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Resumen
El desarrollo de modelos alométricos generalizados que permitan realizar estimaciones comparables con modelos locales, es un gran reto para la 
realización de estimaciones de la biomasa aérea en los bosques tropicales. Las estimaciones de los modelos alométricos parametrizados en el espa-
cio logarítmico (transformación a formato logarítmico) minimizando el error cuadrático de estimación requieren de la estimación de factores de 
corrección para la transformación inversa al espacio aritmético. Adicionalmente, si el objetivo es la minimización de sesgos (error relativo medio, 
ERM y error absoluto medio, EAM), entonces se puede minimizar el error absoluto de estimación. En este trabajo se usaron modelos alométricos 
clásicos, basados en la relación entre la biomasa (B) y el diámetro normal (D), altura total (H) y densidad de la madera (ρ), para revisar las relaciones 
entre sus parámetros. Para analizar las relaciones alométricas planteadas se utilizó una base de datos pública pantropical (4004 datos, 58 sitios de 
muestreo). Los análisis mostraron que para modelos globales (todos los sitios) y locales (cada sitio) el modelo de regresión lineal de la relación B 
versus ρD2H resultó en el mejor modelo (métrica de la raíz del error cuadrático medio o RECM), por ello fue usado como estándar de referencia. 
Los modelos parametrizados en el espacio logarítmico para las estimaciones globales resultaron con errores de estimación mayores al modelo  
B = av0 (D

2H) con av0 como función lineal con ρ. La estimación de av0 fue realizada minimizando el error absoluto, resultando en los menores errores 
de sesgos de estimación (EAR y EAM), con valores del RECM comparables al proceso de minimización del error cuadrático. Para las estimaciones 
locales, usando modelos alométricos a nivel de sitio, se utilizó el modelo con solo av0 (minimización del error absoluto) y cambiando el factor de 
corrección del estimador simple al de razones, resultando en un modelo de predicción con error de estimación comparables al de las regresiones no 
lineales y superando los modelos de alometría clásicos. Dado que no se cuenta con información de la biomasa aérea en los inventarios forestales 
normales, la estimación del factor de corrección de razones fue parametrizado en forma empírica por un proceso de regresión lineal multivariada 
de datos medidos en campo con resultados comparables a contar con mediciones de campo de la biomasa aérea.

Palabras clave: alometría condicionada a campo, densidad de madera, errores de estimación, factores de corrección, minimización del error 
absoluto.

Abstract
The development of generalized allometric models that allow estimations that are comparable with local models is a great challenge for estimating 
aerial biomass in tropical forests. The estimates of the parametrized allometric models in the logarithmic space (transformation to logarithmic for-
mat) minimizing the squared error of estimation requires the estimation of correction factors for the inverse transformation to the arithmetic space. 
Additionally, if the objective is the minimization of biases (mean relative error MRE and mean absolute error MAE), then the absolute estimation 
error can be minimized. In this work, classic allometric models were used, based on the relationship between biomass (B) and normal diameter 
(D), total height (H) and wood density (ρ), to review the relationships between their parameters. To analyze the proposed allometric relationships, 
a pantropical public database (4 004 data, 58 sampling sites) was used. The analyzes showed that for global models (all sites) and local (each site) 
the linear regression model of the relationship B versus ρD2H resulted in the best model (root mean square error or RMSE metric), for which was 
used as a reference standard. The models parametrized in the logarithmic space for the global estimates resulted with estimation errors greater than 
the model B = av0 (D

2H) with av0 as a linear function with ρ. The estimation of av0 was performed by minimizing the absolute error, resulting in the 
lowest estimation bias errors (MRE and MAE), with RMSE values comparable to the quadratic error minimization process. For local estimates 
using allometric models at the site level, the model was used with only av0 (minimization of the absolute error) and changing the correction factor 
from the simple estimator to that of ratio estimator, resulting in a prediction model with an estimation error comparable to the nonlinear regressions 
and surpassing the classic allometry models. Since there is no information on aerial biomass in normal forest inventories, the estimation of the ratio 
correction factor was empirically parameterized by a multivariate linear regression process of data measured in the field, with results comparable 
to having measurements of aerial biomass on the field.

Keywords: absolute error minimization, correction factors, estimation errors, field-conditioned allometry, wood density.
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Introducción

Uno de los grandes retos del sector forestal con relación a 

su manejo para mitigar los impactos del cambio climático 

es la necesidad de conocer los almacenes de carbono de 

estos ecosistemas. En lo particular, la biomasa aérea de 

los bosques requiere del uso de ecuaciones alométricas 

(Brown, 1997), donde las variables diámetro a la altura 

del pecho (1.3 m) o diámetro normal (D), altura total de 

los árboles (H) y densidad de la madera (ρ) son utilizadas 

normalmente en forma individual o combinada (Brown, 

1997; Chave et al., 2005; Vargas-Larreta et al., 2017). La 

selección del modelo alométrico es una de las principales 

fuentes de incertidumbre en la propagación de los errores 

de estimación de la biomasa aérea (B) (Pelletier, Kirby y 

Potvin, 2012; Picard, Boyemba y Rossi, 2015).

Para las estimaciones confiables de la biomasa aérea 

de especies de árboles en un determinado sitio es necesario 

el conocimiento de la ecuación alométrica de cada especie 

en el área de análisis. Esto conlleva a contar con un catá-

logo de ecuaciones (Jenkins, Chojncky, Heath y Birdsey, 

2003; Henry et al., 2011; Rojas-García, de Jong, Martí-

nez-Zurimendi y Paz-Pellat, 2015) para la selección ade-

cuada. Evidentemente este esquema es costoso en tiempo 

y en recursos, además de que no garantiza que la ecuación 

seleccionada para una especie sea representativa de la 

población particular en análisis (p. ej. Méndez González, 

Turlan Medina, Ríos Saucedo y Nájera Luna, 2012), ya 

que los parámetros de los modelos alométricos son fun-

ción del tipo de vegetación, clima, estructura de la pobla-

ción, arquitectura de las plantas, condición del sitio de 

muestreo, ontogenia, entre otros factores (Wutzler, Wirth 

y Schumacher, 2008; Genet et al., 2011; Chave et al., 

2014; Paul et al., 2016; Forrester et al., 2017). El uso de un 

modelo alométrico en un sitio diferente al que fue desarro-

llado conlleva alta incertidumbre no cuantificada en las 

estimaciones (Jenkins et al., 2003; Temesgen, Affleck, 

Poudel, Gray y Sessions, 2015), por lo que se debe tener 

cuidado en la implementación a ciegas de este enfoque.

Una alternativa a la complejidad del problema que ha 

sido explorada es el desarrollo de modelos generalizados 

por tipo de ecosistema o de tipo pantropical (p. ej. Chave 

et al., 2005 y 2014) que consiste en la recopilación de 

datos medidos en campo y laboratorio de sitios alrededor 

del mundo, donde cada sitio consta de un conjunto de 

especies característico del ecosistema terrestre en evalua-

ción. El modelo generalizado obtenido se espera que sea 

representativo del ecosistema y que genere estimaciones 

no sesgadas y precisas. Este enfoque ha sido seriamente 

cuestionado con relación al uso de modelos locales (a nivel 

de sitio), que generalmente realizan mejores estimaciones 

(Basuki, Vaan Laake, Skidmore y Hussin; 2009; Henry et 

al.; 2011; Van Breugel, Ransijn, Craven, Bongers y Hall, 

2011; Álvarez et al.; 2012; Ngomanda et al.; 2014; Sato et 

al.; 2015; Manuri et al., 2016; Ploton et al., 2016). Lo 

ideal es el desarrollo de un modelo alométrico adaptativo 

que considere datos locales (D, H, ρ) para las estimaciones 

de la biomasa aérea (B) y que sea comparable al uso de 

ecuaciones alométricas locales con relación a la incerti-

dumbre de estas.

Un problema asociado al desarrollo de modelos alo-

métricos tipo Y = aXb, es el proceso de estimación de sus 

parámetros. La práctica común es transformar el espacio 

aritmético a uno logarítmico, Ln(Y) = Ln(a) + bLn(X), 

para estimar a y b usando regresión (ordinaria) lineal sim-

ple, minimizando el error cuadrático de estimación. La 

transformación inversa del espacio logarítmico al aritmé-

tico introduce sesgos que requieren ser corregidos (Zar, 

1968). Al respecto, existen diferentes estimadores para 

corregir los sesgos fundamentados en diferentes hipótesis 

y modelos (Finney, 1941; Bradu y Mundlak, 1970; Bas-

kerville, 1972; Beauchamp y Olson, 1973; Duan, 1983; 

Snowdon, 1991; El-Shaarawi y Viveros, 1997; Shen y 

Zhu, 2008). En el proceso de evaluación de los métodos de 

corrección de sesgos (Lee, 1982; Smith, 1993; Hui, Ter-

blance, Chown y McGeoch, 2010; Zeng y Tang, 2011; 

Clifford, Cressie, England, Roxburgh y Paul, 2013) se han 

encontrado resultados mixtos dependientes del grado en 

que los datos representan las hipótesis utilizadas. En esta 

perspectiva, se ha argumentado que la mejor opción para 

evitar la incertidumbre de los métodos de corrección de 
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sesgos es el uso de técnicas de regresión no lineal aplicada 

directamente en el espacio aritmético (Packard, 2017).

Objetivos

En este trabajo se analizan los enfoques típicos de desa-

rrollo de modelos alométricos clásicos, así como la correc-

ción de sesgos más utilizada, con el objetivo de desarrollar 

un modelo a escala global (multiespecie y multisitio) que 

puede ser parametrizado empíricamente a escala local 

(sitio y multiespecie), aproximando el ideal del uso de alo-

metría en bosques tropicales.

Materiales y métodos

Modelos alométricos utilizados

Para posicionar el problema de estimación usando mode-

los alométricos de la biomasa aérea, esta puede ser puesta 

como B = ρV (Cannell, 1984), donde V es el volumen que 

puede ser aproximado por el volumen de un fuste cilín-

drico, V = (π/4) (D2H), con un factor de corrección para 

otras geometrías, además de la consideración del volumen 

de las ramas y hojas de la corona del árbol usando un fac-

tor de expansión de la biomasa. Este enfoque geométrico 

plantea una ecuación del tipo B =ac(ρD2H), donde ac es un 

factor de corrección general (forma del fuste y volumen de 

la corona y sus componentes). La densidad de la madera se 

considera como representativa de todas las componentes 

estructurales de los árboles. En la perspectiva discutida, 

los modelos alométricos considerados son:

     			   (1)

     	 (2)

     				    (3)

donde a y b representan constantes del ajuste estadístico.

Usando el modelo M2 como referencia, comparándolo 

con el modelo M1 y M3, se obtiene:

		  		 (4)

		  		  (5)

En términos algebraicos, el modelo M1 y M2 son equiva-

lentes entre sí por la relación (4) de sus parámetros. En el 

caso del modelo M3, la equivalencia entre parámetros 

está dada por la relación (5), para el caso de bvd = bv =1.

Estimación de los parámetros de los modelos 

alométricos

La ecuación alométrica dada por:

			   ε		  (6)

puede transformarse logarítmicamente como:

	 	 (7)

para estimar los parámetros a y b por regresión lineal sim-

ple, donde ε es el error de estimación [Y’medido – 

Y’estimado].

Aunque hay diferentes estimadores del factor de correc-

ción de la transformación inversa del espacio logarítmico 

al aritmético, el estimador simple o ES (“naive estimator”, 

Duan, 1983) de Baskerville (1972) es el más utilizado:

	       		  (8)

	       FCES			   (9)

donde FCES = Exp(σ/2) es el factor de corrección del esti-

mador simple y σ es la desviación estándar (error estándar 

residual o EER) del error ε, el cual es supuesto como dis-

tribuido normalmente con media cero y desviación están-

dar σ, definida como:

	    	 (10)



4

Paz-Pellat . Un modelo alométrico pantropical global y local 

donde  es el valor estimado,  el valor medido, n el 

número de datos y p los parámetros del modelo (p = 2 

para los modelos M1 y M2).

Otro estimador utilizado (e.g. Búrquez y Martínez-Yrízar, 

2011) es el estimador de razón (ER) de Snowdon (1991):

		       FCER		  (11)

donde FCER = Promedio (Bmed)/Promedio (Best), donde 

Best es obtenida de la aplicación del modelo alométrico en 

el espacio logarítmico, sin realizar ninguna corrección, y 

el término est se refiere a estimada y med a medida.

El ajuste de los modelos alométricos se analizó a través del 

uso de diferentes métricas de incertidumbre, incluyendo el 

coeficiente de determinación (R2), como la raíz del error 

cuadrático medio (RECM):

	       		  (12)

y el error relativo medio (ERM) y error absoluto medio 

(EAM), ambos en porcentaje:

	 		  (13)

	 		  (14)

Los resultados del proceso de estimación pueden ser ana-

lizados con relación entre lo medido (med) y lo estimado 

(est):

	        		 (15)

                    			   (16)

donde para una estimación perfecta se espera que q y s 

sean igual a 0.0 y los parámetros r y s igual a 1.0.

La estimación de los parámetros de los modelos alo-

métricos generalmente se obtiene por un proceso de regre-

sión lineal simple al minimizar el error cuadrático de 

estimación (ε2), lo cual implica una simetría (término cua-

drático) que no necesariamente es la mejor opción de esti-

mación. Una alternativa de estimación es minimizar el 

error absoluto de estimación (|ε|) (Journel, 1984).

Base de datos de alometría pantropical analizada

Para tener un base de datos representativa de los bosques 

tropicales en el mundo, se analizó la publicada por Chave 

et al. (2014), disponible públicamente, la cual consiste en 

4004 mediciones de D (cm), H (m) y ρ (g cm-3) en 58 sitios 

en diferentes partes del mundo, donde 53 sitios son de 

vegetación no perturbada. La densidad de la madera de la 

base de datos fue medida o estimada; en un 58% de los 

datos se midió y en el resto fue estimada por el valor pro-

medio de la especie, género o familia usando una base de 

datos global (Chave et al., 2009; Zanne et al., 2009). La 

documentación de los sitios y de la base de datos se 

encuentra en Chave et al. (2014), por lo que solo se pre-

senta una descripción mínima en este trabajo. Adicional-

mente, Burt et al. (2020) analizaron la base de datos con 

relación a errores, y discuten sus implicaciones y limita-

ciones.

Las unidades de las variables de la base de datos son 

las mismas que las usadas en todos los análisis presenta-

dos en este trabajo, por lo que no serán incluidas en lo 

siguiente.

En la tabla 1 se muestran los sitios incluidos en la base de 

datos, además del número de datos y el valor máximo de 

D en cada sitio.

La figura 1 muestra la relación entre la biomasa B con 

relación a ρD2H, donde se muestra una gran dispersión, 

por lo que el uso de un modelo alométrico generalizado 

tendrá limitaciones en explicar la variabilidad observada.

Posicionamiento del problema

Para posicionar el problema planteado en este trabajo, la 

figura 2 muestra los modelos alométricos (M2) locales 
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Sitio n D máx. (cm) Sitio n D máx. (cm) Sitio n D máx. (cm)

Australia 46 24.9 Kaliman1 23 77.6 PuertoRi 30 45.7

BraMan2 123 38.2 Kaliman2 69 130.5 PuertoRi2 25 45.0

BraPara1 127 138.0 Kaliman4 40 68.9 SaoPaulo3 75 67.8

BraPara3 21 55.0 Kaliman6 25 84.4 Sarawak 21 44.1

BraRond 8 89.0 Karnataka 189 60.9 SouthAfrica 469 79.3

Cambodia 34 133.2 Llanosec 24 23.3 SouthBrazil1 150 95.0

Cameroon 5 79.4 Llanosol 27 156.0 SouthBrazil1 50 124.8

Cameroon3 59 212.0 Madagascar1 76 54.0 SouthBrazil3 64 34.5

CentralAfric 12 52.2 Madagascar2 90 35.0 Sumatra 29 48.1

ColombiaC1 60 126.7 Madagascar3 87 31.8 Sumatra2 11 114.6

ColombiaG1 36 70.9 Madagascar4 80 37.0 Tanzania1 38 78.0

ColombiaG2 10 12.5 Madagascar5 90 36.0 Tanzania2 42 110.0

ColombiaM1 24 111.9 Malaysia 139 101.6 Tanzania3 38 79.0

ColombiaM2 9 11.8 Malaysia2 24 66.7 Tanzania4 34 95.0

CostaRic 97 116.0 MFrenchG 29 42.0 Venezuela2 40 136.8

FrenchGu 360 117.8 MGuadel 55 40.7 WestJava 41 31.8

Gabon 103 109.4 Moluccas 25 41.7 Yucatan 175 63.4

Ghana 37 180.0 Mozambique 28 72.0 Zambia 141 37.4

IndiaCha 23 34.7 NewGuinea 42 110.1

Jalisco 124 44.9 Peru 51 169.0      

Tabla 1. Sitios y características generales incluidos en la base de datos.

(58) ajustados por regresión no lineal a la base de datos, 

además del modelo global (curva punteada). En la figura 

se observa que el modelo global solo aproxima algunos 

modelos locales, por lo que en muchos casos se sobre o 

subestima con relación a los modelos alométricos de sitios 

particulares. La solución al modelo planteado de una 

solución general que sea aplicable a nivel local requiere 

redefinir el problema de estimación. 
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Resultados

Los ajustes por regresión estadística fueron realizados 

usando la función SolverMR de ExcelMR, minimizando el 

error cuadrático de estimación.

Modelos alométricos globales

Los resultados de los ajustes estadísticos están mostrados 

en la tabla 2 para el espacio logarítmico y la tabla 3 para 

el aritmético. En el modelo M3 de la relación (3), este 

representa el caso donde av0 fue estimada por regresión 

lineal en el espacio logarítmico y el modelo 3b utiliza la 

relación (5) para el modelo M3, donde ρ representa valo-

res específicos en cada sitio de la base datos y el valor avd 

= 0.0524 fue estimado en el análisis realizado. El modelo 

M2a (Chave et al., 2014) fue estimado usando regresión 

lineal en el espacio logarítmico y el modelo M2b fue para-

metrizado por regresión no lineal directamente en el espa-

cio aritmético y los parámetros mostrados son simples 

conversiones al espacio logarítmico (FC = 1.0). Para el 

espacio aritmético, la conversión utilizó FCES.

Figura 1. Relación entre la biomasa B y ρD2H para todos los sitios de la base de datos pantropical.

Figura 2. Modelos alométricos ajustados por regresión no lineal a cada sitio de la base de datos, además del modelo global (curva 

punteada). (a) Valores generales y, (b) valores pequeños de ρD2H.

(a) (b)
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Modelo Parámetros q r R2 ERM EAM RECM

M1 Ln(a
v
)=-3.0626, b

v
=0.9535 0.1954 0.9590 0.9590 -2.4131 10.1037 0.4294

M3a Ln(a
v
)=-3.4443, b

v
=1 -0.0274 1.0057 0.9590 -1.0066 10.0904 0.4412

M3b Ln(a
v0

) =Ln(0.0524ρ), b
v
=1 0.0210 0.9956 0.9716 -0.7326 7.9350 0.3612

M2a Ln(a
vd

)=-2.7628, b
vd

=0.9759 -0.1354 0.9716 0.9716 -1.4706 8.0312 0.3575

M2b Ln(a
vd

)=Ln (0.0164), b
vd

=1.0906 -0.8703 1.0858 0.9716 14.7458 15.9937 0.6333

Tabla 2. Parámetros y estadísticos de los ajustes en el espacio logarítmico de modelos globales.

Modelo Parámetros FC
ES

s t R2 ERM EAM RECM

M1 a
v
=Exp (-3.0626), b

v
=0.9535 1.0966 206.88 0.8278 0.8259 -21.2015 41.0710 1634.8729

M3a a
v
=Exp (-3.4443), b

v
=1 1.1023 185.30 1.0675 0.8246 -22.3489 42.4035 1964.1605

M3b a
v0

=0.0524ρ, b
v
=1 1.0674 153.50 0.9641 0.9116 -13.9983 31.5284 1190.0537

M2a a
vd

=Exp (-2.7628), b
vd

=0.9759 1.0660 168.60 0.8478 0.9091 -13.7583 31.3052 1207.8154

M2b a
vd

=0.0164, b
vd

=1.0906 27.82 0.9205 0.9161 30.7668 38.5995 1136.3307

Tabla 3. Parámetros y estadísticos de los ajustes en el espacio aritmético de modelos globales.

En la figura 3 se muestran los resultados espacio logarít-

mico y aritmético de los modelos M2a (Chave et al., 2014) 

y el modelo M2b de la regresión no lineal. De la tabla 3, 

el modelo de regresión no lineal es el mejor modelo usando 

el criterio de la métrica RECM, la cual es la única rele-

vante, dado que el proceso de regresión, lineal y no lineal 

busca minimizarla. Las otras métricas de error son esti-

madas como consecuencia del proceso de minimización 

del error cuadrático. De las tablas 2 y 3, tener un error 

menor en el espacio logarítmico no implica que al trans-

formar el modelo al espacio aritmético este siga teniendo 

un error menor. El caso del modelo M2b (regresión no 

lineal) ejemplifica esta situación.

El modelo M1 (no inclusión de ρ) muestra resultados 

pobres con relación a los otros modelos analizados, mos-

trando que el no considerar la densidad de la madera pro-

duce resultados con errores mayores a los de su 

consideración, algo similar ocurre con el modelo M3a. 

Ahora bien, el caso del modelo M3b (inclusión de ρ a nivel 

de sitio) (Fig. 4) que utiliza la hipótesis de que bvd = 1, mues-

tra estadísticos de errores menores que el caso del modelo 

de Chave et al. (2014) (Tabla 2 y 3), que además reduce la 

dimensionalidad del problema (modelo con un solo pará-

metro).

Modelos alométricos locales

Para el caso de los ajustes de modelos alométricos locales 

(en cada sitio), la tabla 4 (espacio logarítmico) y tabla 5 

(espacio aritmético) muestran los resultados obtenidos, 

donde el mejor ajuste fue el modelo M2b (regresión no 

lineal) y después el modelo M2a de regresión lineal en el 

espacio logarítmico (Fig. 5). El modelo M3b, que considera 

la densidad de la madera a nivel local (sitio), mostró un 

comportamiento ligeramente no mejor que el caso global.

En la figura 5 y de la tabla 4 se observa que el mejor 

modelo (M2b) muestra los peores resultados en el espacio 

logarítmico, por lo que es necesario considerar la inversión 

de los modelos del espacio logarítmico al aritmético, ya que 

estos están orientados a la minimización de errores en el 

formato logarítmico que, si no se usa un factor de correc-
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Figura 3. Resultados del proceso de estimación de modelos globales. (a) Modelo M2a en espacio logarítmico, (b) Modelo M2a en 

espacio aritmético, (c) Modelo M2b en espacio logarítmico y (d) Modelo M2b en espacio aritmético.

Figura 4. Resultados del ajuste del modelo M3b, función de ρ a nivel de sitio para: (a) espacio logarítmico y (b) espacio aritmético.

dos en el espacio logarítmico con el menor sesgo (ERM y 

EAM), con resultados mejores de RECM a los de la mini-

mización del error cuadrático. La figura 6 muestra los 

resultados obtenidos. El modelo fue parametrizado con el 

valor av0 = 0.0595, cuyo valor será utilizado en lo siguiente.

ción adecuado, pueden tener errores grandes de estimación 

en el espacio aritmético.

Minimización del error absoluto

Para el caso del modelo M3b se realizó un proceso de mini-

mización del error absoluto (EAM), obteniéndose resulta-

(a) (b)

(c) (d)

(a) (b)
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Modelo Parámetros q r R2 ERM EAM RECM

M1 Locales 0.1250 0.9738 0.9738 -1.9888 8.2688 0.3435

M3a Locales 0.0306 0.9936 0.9708 -1.3119 8.5545 0.3659

M3b Ln(a
vo

)=Ln(0.0524ρ), b
v
=1 0.0210 0.9956 0.9716 -0.7326 7.9350 0.3612

M2a Locales 0.0905 0.9810 0.9810 -1.0681 6.5724 0.2923

M2b Locales -0.0718 2.0136 0.9570 0.6735 9.8212 0.4564

Tabla 4. Parámetros y estadísticos de los ajustes en el espacio logarítmico de modelos locales.

Modelo Parámetros FC
ES

s t R2 ERM EAM RECM

M1 Locales Locales 176.77 0.8431 0.8501 -13.8864 30.5121 1516.9626

M3a Locales Locales 159.03 0.9303 0.8317 -16.1245 33.4404 1663.8007

M3b a
vo

=0.0524ρ, b
v
=1 Locales 165.04 0.9434 0.9062 -14.144 31.5702 1213.4614

M2a Locales Locales 86.191 0.9200 0.9371 -9.2284 24.2851 984.8277

M2b Locales 48.444 0.9593 0.9595 -10.5418 35.7043 788.0718

Tabla 5. Parámetros y estadísticos de los ajustes en el espacio aritmético de los modelos locales.

Figura 5. Resultados del proceso de estimación de modelos locales. (a) Modelo M2a en espacio logarítmico, (b) Modelo M2a en 

espacio aritmético, (c) Modelo M2b en espacio logarítmico y, (d) Modelo M2b en espacio aritmético.

(a) (b)

(c) (d)
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Uso del factor de corrección FC
ER

El uso del factor de corrección FCER, relación (11), fue 

analizado para la conversión de los modelos locales ajus-

tados en el espacio logarítmico al espacio aritmético, par-

ticularmente para el caso del modelo M3b que es de solo 

un parámetro e incorpora la densidad de la madera en 

forma explícita. La figura 7 muestra los resultados de la 

aplicación de FCER al modelo M3b, donde se observa una 

RECM menor al caso del resto de los modelos, con excep-

ción del M2b de regresión lineal; aunque los valores del 

error de estimación (RECM) no están alejados del mínimo 

observado y las métricas ERM y EAM son mejores que el 

modelo de regresión no lineal.

Figura 6. Resultados del ajuste del modelo M3b usando un proceso de minimización del error absoluto para: (a) espacio logarítmico 

y (b) espacio aritmético.

Modelo empírico para parametrizar FC
ER

El factor de corrección FCER requiere del promedio de la 

biomasa medida, por lo que es necesario estimarla. Aun-

que la relación entre Best y Bmed está bien caracterizada 

(Fig. 8), los errores de estimación producen una relación 

inestable para la estimación de FCER. El promedio de la 

biomasa estimada se refiere a las estimaciones del modelo 

ajustado en el espacio logarítmico, modelo M3b, converti-

das al espacio aritmético usando FC=1: 

Best=Exp[Ln(0.0595ρ)+Ln(D2H)].

Una alternativa realizada, como prueba de concepto, 

fue ajustar un modelo multivariado lineal de regresión 

estadística para estimar FCER, usando para esto datos 

medidos en campo en los inventarios forestales (D, H y ρ). 

El modelo multivariado lineal ajustado a los datos experi-

mentales fue:

(17)

(a) (b)
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donde se usaron los operadores P (promedio), DE (desvia-

ción estándar) y CV (coeficiente de variación). La relación 

(17) es aplicable a nivel de sitio (local).

Los estadísticos del ajuste estadístico multivariado de

la relación (17) son: R2 = 0.987, R2 ajustada = 0.985, R2 

predicción = 0.978, error estándar = 0.024, d de Durbin-

Watson = 2.648, autocorrelación de primer orden = 

-0.356, colinealidad = 0.000, coeficiente de variación = 
2.353.

La figura 9 muestra los resultados del modelo desa-

rrollado usando la relación (17) para estimar FCER a nivel 

de sitio para el modelo 3b. Los resultados obtenidos son 

comparables al uso de FCER medido (Fig. 7).

Figura 7. Resultados del ajuste del modelo M3b en el espacio aritmético usando FCER 

a nivel local.

Figura 8. Relación entre los promedios de B estimada y B medida de los sitios de la 

base de datos.
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Discusión

Los diferentes análisis realizados para los ajustes de mode-

los alométricos en el espacio logarítmico muestran que el 

objetivo de minimización del error de estimación es de 

doble paso, ya que también se requiere de la estimación de 

un factor de corrección. Esta situación está ejemplificada 

por el modelo de regresión no lineal, donde los resultados 

del proceso de estimación en el espacio logarítmico son los 

peores de todos los modelos analizados.

La aproximación clásica de regresión lineal, espacio 

logarítmico, que minimiza el error cuadrático de estima-

ción (estimación del promedio) fue revisada para conside-

rar otros objetivos, particularmente los sesgos de las 

estimaciones (error relativo medio y error absoluto medio) 

por un proceso de minimización del error absoluto. Los 

resultados mostraron una reducción de los sesgos de esti-

mación con errores de estimación (RECM) comparable al 

proceso de mínimos cuadrados.

Intentos previos de reducir la dimensionalidad del 

problema de estimación usando modelo alométricos (Zia-

nis y Mencuccini, 2004; Zianis, 2008; Zhang et al., 2016) 

han generado resultados mixtos y requerimientos de con-

tar con información de campo normalmente no disponi-

ble en los inventarios forestales.

Figura 9. Resultados del ajuste del modelo M3b en el espacio aritmético usando FCER 

a nivel local estimado de análisis lineal multivariado.

El cambio de factor de corrección simple (Baskerville, 

1972) al factor de corrección de estimador de razones de 

Snowdon (1991), para el caso de estimaciones locales o a 

nivel de sitio usando el modelo B = 0.0595ρ(D2H), mejora 

sustancialmente las estimaciones, aproximándolas a las 

del modelo de regresión no lineal aplicado a nivel de sitio 

y con errores de estimación menores al caso de aplicar 

modelos tipo el usado por Chave et al. (2015) a nivel local, 

con el uso de factores de conversión clásicos (Baskerville, 

1972).

Si se considera que el factor de corrección de Snow-

don (1991) requiere de la biomasa medida a nivel de sitio, 

el desarrollo de un modelo estadístico lineal multivariado 

usando información disponible en campo, permitió hacer 

estimaciones comparables al caso de conocer la biomasa 

medida y con errores de estimación cercanos al modelo de 

regresión no lineal local que resultó en el mejor modelo.

Conclusiones

El ideal de desarrollar un modelo alométrico general que 

permita hacer estimaciones a nivel local, considerando los 

factores específicos de cada sitio, es uno de los grandes 

retos en el proceso de estimación de la biomasa aérea, evi-

tando así discusiones sesgadas relacionadas sobre si un 
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modelo global es adecuado para las escalas locales, res-

puesta que es negativa en la gran mayoría de los casos; 

exceptuando donde la alometría local es similar a la glo-

bal en todos los casos con el uso de técnicas de regresión 

estadísticas iguales.

En este trabajo se desarrolló un modelo alométrico 

generalizado que reduce la dimensionalidad del problema 

de estimación a un solo parámetro en el espacio logarít-

mico, pero que requiere un parámetro adicional (factor de 

corrección) para convertirlo al espacio aritmético usado 

en las estimaciones de la biomasa aérea. Como prueba de 

concepto, se desarrolló un modelo estadístico lineal mul-

tivariado para estimar el factor de corrección con resulta-

dos comparables al caso de conocer la biomasa aérea en 

cada sitio, requisito para calcular el factor de corrección.

Los resultados obtenidos en este trabajo son alta-

mente promisorios y requieren un análisis de estabilidad 

de resultados al variar (simulación Monte Carlo) la estruc-

tura de las bases de datos de cada sitio (diferentes combi-

naciones de número de datos y su selección aleatoria); 

aunque dada la variabilidad de estas estructuras de datos 

en los sitios de la base de datos pantropical usada permite 

inferir que la estabilidad es buena.
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