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RESUMEN

El desarrollo de modelos alométricos generalizados que permitan realizar estimaciones comparables con modelos locales, es un gran reto para la
realizacion de estimaciones de la biomasa aérea en los bosques tropicales. Las estimaciones de los modelos alométricos parametrizados en el espa-
cio logaritmico (transformacién a formato logaritmico) minimizando el error cuadritico de estimacion requieren de la estimacion de factores de
correccion para la transformacidn inversa al espacio aritmético. Adicionalmente, si el objetivo es la minimizacion de sesgos (error relativo medio,
ERM vy error absoluto medio, EAM), entonces se puede minimizar el error absoluto de estimacion. En este trabajo se usaron modelos alométricos
cldsicos, basados en la relacion entre la biomasa (B) y el didmetro normal (D), altura total (H) y densidad de la madera (p), para revisar las relaciones
entre sus parametros. Para analizar las relaciones alométricas planteadas se utilizé una base de datos publica pantropical (4004 datos, 58 sitios de
muestreo). Los andlisis mostraron que para modelos globales (todos los sitios) y locales (cada sitio) el modelo de regresion lineal de la relaciéon B
versus pD,H resulté en el mejor modelo (métrica de la raiz del error cuadrético medio o RECM), por ello fue usado como estdndar de referencia.
Los modelos parametrizados en el espacio logaritmico para las estimaciones globales resultaron con errores de estimacion mayores al modelo
B =a,(D?H) con a , como funcién lineal con p. La estimacién de g, fue realizada minimizando el error absoluto, resultando en los menores errores
de sesgos de estimacion (EAR y EAM), con valores del RECM comparables al proceso de minimizacion del error cuadratico. Para las estimaciones
locales, usando modelos alométricos a nivel de sitio, se utiliz6 el modelo con solo &, (minimizacién del error absoluto) y cambiando el factor de
correccion del estimador simple al de razones, resultando en un modelo de prediccion con error de estimacion comparables al de las regresiones no
lineales y superando los modelos de alometria cldsicos. Dado que no se cuenta con informacion de la biomasa aérea en los inventarios forestales
normales, la estimacion del factor de correccion de razones fue parametrizado en forma empirica por un proceso de regresion lineal multivariada
de datos medidos en campo con resultados comparables a contar con mediciones de campo de la biomasa aérea.

PALABRAS CLAVE: alometria condicionada a campo, densidad de madera, errores de estimacion, factores de correccion, minimizacién del error
absoluto.

ABSTRACT

The development of generalized allometric models that allow estimations that are comparable with local models is a great challenge for estimating
aerial biomass in tropical forests. The estimates of the parametrized allometric models in the logarithmic space (transformation to logarithmic for-
mat) minimizing the squared error of estimation requires the estimation of correction factors for the inverse transformation to the arithmetic space.
Additionally, if the objective is the minimization of biases (mean relative error MRE and mean absolute error MAE), then the absolute estimation
error can be minimized. In this work, classic allometric models were used, based on the relationship between biomass (B) and normal diameter
(D), total height (H) and wood density (p), to review the relationships between their parameters. To analyze the proposed allometric relationships,
a pantropical public database (4 004 data, 58 sampling sites) was used. The analyzes showed that for global models (all sites) and local (each site)
the linear regression model of the relationship B versus pD?H resulted in the best model (root mean square error or RMSE metric), for which was
used as a reference standard. The models parametrized in the logarithmic space for the global estimates resulted with estimation errors greater than
the model B = 4, (D’H) with a , as a linear function with p. The estimation of a4 , was performed by minimizing the absolute error, resulting in the
lowest estimation bias errors (MRE and MAE), with RMSE values comparable to the quadratic error minimization process. For local estimates
using allometric models at the site level, the model was used with only a  (minimization of the absolute error) and changing the correction factor
from the simple estimator to that of ratio estimator, resulting in a prediction model with an estimation error comparable to the nonlinear regressions
and surpassing the classic allometry models. Since there is no information on aerial biomass in normal forest inventories, the estimation of the ratio
correction factor was empirically parameterized by a multivariate linear regression process of data measured in the field, with results comparable
to having measurements of aerial biomass on the field.

KEYWORDS: absolute error minimization, correction factors, estimation errors, field-conditioned allometry, wood density.



INTRODUCCION

Uno de los grandes retos del sector forestal con relacion a
su manejo para mitigar los impactos del cambio climatico
es la necesidad de conocer los almacenes de carbono de
estos ecosistemas. En lo particular, la biomasa aérea de
los bosques requiere del uso de ecuaciones alométricas
(Brown, 1997), donde las variables didmetro a la altura
del pecho (1.3 m) o didmetro normal (D), altura total de
los drboles (H) y densidad de la madera (p) son utilizadas
normalmente en forma individual o combinada (Brown,
1997; Chave et al., 2005; Vargas-Larreta et al., 2017). La
seleccion del modelo alométrico es una de las principales
fuentes de incertidumbre en la propagacion de los errores
de estimacién de la biomasa aérea (B) (Pelletier, Kirby y
Potvin, 2012; Picard, Boyemba y Rossi, 2015).

Para las estimaciones confiables de la biomasa aérea
de especies de drboles en un determinado sitio es necesario
el conocimiento de la ecuacion alométrica de cada especie
en el drea de andlisis. Esto conlleva a contar con un cata-
logo de ecuaciones (Jenkins, Chojncky, Heath y Birdsey,
2003; Henry et al., 2011; Rojas-Garcia, de Jong, Marti-
nez-Zurimendi y Paz-Pellat, 2015) para la seleccién ade-
cuada. Evidentemente este esquema es costoso en tiempo
y en recursos, ademds de que no garantiza que la ecuacion
seleccionada para una especie sea representativa de la
poblacién particular en analisis (p. ej. Méndez Gonzalez,
Turlan Medina, Rios Saucedo y Ndjera Luna, 2012), ya
que los parametros de los modelos alométricos son fun-
cién del tipo de vegetacion, clima, estructura de la pobla-
cioén, arquitectura de las plantas, condicion del sitio de
muestreo, ontogenia, entre otros factores (Wutzler, Wirth
y Schumacher, 2008; Genet et al., 2011; Chave et al.,
2014; Paul et al., 2016; Forrester et al., 2017). El uso de un
modelo alométrico en un sitio diferente al que fue desarro-
llado conlleva alta incertidumbre no cuantificada en las
estimaciones (Jenkins et al., 2003; Temesgen, Affleck,
Poudel, Gray y Sessions, 2015), por lo que se debe tener
cuidado en la implementacién a ciegas de este enfoque.

Una alternativa a la complejidad del problema que ha

sido explorada es el desarrollo de modelos generalizados

Paz-Pellat. Un modelo alomeétrico pantropical global y local

por tipo de ecosistema o de tipo pantropical (p. ej. Chave
et al., 2005 y 2014) que consiste en la recopilaciéon de
datos medidos en campo y laboratorio de sitios alrededor
del mundo, donde cada sitio consta de un conjunto de
especies caracteristico del ecosistema terrestre en evalua-
ciéon. El modelo generalizado obtenido se espera que sea
representativo del ecosistema y que genere estimaciones
no sesgadas y precisas. Este enfoque ha sido seriamente
cuestionado con relacion al uso de modelos locales (a nivel
de sitio), que generalmente realizan mejores estimaciones
(Basuki, Vaan Laake, Skidmore y Hussin; 2009; Henry et
al.; 2011; Van Breugel, Ransijn, Craven, Bongers y Hall,
2011; Alvarez et al.; 2012; Ngomanda et al.; 2014; Sato et
al.; 2015; Manuri et al., 2016; Ploton et al., 2016). Lo
ideal es el desarrollo de un modelo alométrico adaptativo
que considere datos locales (D, H, p) para las estimaciones
de la biomasa aérea (B) y que sea comparable al uso de
ecuaciones alométricas locales con relacion a la incerti-
dumbre de estas.

Un problema asociado al desarrollo de modelos alo-
métricos tipo Y = aX?, es el proceso de estimacion de sus
parametros. La prictica comtn es transformar el espacio
aritmético a uno logaritmico, Ln(Y) = Ln(a) + bLn(X),
para estimar a y b usando regresion (ordinaria) lineal sim-
ple, minimizando el error cuadritico de estimacién. La
transformacion inversa del espacio logaritmico al aritmé-
tico introduce sesgos que requieren ser corregidos (Zar,
1968). Al respecto, existen diferentes estimadores para
corregir los sesgos fundamentados en diferentes hipotesis
y modelos (Finney, 1941; Bradu y Mundlak, 1970; Bas-
kerville, 1972; Beauchamp y Olson, 1973; Duan, 1983;
Snowdon, 1991; El-Shaarawi y Viveros, 1997; Shen vy
Zhu, 2008). En el proceso de evaluacion de los métodos de
correccion de sesgos (Lee, 1982; Smith, 1993; Hui, Ter-
blance, Chown y McGeoch, 2010; Zeng y Tang, 2011;
Clifford, Cressie, England, Roxburgh y Paul, 2013) se han
encontrado resultados mixtos dependientes del grado en
que los datos representan las hipotesis utilizadas. En esta
perspectiva, se ha argumentado que la mejor opcioén para

evitar la incertidumbre de los métodos de correccion de
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sesgos es el uso de técnicas de regresion no lineal aplicada

directamente en el espacio aritmético (Packard, 2017).

OBJETIVOS

En este trabajo se analizan los enfoques tipicos de desa-
rrollo de modelos alométricos cldsicos, asi como la correc-
cién de sesgos mas utilizada, con el objetivo de desarrollar
un modelo a escala global (multiespecie y multisitio) que
puede ser parametrizado empiricamente a escala local
(sitio y multiespecie), aproximando el ideal del uso de alo-

metria en bosques tropicales.
MATERIALES Y METODOS

Modelos alométricos utilizados

Para posicionar el problema de estimacién usando mode-
los alométricos de la biomasa aérea, esta puede ser puesta
como B = pV (Cannell, 1984), donde V es el volumen que
puede ser aproximado por el volumen de un fuste cilin-
drico, V = (n/4) (D*H), con un factor de correccion para
otras geometrias, ademds de la consideracion del volumen
de las ramas y hojas de la corona del drbol usando un fac-
tor de expansion de la biomasa. Este enfoque geométrico
plantea una ecuacion del tipo B =a (pD*H), donde a_es un
factor de correccion general (forma del fuste y volumen de
la corona y sus componentes). La densidad de la madera se
considera como representativa de todas las componentes
estructurales de los drboles. En la perspectiva discutida,

los modelos alométricos considerados son:

M1:B = aV(DZH)b" (1)
M2:B = a,,d(pDzH)bvd = avdpbvd(DzH)bvd (2)
M3:B = a,,(D*H) (3)

donde a y b representan constantes del ajuste estadistico.

Usando el modelo M2 como referencia, comparandolo

con el modelo M1 y M3, se obtiene:
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a, = avdpbvd y bv = bvd (4)
Ayo = AygpP ybvd =1 (5)

En términos algebraicos, el modelo M1 y M2 son equiva-
lentes entre si por la relacion (4) de sus parametros. En el
caso del modelo M3, la equivalencia entre paridmetros

esta dada por la relacion (5), para el casode b, = b =1.

Estimacion de los parametros de los modelos
alométricos

La ecuaci6n alométrica dada por:
Y = aXb (6)
puede transformarse logaritmicamente como:

Ln(Y) =Y' = a + bLn(X) + Ln(e) (7)

para estimar los parametros a y b por regresion lineal sim-
ple, donde ¢ es el error de estimaciéon [Y’medido -
Y’estimado].

Aunque hay diferentes estimadores del factor de correc-
cion de la transformacion inversa del espacio logaritmico
al aritmético, el estimador simple o ES (“naive estimator”,
Duan, 1983) de Baskerville (1972) es el mas utilizado:

o
Y = Exp [E +a+ bLn(X)] (8)
Y = (aX")FC,, 9)

donde FC = Exp(c/2) es el factor de correccion del esti-
mador simple y o es la desviacion estandar (error estindar
residual o EER) del error &, el cual es supuesto como dis-
tribuido normalmente con media cero y desviacion estan-

dar o, definida como:

n
1 z >
— — VN2
o =EER = Tl—p'_l(yi Yl) (10)



donde Y es el valor estimado, Y/ el valor medido, n el
nimero de datos y p los pardmetros del modelo (p = 2

para los modelos M1 y M2).

Otro estimador utilizado (e.g. Burquez y Martinez-Yrizar,
2011) es el estimador de razén (ER) de Snowdon (1991):

Y = (aX®)FC,, (11)

donde FC,, = Promedio (Bmed)/Promedio (Best), donde
Best es obtenida de la aplicacion del modelo alométrico en
el espacio logaritmico, sin realizar ninguna correccién, y
el término est se refiere a estimada y med a medida.

El ajuste de los modelos alométricos se analizo a través del
uso de diferentes métricas de incertidumbre, incluyendo el
coeficiente de determinacion (R?), como la raiz del error
cuadritico medio (RECM):

wou= Lo m

y el error relativo medio (ERM) y error absoluto medio

(EAM), ambos en porcentaje:

3 1 Yi, _ ?i,
ERM =100 ZZ v (13)

oG
Y] -7}

r
Y

EAM = 100{i n
n

) (14)

Los resultados del proceso de estimacién pueden ser ana-
lizados con relacion entre lo medido (med) y lo estimado

(est):
Ln(Y)est = g + rLn(Y)med (15)

Yest = s + tYmed (16)

donde para una estimacion perfecta se espera que g y s

sean igual a 0.0 y los pardmetros r y s igual a 1.0.
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La estimacion de los parametros de los modelos alo-
métricos generalmente se obtiene por un proceso de regre-
sion lineal simple al minimizar el error cuadréitico de
estimacion (g2), lo cual implica una simetria (término cua-
dratico) que no necesariamente es la mejor opcién de esti-
macion. Una alternativa de estimacién es minimizar el

error absoluto de estimacion (lel) (Journel, 1984).

Base de datos de alometria pantropical analizada
Para tener un base de datos representativa de los bosques
tropicales en el mundo, se analiz6 la publicada por Chave
et al. (2014), disponible publicamente, la cual consiste en
4004 mediciones de D (cm), H (m) y p (g cm™) en 58 sitios
en diferentes partes del mundo, donde 53 sitios son de
vegetacion no perturbada. La densidad de la madera de la
base de datos fue medida o estimada; en un 58% de los
datos se midi6 y en el resto fue estimada por el valor pro-
medio de la especie, género o familia usando una base de
datos global (Chave et al., 2009; Zanne et al., 2009). La
documentacién de los sitios y de la base de datos se
encuentra en Chave et al. (2014), por lo que solo se pre-
senta una descripcién minima en este trabajo. Adicional-
mente, Burt et al. (2020) analizaron la base de datos con
relacion a errores, y discuten sus implicaciones y limita-
ciones.

Las unidades de las variables de la base de datos son
las mismas que las usadas en todos los analisis presenta-
dos en este trabajo, por lo que no seran incluidas en lo
siguiente.

En la tabla 1 se muestran los sitios incluidos en la base de
datos, ademds del nimero de datos y el valor maximo de
D en cada sitio.

La figura 1 muestra la relacién entre la biomasa B con
relacion a pD?H, donde se muestra una gran dispersion,
por lo que el uso de un modelo alométrico generalizado

tendra limitaciones en explicar la variabilidad observada.

[Posicionamiento del problema
Para posicionar el problema planteado en este trabajo, la

figura 2 muestra los modelos alométricos (M2) locales
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(58) ajustados por regresion no lineal a la base de datos, subestima con relacién a los modelos alométricos de sitios
ademads del modelo global (curva punteada). En la figura particulares. La solucién al modelo planteado de una
se observa que el modelo global solo aproxima algunos solucion general que sea aplicable a nivel local requiere
modelos locales, por lo que en muchos casos se sobre o redefinir el problema de estimacién.

TABLA 1. Sitios y caracteristicas generales incluidos en la base de datos.

Sitio n D madx. (cm)  Sitio n D max. (cm) Sitio n D max. (cm)
Australia 46 249 KKalimanl 23 77.6 PuertoRi 30 457
BraMan2 123 382 KKaliman2 69 1305 PuertoRi2 25 45.0
BralParal 127 138.0 KKaliman4 40 68.9 SaoPaulo3 75 67.8
BraPara3 21 55.0 KKalimané 25 84.4 SarawaR 21 441
BraRond 8 89.0 KKarnataka 189 60.9 SouthAfrica 469 793
Cambodia 34 133.2 Llanosec 24 233 SouthBrazill 150 95.0
Cameroon 5 794 Llanosol 27 156.0 SouthBrazill 50 124.8
Cameroon3 59 212.0 Madagascarl 76 54.0 SouthBrazil3 64 345
CentralAfric 12 522 Madagascar2 90 35.0 Sumatra 29 481
ColombiaCl 60 126.7 Madagascar3 87 31.8 Sumatra2 1 114.6
ColombiaCGl 36 70.9 Madagascar4 80 37.0 Tanzanial 38 78.0
ColombiaG2 10 125 Madagascar5 90 36.0 Tanzania2 42 110.0
ColombiaM1 24 1.9 Malaysia 139 101.6 Tanzania3 38 79.0
ColombiaM2 9 1.8 Malaysia2 24 66.7 Tanzania4 34 95.0
CostaRic 97 116.0 MFrenchG 29 420 Venezuela2 40 136.8
FrenchGu 360 1178 MGuadel 55 407 Westlava 41 31.8
Gabon 103 109.4 Moluccas 25 417 Yucatan 175 63.4
Ghana 37 180.0 Mozambique 28 72.0 Zambia 141 374
IndiaCha 23 347 NewGuinea 42 110.1

Jalisco 124 449 Peru 51 169.0
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Figura 1. Relacion entre la biomasa B y pD*H para todos los sitios de la base de datos pantropical.

(a)

(b)

Figura 2. Modelos alométricos ajustados por regresion no lineal a cada sitio de la base de datos, ademds del modelo global (curva

punteada). (a) Valores generales y, (b) valores pequefios de pD?H.

RESULTADOS

Los ajustes por regresion estadistica fueron realizados
usando la funcién SolverMR de ExcelMR, minimizando el

error cuadratico de estimacion.

Modelos alométricos globales

Los resultados de los ajustes estadisticos estin mostrados
en la tabla 2 para el espacio logaritmico y la tabla 3 para
el aritmético. En el modelo M3 de la relacién (3), este

representa el caso donde a , fue estimada por regresién

lineal en el espacio logaritmico y el modelo 3b utiliza la
relacion (5) para el modelo M3, donde p representa valo-
res especificos en cada sitio de la base datos y el valor a
= 0.0524 fue estimado en el andlisis realizado. El modelo
M2a (Chave et al., 2014) fue estimado usando regresion
lineal en el espacio logaritmico y el modelo M2b fue para-
metrizado por regresion no lineal directamente en el espa-
cio aritmético y los pardmetros mostrados son simples
conversiones al espacio logaritmico (FC = 1.0). Para el

espacio aritmético, la conversion utilizé FC_..
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TABLA 2. Parametros y estadisticos de los ajustes en el espacio logaritmico de modelos globales.

Modelo Parametros q r R? ERM EAM RECM
Mi Ln(a )=-3.0626, b =0.9535 0.1954 0.9590 0.9590  -2.4131 101037 0.4294
M3a Ln(a )=-3.4443, b =1 -0.0274  1.0057 09590  -1.0066 10.0904 0.4412
M3b Ln(a,.) =Ln(0.0524p), b 1 00210 09956 09716  -07326  7.9350 03612
M2a Ln(a,,)=-2.7628, b =0.9759 -0.1354 0.9716 0.9716 -1.4706 8.0312 0.3575
M2b Ln(a,)=Ln (0.0164), b =1.0906 -0.8703 1.0858 0.9716 14.7458 15.9937 0.6333
TABLA 3. Parametros y estadisticos de los ajustes en el espacio aritmético de modelos globales.
Modelo Parametros FC,. s t R? ERM EAM RECM
M1 a,=Exp (-3.0626),b=0.9535 10966 20688 08278 0.8259 -21.2015 41.0710 1634.8729
M3a a=Exp (-3.4443), b =1 11023 185.30 1.0675 0.8246 -22.3489 424035 1964.1605
M3b a,,=0.0524p, b =1 1.0674 153.50 0.9641 0.9116 -13.9983 315284 1190.0537
M2a a ~Exp (-27628),b =0.9759 10660 168.60 0.8478 09091  -13.7583 313052 1207.8154
M2b a,~0.0164,b ~1.0906 27.82 0.9205 0.916l 30.7668 38.5995 1136.3307

En la figura 3 se muestran los resultados espacio logarit-
mico y aritmético de los modelos M2a (Chave et al., 2014)
y el modelo M2b de la regresion no lineal. De la tabla 3,
el modelo de regresion no lineal es el mejor modelo usando
el criterio de la métrica RECM, la cual es la tnica rele-
vante, dado que el proceso de regresion, lineal y no lineal
busca minimizarla. Las otras métricas de error son esti-
madas como consecuencia del proceso de minimizacién
del error cuadrético. De las tablas 2 y 3, tener un error
menor en el espacio logaritmico no implica que al trans-
formar el modelo al espacio aritmético este siga teniendo
un error menor. El caso del modelo M2b (regresion no
lineal) ejemplifica esta situacion.

El modelo M1 (no inclusion de p) muestra resultados
pobres con relacion a los otros modelos analizados, mos-
trando que el no considerar la densidad de la madera pro-
duce resultados con errores mayores a los de su
consideracion, algo similar ocurre con el modelo M3a.
Ahora bien, el caso del modelo M3b (inclusién de p a nivel

de sitio) (Fig. 4) que utiliza la hipétesis de que b, = 1, mues-

tra estadisticos de errores menores que el caso del modelo
de Chave et al. (2014) (Tabla 2 y 3), que ademds reduce la
dimensionalidad del problema (modelo con un solo para-

metro).

Modelos alométricos locales
Para el caso de los ajustes de modelos alométricos locales
(en cada sitio), la tabla 4 (espacio logaritmico) y tabla §
(espacio aritmético) muestran los resultados obtenidos,
donde el mejor ajuste fue el modelo M2b (regresién no
lineal) y después el modelo M2a de regresion lineal en el
espacio logaritmico (Fig. 5). El modelo M3b, que considera
la densidad de la madera a nivel local (sitio), mostré un
comportamiento ligeramente no mejor que el caso global.
En la figura 5 y de la tabla 4 se observa que el mejor
modelo (M2b) muestra los peores resultados en el espacio
logaritmico, por lo que es necesario considerar la inversion
de los modelos del espacio logaritmico al aritmético, ya que
estos estdn orientados a la minimizacién de errores en el

formato logaritmico que, si no se usa un factor de correc-
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ci6n adecuado, pueden tener errores grandes de estimacion dos en el espacio logaritmico con el menor sesgo (ERM y
en el espacio aritmético. EAM), con resultados mejores de RECM a los de la mini-

mizacién del error cuadritico. La figura 6 muestra los
Minimizacion del error absoluto resultados obtenidos. El modelo fue parametrizado con el
Para el caso del modelo M3b se realizé un proceso de mini- valor a = 0.0595, cuyo valor sera utilizado en lo siguiente.

mizacion del error absoluto (EAM), obteniéndose resulta-

(a) (b)

() (d)

FiGura 3. Resultados del proceso de estimacion de modelos globales. (a) Modelo M2a en espacio logaritmico, (b) Modelo M2a en

espacio aritmético, (c¢) Modelo M2b en espacio logaritmico y (d) Modelo M2b en espacio aritmético.

(a) (b)

Figura 4. Resultados del ajuste del modelo M3b, funcion de p a nivel de sitio para: (a) espacio logaritmico y (b) espacio aritmético.
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TABLA 4. Parametros y estadisticos de los ajustes en el espacio logaritmico de modelos locales.

Modelo Parametros q r R? ERM EAM RECM
Mi Locales 0.1250 0.9738 0.9738 -1.9888 8.2688 0.3435
M3a Locales 0.0306 0.9936 0.9708 -1.3119 85545 03659
M3b Ln(a, )=Ln(0.0524p), b =1 0.0210 0.9956 0.9716 -0.7326 7.9350 03612
M2a Locales 0.0905 0.9810 0.9810 -1.068I1 6.5724 02923
M2b Locales -0.0718 2.0136 0.9570 0.6735 9.8212 0.4564
TABLA 5. Pardmetros y estadisticos de los ajustes en el espacio aritmético de los modelos locales.
Modelo Parametros FC,. s t R? ERM EAM RECM
Mi Locales Locales 176.77 0.8431 0.8501 -13.8864 30.5121 1516.9626
M3a Locales Locales 159.03 09303 08317 -16.1245 33.4404  1663.8007
M3b a,=0.0524p, b =l Locales 165.04 0.9434 09062 -l4144 31.5702 1213.4614
M2a Locales Locales 86.191 09200 09371 -92284 242851 984.8277
M2b Locales 48.444 09593 0.9595 -10.5418 357043  788.0718
(a) (b)
(c) (d)

FIGURA 5. Resultados del proceso de estimacion de modelos locales. (a) Modelo M2a en espacio logaritmico, (b) Modelo M2a en

espacio aritmético, (c) Modelo M2b en espacio logaritmico y, (d) Modelo M2b en espacio aritmético.
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(b)

FIGURA 6. Resultados del ajuste del modelo M3b usando un proceso de minimizacion del error absoluto para: (a) espacio logaritmico

y (b) espacio aritmético.

Uso del factor de correccion FCER

El uso del factor de correcciéon FC, , relaciéon (11), fue

ER?
analizado para la conversion de los modelos locales ajus-
tados en el espacio logaritmico al espacio aritmético, par-
ticularmente para el caso del modelo M3b que es de solo
un pardmetro e incorpora la densidad de la madera en
forma explicita. La figura 7 muestra los resultados de la
aplicacion de FC_, al modelo M3b, donde se observa una
RECM menor al caso del resto de los modelos, con excep-
cién del M2b de regresion lineal; aunque los valores del
error de estimacion (RECM) no estan alejados del minimo
observado y las métricas ERM y EAM son mejores que el

modelo de regresion no lineal.

Modelo empirico para parametrizar FC_,

El factor de correcciéon FC,, requiere del promedio de la
biomasa medida, por lo que es necesario estimarla. Aun-
que la relacion entre Best y Bmed estd bien caracterizada
(Fig. 8), los errores de estimacion producen una relacion
inestable para la estimacion de FC,,. El promedio de la
biomasa estimada se refiere a las estimaciones del modelo
ajustado en el espacio logaritmico, modelo M3b, converti-
das al  espacio FC=1:
Best=Exp[Ln(0.0595p)+Ln(D?H)].

aritmético usando

Una alternativa realizada, como prueba de concepto,
fue ajustar un modelo multivariado lineal de regresion
estadistica para estimar FC_,, usando para esto datos
medidos en campo en los inventarios forestales (D, Hy p).
El modelo multivariado lineal ajustado a los datos experi-

mentales fue:
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donde se usaron los operadores P (promedio), DE (desvia-
cién estandar) y CV (coeficiente de variacion). La relacion
(17) es aplicable a nivel de sitio (local).

Los estadisticos del ajuste estadistico multivariado de
la relacién (17) son: R? = 0.987, R? ajustada = 0.985, R?
prediccion = 0.978, error estandar = 0.024, d de Durbin-

Watson = 2.648, autocorrelacion de primer orden =

Invierno 2021

-0.356, colinealidad = 0.000, coeficiente de variacién =
2.353.

La figura 9 muestra los resultados del modelo desa-
rrollado usando la relacion (17) para estimar FC_, a nivel
de sitio para el modelo 3b. Los resultados obtenidos son

comparables al uso de FC, medido (Fig. 7).

FIGURA 7. Resultados del ajuste del modelo M3b en el espacio aritmético usando FC_,

a nivel local.

FIGURA 8. Relacion entre los promedios de B estimada y B medida de los sitios de la

base de datos.
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FIGURA 9. Resultados del ajuste del modelo M3b en el espacio aritmético usando FC_,

a nivel local estimado de analisis lineal multivariado.

DiscUsION

Los diferentes analisis realizados para los ajustes de mode-
los alométricos en el espacio logaritmico muestran que el
objetivo de minimizacién del error de estimacion es de
doble paso, ya que también se requiere de la estimacion de
un factor de correccion. Esta situacion esta ejemplificada
por el modelo de regresion no lineal, donde los resultados
del proceso de estimacion en el espacio logaritmico son los
peores de todos los modelos analizados.

La aproximacion cldsica de regresion lineal, espacio
logaritmico, que minimiza el error cuadraitico de estima-
cién (estimacion del promedio) fue revisada para conside-
rar otros objetivos, particularmente los sesgos de las
estimaciones (error relativo medio y error absoluto medio)
por un proceso de minimizacioén del error absoluto. Los
resultados mostraron una reduccion de los sesgos de esti-
macioén con errores de estimacion (RECM) comparable al
proceso de minimos cuadrados.

Intentos previos de reducir la dimensionalidad del
problema de estimacion usando modelo alométricos (Zia-
nis y Mencuccini, 2004; Zianis, 2008; Zhang et al., 2016)
han generado resultados mixtos y requerimientos de con-
tar con informacién de campo normalmente no disponi-

ble en los inventarios forestales.

El cambio de factor de correccion simple (Baskerville,
1972) al factor de correccion de estimador de razones de
Snowdon (1991), para el caso de estimaciones locales 0 a
nivel de sitio usando el modelo B = 0.0595p(D*H), mejora
sustancialmente las estimaciones, aproximdndolas a las
del modelo de regresion no lineal aplicado a nivel de sitio
y con errores de estimaciéon menores al caso de aplicar
modelos tipo el usado por Chave et al. (2015) a nivel local,
con el uso de factores de conversion clasicos (Baskerville,
1972).

Si se considera que el factor de correccién de Snow-
don (1991) requiere de la biomasa medida a nivel de sitio,
el desarrollo de un modelo estadistico lineal multivariado
usando informacién disponible en campo, permitié hacer
estimaciones comparables al caso de conocer la biomasa
medida y con errores de estimacion cercanos al modelo de

regresion no lineal local que resulté en el mejor modelo.

CONCLUSIONES

El ideal de desarrollar un modelo alométrico general que
permita hacer estimaciones a nivel local, considerando los
factores especificos de cada sitio, es uno de los grandes
retos en el proceso de estimacion de la biomasa aérea, evi-

tando asi discusiones sesgadas relacionadas sobre si un
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modelo global es adecuado para las escalas locales, res-
puesta que es negativa en la gran mayoria de los casos;
exceptuando donde la alometria local es similar a la glo-
bal en todos los casos con el uso de técnicas de regresion
estadisticas iguales.

En este trabajo se desarroll6 un modelo alométrico
generalizado que reduce la dimensionalidad del problema
de estimacién a un solo pardmetro en el espacio logarit-
mico, pero que requiere un parametro adicional (factor de
correccion) para convertirlo al espacio aritmético usado
en las estimaciones de la biomasa aérea. Como prueba de
concepto, se desarrollé un modelo estadistico lineal mul-
tivariado para estimar el factor de correccién con resulta-
dos comparables al caso de conocer la biomasa aérea en
cada sitio, requisito para calcular el factor de correccion.

Los resultados obtenidos en este trabajo son alta-
mente promisorios y requieren un analisis de estabilidad
de resultados al variar (simulacién Monte Carlo) la estruc-
tura de las bases de datos de cada sitio (diferentes combi-
naciones de nimero de datos y su seleccion aleatoria);
aunque dada la variabilidad de estas estructuras de datos
en los sitios de la base de datos pantropical usada permite

inferir que la estabilidad es buena.
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