimados; ryŷ = coeficiente de correlação entre volumes observados e estimados; RMSE% = raiz do erro quadrático médio percentual. 

𝑙𝑙𝑙𝑙𝑙𝑙 =  𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑙𝑙ℎ 

𝑣𝑣 =  𝛽𝛽0 + 𝛽𝛽1𝑑𝑑2ℎ 
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Ao analisar o coeficiente de correlação dos dois modelos, 
pode-se dizer que os mesmos apresentaram resultados 
semelhantes. Quanto a estatística RMSE%, o modelo de 
Schumacher e Hall demonstrou maior precisão. Para 
Campos e Leite (2017), esse modelo tem sido o mais 
difundido por resultar quase sempre em estimativas não 
tendenciosas. Outras pesquisas na literatura florestal, 
também demonstram a superioridade do modelo de 
Schumacher e Hall, como Müller et al. (2014) que 
selecionaram modelos alométricos de Eucalyptus para 
estimativas volumétricas sendo que o modelo de 
Schumacher & Hall se destacou com estatísticas 
ligeiramente superiores aos demais; no trabalho de 
Hernandes Ramos et al. (2017) na quantificação de volume 
comercial de clones e sementes de Eucalyptus urophylla no 
sudeste do México, onde os melhores modelos foram o de 
Schumacher-Hall seguido do modelo de Spurr. No entanto, 
na modelagem da relação altura-diâmetro e o volume de 
mognos jovens africanos estabelecidos em sistemas 
agroflorestais sucessórios no nordeste do Brasil estudo de 
Santos et al. (2019), o modelo Spurr de dupla entrada foi 
mais preciso do que os outros 6 modelos avaliados. 

Na figura 1, estão as distribuições dos erros 
percentuais para as estimativas de volumes individuais, para 
cada um dos modelos ajustados. 

Nota-se uma certa semelhança entre os volumes 
estimados e observados na distribuição dos resíduos, no 
modelo de Spurr, uma tendência de superestimação para as 
árvores com diâmetros menores que 10 cm foi observada. 

Na tabela 5 são demonstrados os resultados das 
estatísticas dos modelos volumétricos para os dados de 
validação.  

Na etapa de validação, o modelo de Schumacher e 
Hall, obteve um maior coeficiente de correlação (ryŷ) e 
menor raiz do erro quadrático médio (RMSE%). Pode-se 
observar na figura 1 que o modelo de Spurr manteve a 
tendência em superestimar o volume nos diâmetros 

menores, sendo que alguns resíduos ultrapassaram 40%. Já 
o modelo de Schumacher e Hall, apresentou distribuição 
residual livre de tendenciosidades.  

As estatísticas de avaliação da MVS são exibidas na 
tabela 6. As configurações que fizeram uso das funções 
Kernel linear, não se ajustaram aos dados, gerando 
estimativas volumétricas com valores negativos, 
provavelmente isso ocorreu em decorrência das funções de 
Kernel do tipo Linear não conseguirem extrair relações entre 
as variáveis de entrada (diâmetro e altura) e a variável de 
saída (volume). Uma característica importante que uma 
função de Kernel deve possuir é satisfazer condições do 
teorema de Mercer. De forma geral, um kernel satisfaz as 
condições do teorema de Mercer se der origem à matriz 
positiva semidefinida (Lorena e Carvalho, 2007). Mais 
detalhes sobre o teorema de Mercer podem ser encontrados 
em Burges (1998). 

A MVS 4 obteve ligeiramente maior correlação e 
menor RMSE% que a MVS 2 e também que o modelo de 
regressão de Schumacher e Hall, que apresentou correlação 
de 0,9917 e RMSE% 7,92. 

Resultados de maior exatidão utilizando a MVS para a 
estimação do volume, superando o modelo de Schumacher 
e Hall, também foram encontrados por Binoti et al., (2016) 
e Cordeiro et al. (2015). Esses autores concluíram que a 
MVS pode ser utilizada para a predição volumétrica de 
espécies do gênero Eucalyptus e Acacia mangium, 
respectivamente. Em ambos os trabalhos, a MVS conseguiu 
maior exatidão nas estimativas, Vale ressaltar que no 
trabalho desses autores foi utilizada apenas uma 
configuração da MVS, composta pela função do tipo II e 
pela função de Kernel RBF. 

No gráfico de distribuição dos resíduos, houve 
superestimação de volumes individuais da MVS 2, nas 
árvores com diâmetros menores que 10 cm. Tendo em vista 
esses resultados, a MVS 4 foi a que obteve os melhores 
resultados, conforme apresenta a figura 2. 
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FIGURA 1. Distribuição de resíduos e volumes estimados e valores observados, na metodologia convencional, para os dados de ajuste e 
validação.  
 
 
Nieto et al. (2016), visando estimar o volume sem casca de 
árvores de Eucalyptus globulus, confrontaram duas técnicas de 
inteligência artificial como alternativa aos modelos 
estatísticos convencionais de dupla entrada. Esses autores 
concluíram que a MVS foi a melhor técnica para estimar o 
volume sem casca para os dados em questão em relação às 
RNA e aos modelos de regressão. No trabalho desses 

autores, foram testadas três funções de Kernel (Polinomial, 
sigmoidal e RBF), com melhores estimativas geradas pela 
função de Kernel RBF. É importante ressaltar que nesse 
estudo foram testadas quatro funções de Kernel (polinomial, 
sigmoidal, RBF e linear), constatou-se que a função de 
Kernel RBF, obteve as melhores estimativas.
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TABELA 5. Estatísticas de validação para os modelos testados para estimar volume. 

Autor/Fonte Coeficientes ryŷ RMSE% Nº 

Schumacher e Hall (1933) 

β0 = -9,9085574 

0,9842 9,38 4 β1 = 1,68596775 

β2 = 1,168174 

Spurr (1952) 
β0 = 0,0170752 

0,9827 9,81 5 
β1 = 0,00003107 

Em que: Coeficientes de correlação (ryŷ); raiz do erro quadrático médio percentual (RMSE%); ln = logaritmo natural; h= altura estimada; d= DAP = diâmetro à altura do peito 
(cm).  

 
 
TABELA 6. Estatísticas utilizadas para avaliar o desempenho das MVS na estimação do volume, para os dados de treinamento. 

MVS Função Kernel ryŷ RMSE% 

2 Tipo I RBF 0,9940 6,72 

4 Tipo II RBF 0,9943 6,60 

Em que: ryŷ = coeficiente de correlação entre os volumes observados e estimados; RMSE% = raiz do erro quadrático médio percentual. 

 
 
 
Na etapa da validação, a MVS 4 também demonstrou 
estatísticas ligeiramente melhores que a MVS 2, as 
estatísticas dessa etapa da generalização são mostradas na 
tabela 7. 

A MVS 4 do tipo II, obteve estimativas mais precisas 
na generalização indicando ser a melhor configuração de 
MVS para os dados desse estudo. A análise gráfica 
demonstra, menor dispersão de erros residuais, conforme 
figura 2. 

Os resultados obtidos pela MVS 2 são similares aos 
encontrados por Abreu et al. (2020) ao avaliar alternativas 
para estimar volumes individuais em diferentes formações 
florestais no estado de Minas Gerais, relatou que mesmo 
apresentando bons resultados, a MVS, para alguns volumes 
pequenos, não conseguiu apresentar boas estimativas, 
comparando-se a outras metodologias avaliadas. Montaño 
(2016), ao modelar variáveis dendrométricas para plantios 
comerciais, também utilizou MVS para biomassa seca em 
florestas tropicais e nesse estudo, as MVS também foram 
inferiores a outras metodologias utilizadas no trabalho 
desse autor. 

Os resultados estatísticos de avaliação do treinamento 
das três configurações das RNA, sendo elas Adaline 
(Adaptive linear Element), Perceptron de múltiplas camadas 
(Multilayer Perceptron - MLP) e Funções de Base Radial 
(Radial Basis Function-RBF), são demonstrados na tabela 8.  

As redes do tipo Adaline e MLP (1 e 2 
respectivamente) obtiveram estatísticas semelhantes, sendo 
que a rede 3 obteve maior coeficiente de correlação (ryŷ) e 
menor RMSE% (raiz do erro quadrático médio percentual).  

Analisando os gráficos de dispersão de resíduos, 
observou-se uma leve tendência em superestimar árvores 
com diâmetros menores, comportamento comum em uma 
série de dados biológicos, por se tratar de erro relativo. Isso 
demonstra a importância de se testar diferentes 
configurações de RNA e MVS, combinando as variantes 
existentes (função do tipo I e II) com diferentes funções de 
Kernel, buscando aquela que melhor se adeque a 
determinado problema e que obtenha maior exatidão na 
generalização.
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FIGURA 2. Distribuição de resíduos e valores estimados e valores observados, na metodologia de MVS, para os dados de treinamento e 
generalização.  
 
 
TABELA 7. Estatísticas utilizadas para avaliar o desempenho da Máquina de Vetor de Suporte (MVS) na estimação do volume individual, 
para os dados de generalização. 

MVS Função Kernel ryŷ RMSE% 

2 Tipo I RBF 0,9891 7,81 

4 Tipo II RBF 0,9895 7,64 

Em que: ryŷ= coeficiente de correlação entre volumes observados e estimados; RMSE%= raiz do erro quadrático médio percentual. 
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TABELA 8. Estatísticas utilizadas para avaliar o desempenho das RNA na estimação do volume de árvores, para os dados de treinamento. 

RNA Tipo* 
FA 

Arquitetura** 
Treinamento 

CO CS ryŷ RMSE% 

1 Adaline S S 2-1 0,9939 6,79 

2 MLP S S 2-7-1 0,9940 6,74 

3 RBF S LOG 2-2-1 0,9967 4,98 

Em que: FA = Função de ativação; *Tipo de RNA: Adaline = Perceptron, MLP = Multilayer Perceptron, RBF = Radial Basis Function; CO = camada oculta; CS = camada de 
saída; S= Sigmoidal; LOG= Logarítmica; ** Número de neurônios em cada camada; ryŷ= coeficiente de correlação entre volumes observados e estimados; RMSE%= raiz 
do erro quadrático médio percentual. 

 
 
 
TABELA 9. Estatísticas utilizadas para avaliar o desempenho das RNA na estimativa de volumes individuais, para os dados de 
generalização. 

RNA Tipo* 
FA 

Arquitetura** 
Generalização 

CO CS ryŷ RMSE% 

1 Adaline S S 2-1 0,9884 8,05 

2 MLP S S 2-7-1 0,9884 8,06 

3 RBF S LOG 2-2-1 0,9960 4,71 

Em que: FA = Função de ativação; *Tipo de RNA: Adaline = Perceptron, MLP = Multilayer Perceptron, RBF = Radial Basis Function; CO = camada oculta; CS = camada de 
saída; S= Sigmoidal; LOG= Logarítmica; ** Número de neurônios em cada camada; ryŷ= coeficiente de correlação entre volumes observados e estimados; RMSE%= raiz 
do erro quadrático médio percentual. 

 
 
 
Todas as configurações de rede obtiveram valores 
estatísticos superiores aos modelos de regressão conforme 
trabalhos de Azevedo et al. (2020), que utilizaram diferentes 
estratégias para modelar volumes de Eucalyptus urophylla, em 
Ribas do Rio Pardo, Mato Grosso do Sul, Brasil, onde foi 
treinada 1000 redes utilizando o layout Multilayer Perceptron 
(MLP) com algoritmo Backpropagation, em comparação 
também com o modelo de Schumacher e Hall, as RNA 
demonstraram ser mais adequadas do que os modelos de 
regressão na estimativa de vários volumes de eucaliptos, 
revelando maior precisão e praticidade; Abreu et al. (2017), 
que avaliou alternativas para estimar volumes individuais de 
uma floresta nativa semidecidual, na cidade de Viçosa, nos 
estado de Minas Gerais, Brasil, no referido trabalho, 
utilizou-se modelos lineares e lineares híbridos, 8 
configurações de MVS com 4 funções kernel (Linear, 
Polinomial, Sigmoidal e RBF), RNA do tipo Adaline e RBF, 

utilizando os algoritmos Backpropagation e Simulated 
Annealing respectivamente. MVS e RNA demonstraram 
resultados estatisticamente melhores comparados como o 
uso dos modelos de regressão, para aquela tipologia 
florestal. 

Na tabela 9 estão indicados os resultados das 
estatísticas obtidas na fase de generalização para as três 
configurações de RNA que foram utilizadas nesse estudo, 
onde a rede do tipo RBF apresentou maior correlação e 
menor RMSE%. Bons resultados na modelagem de 
volumes individuais de árvores de Eucalyptus spp., com a 
rede neural RBF, são encontros nos trabalhos de Silva-
Júnior et al. (2018) e Dantas et al. (2020).  

Na figura 3 é demonstrado que graficamente na RNA 
3, a distribuição dos resíduos está mais próxima ao eixo-x, 
que a redes Adaline e MLP nessa fase de generalização das 
redes. 
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FIGURA 3. Distribuição de resíduos e valores estimados e valores observados, na metodologia de RNA, para os dados de treinamento e 
generalização. 
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CONCLUSÕES 
Com o desenvolvimento desse estudo, verificou-se que as 
metodologias que utilizaram aprendizado de máquina, MVS 
e RNA demonstraram ser alternativas eficazes e 
estatisticamente satisfatórias à análise de regressão 
convencional, nas estimativas de volumes individuais para 
Eucalyptus urophylla St Blake, sendo que a metodologia que 
utilizava RNA, obtiveram melhores resultados. 

Diante dos resultados, a eficiência e flexibilidade na 
aplicação das metodologias de MVS e RNA, apresentaram-
se como boas alternativas em estudos de mensuração e 
manejo florestal. 
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