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RESUMEN

La estimacion de la biomasa aérea total en bosques tropicales es una tarea critica para la gestion forestal y los mercados del carbono.
Los modelos pantropicales multiespecies y multisitios tratan de desarrollar estimaciones para el caso general de falta de conocimiento de
modelos locales especificos. Bajo un enfoque algebraico simple, este trabajo presenta las equivalencias entre los modelos analizados, los
cuales son parametrizados por regresion lineal simple en el espacio log-log mediante una base de datos pantropical (bosques tropicales),
con 4004 mediciones en 58 sitios en el mundo; incluye mediciones del diametro a la altura del pecho (D) y altura total (H), asi como
estimaciones de la densidad de la madera (p). Los resultados soportan la equivalencia de los modelos alométricos. Adicionalmente se
realiz6 una parametrizacion de los modelos alométricos usando la base de datos pantropical a través de regresion lineal simple de las
transformaciones logaritmicas de los modelos. El modelo que usa D, Hy p a nivel local (clases de densidad o sitios) resulta en la estima-
cién con menor error. El modelo alométrico pantropical estimado se propone como un modelo global; aunque con una discusién sobre
su aplicabilidad con relacién a los modelos locales. Una aproximacion al modelo global es introducida al parametrizar un modelo en
funcién de la densidad de la madera y dos enfoques con relacion al exponente de la relacion potencial analizada. Los modelos pantro-
picales desarrollados muestran estimaciones ligeramente mejores que el modelo pantropical, dando flexibilidad al error de estimacién al
asociarlo a la densidad de la madera de las especies de arboles.

PALABRAS CLAVE: bosques tropicales, densidad de la madera, modelos generales, relacion entre constantes y exponentes, transformacion
logaritmica.

ABSTRACT

Estimating total aerial biomass, and carbon, in tropical forests is a critical task for forest management and carbon markets, for which
various allometric models have been developed for this purpose. Pantropical, multi-species and multi-site models, try to develop esti-
mates for the general case of lack of knowledge of specific local models. The application of allometric models is based on the selection
of the "best" model using some metric of the estimation error. To put into perspective the equivalence of the main models used in the
literature, under a simple algebraic approach, this paper presents the equivalences between the analyzed models, which are parameterized
by simple linear regression in the log-log space, using a pantropical database (tropical forests) with 4004 measurements at 58 sites in
the world, which includes measurements of diameter at breast height (D) and total height (H), as well as measurements or estimates of
wood density (p). The results support the equivalence of the allometric models. Additionally, a parameterization of the allometric models
was carried out utilizing the pantropical database using simple linear regression of the logarithmic transformations of the models. The
results show that the model that uses D, H and p at the local level (density classes or sites) results in the estimation with the lowest error.
The pantropical allometric model estimated from the database has been proposed as a global model, although with a discussion about
its applicability in relation to local models. An approach to the global model is introduced by parameterizing a model as a function of
the density of the wood and two approaches in relation to the exponent of the analyzed potential relationship. The results show that the
pantropical models developed show slightly better estimates than the pantropical model in use, giving flexibility to the estimation error
when associating it with the wood density of the tree species.

KEYWORDS: tropical forests, wood density, general models, relationship between constants and exponents, logarithmic transformation.
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INTRODUCCION

La estimacion del volumen y biomasa aérea de bosques y
selvas permite cuantificar los almacenes de madera y car-
bono para la gestion forestal y los mercados del carbono.
Para realizar esta tarea, generalmente se hace uso del con-
cepto de alometria (Huxley, 1924), usando un modelo del
tipo Y = aX?, donde a y b son parametros empiricos. Las
variables medidas de los arboles utilizadas para X son,
por lo general (Brown, 1997; Chave et al., 2005 y 2014;
Vargas et al., 2017): el didmetro a la altura del pecho (1.3
m) o D, la altura total o H y la densidad de la madera o p;
aunque también son utilizadas las dimensiones de la copa
de los arboles (Goodman, Phillips y Baker, 2014).

Con relacién a la incertidumbre de las estimaciones
alométricas para cuantificar biomasa aérea o carbono, la
seleccion del modelo alométrico es una de las principales
fuentes de error (Pelletier, Kirby y Potvin, 2010; Molto,
Rossi y Blanc, 2013; Picard, Boyemba y Rossi, 2015). La
seleccion de un modelo alométrico estd basada en la utili-
zacion de una o varias métricas del error de estimacion
(error residual estdndar, coeficiente de determinacién,
sesgo, etc.), por lo que no hay un criterio universal acep-
tado de incertidumbre para esta tarea. Generalmente, los
modelos alométricos son generados a nivel de especie
arbdrea en un sitio especifico, por lo que se han generado
compilaciones de modelos de especies (Jenkins, Choj-
nacky, Heath y Birdsey, 2004; Henry et al., 2011; Rojas-
Garcia, de Jong, Martinez y Paz, 2015) para su aplicacion
a escala regional y nacional bajo el supuesto de que existe
una representacion espacial de las ecuaciones alométricas
mas alld de su lugar de desarrollo, lo cual conlleva alta
incertidumbre (Jenkins, Chojnacky, Heath y Birdsey,
2003; Temesgen, Affleck, Poudel, Gray y Sessions, 2015),
ya que los pardmetros de los modelos alométricos son
dependientes de multiples factores, entre los cuales estdn
el tipo de vegetacion, clima, estructura de la poblacién
arbérea, arquitectura de los drboles, condicién del sitio,
ontogenia, entre otros (Nuno, Tomé, Tomé, Soares y Fon-
tes, 2007; Wutzler, Wirth y Schumacher, 2008; Genet et
al., 2011; Chave et al., 2014; Paul et al., 2016; Forrester et
al., 2017).

La alternativa al uso de ecuaciones alométricas a
nivel especies es el desarrollo de modelos alométricos a
nivel de conjuntos de drboles de diferentes especies en
tipos de vegetacion especificos o generales (Brown, Gille-
spie y Lugo, 1989; Djomo, Ibrahima, Saborowski y Grav-
enhorst, 2010; Chave et al., 2005 y 2014; Feldpausch et
al., 2011). Estos modelos son implementados directamente
en bases de datos de mediciones en cada arbol. Un enfo-
que diferente a las mediciones de campo es la extraccion
de valores de las ecuaciones alométricas compiladas para
conjuntos de especies (Pastor, Aber y Melillo, 1984), de
donde se seleccionan datos uniformemente espaciados
entre el mdximo y minimo de D, para después ajustar un
modelo alométrico general (Jenkins et al., 2003; Choj-
nacky, Heath y Jenkins, 2014).

Las variables consideradas en el ajuste de modelos
alométricos multiespecie y multisitio utilizan solo el dia-
metro (Brown, Gillespie y Lugo 1989), aunque algunos
autores (Chave et al., 2005 y 2014; Feldpausch et al.,
2011) consideran que la inclusién de la altura reduce los
errores de estimacion, y otros (Molto, Rossi y Blanc, 2013;
Paul et al., 2016), argumentan que su inclusién no mejora
significativamente las estimaciones. Otra variable consi-
derada en el desarrollo de modelos alométricos generali-
zados para determinar la biomasa es la densidad de la
madera, ya que esta se relaciona con la filogenia (Baker et
al., 2004) y ordena los puntos agrupandolos en clases para
el desarrollo de ecuaciones alométricas por grupos (Jen-
kins et al., 2003; Chojnacky et al., 2014; Nam, van Kuijk
y Anten, 2016; Huy et al., 2016). El desarrollo reciente de
modelos alométricos generalizados usa las variables D, H
y p (Chave et al., 2005 y 2014), donde la densidad que se
considera es la densidad promedio de la madera de cada
especie, ya sea medida o estimada de bases de datos globa-
les (Chave et al., 2009; Zanne et al., 2009). Las medicio-
nes de la densidad de madera muestran alta variabilidad
(Alvarez, Benitez, Velazuez y Cogollo, 2013), por lo que el
uso de estimaciones usando la especie, género o familia de
bases de datos (Chave et al., 2014) conlleva una incerti-
dumbre no cuantificada. La densidad de la madera a nivel

de sitio, o sitios, muestra una reduccion en sus valores al
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incrementarse D (Chave et al., 2004) o H (lida et al., 2012,
Tesfaye, Bravo-Oviedo, Brao, Pando y Herrero de Aza,
2019), por lo que algunos autores han propuesto un ajuste
de los modelos alométricos por la densidad de la madera
de cada especie en relacion con el promedio general (Baker
et al., 2004; Chave et al., 2004).

Actualmente existe una discusiéon sobre el uso de
modelos generales o especificos al sitio, donde muchos
autores (van Breugel, Ransijn, Craven, Bongers y Hall,
2001; Basuki, van Laake, Skidmore y Hussin, 2009;
Henry et al., 2010; Alvarez et al., 2012; Ngomanda et al.,
2013; Sato et al., 2015; Ploton et al., 2016; Manuri et al.,
2016) argumentan que existen diferencias significativas en
las estimaciones; aunque otros autores (Vieilledent et al.,
2012; Fayolle, Doucet, Gillet, Bourland y Lejeune, 2013;
Chave et al., 2014; Paul et al., 2016) registran estimacio-
nes no significativamente diferentes a los modelos genera-
les. La discusion esta sesgada, ya que el uso de un modelo
alométrico multisitio y multiespecie en cada sitio tiene
mayor incertidumbre en relacion con los modelos especifi-
cos de los sitios, a menos que la dispersion de las medicio-
nes sea pequefa en el andlisis multiespecie o multisitio,

cosa que raramente sucede en la realidad.

OBJETIVOS

Los objetivos de este trabajo fueron demostrar que los
modelos alométricos generalmente usados en la literatura
son equivalentes entre si, con métricas de incertidumbre
relacionadas, y desarrollar un modelo alométrico pantro-
pical (bosques tropicales) flexible con menor o igual incer-
tidumbre que los publicados. Los objetivos anteriores son
condicionales a la hipotesis de que la densidad promedio
de una especie de arbol no varia con las dimensiones de

los arboles y es representativa de la especie.
MATERIALES Y METODOS
Modelos alométricos y su equivalencia

Los principales modelos alométricos para estimar la bio-

masa aérea total (B) son los siguientes:
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Modelo A1: B = a,D"4 (1)
Modelo A2: B = a,(D*H)"> (2)
Modelo A3: B = a,y(pD*H)Pvd = a,,,p"vd(D?H)"va (3)
Modelo A4: B = a,,(D*H) (4)
Modelo A5: B = a,D"»H®P (5)

Una relaciéon complementaria es el modelo alométrico
entre la altura (H) y el didmetro (D), la cual es la siguiente
(Niklas, 1994; Feldpausch et al., 2011 y 2012; Hulshof,
Swenson y Weiser, 2015):

Modelo H1: H = a,, ,D"hd (6)

En lo siguiente, el modelo A3 serd usado como referencia,
y todos los modelos (A1-AS) serdan convertidos al modelo
A1 para entender las relaciones entre los parametros a y b.

Comparando la relaciéon (3) con la (2), se obtiene:
a, = avdpbvd ¥ by, = byg (7)

que implica que no hay diferencias entre el uso de ambos
modelos y a_esta relacionada con p a través de un modelo
potencial.

Ahora bien, sustituyendo la relacién (6) en relacién (2) se

obtiene:
B = av(ahd)va(z + bha)by (8)
Al compararla con la relacién (1) implica:
aq = ay(apa)™ ¥ ba = (2 + bna)by )
Dadas las relaciones (7), se obtiene:

Ag = Ay P4 (ang)’* y by = (2 + bpg)byy (10)
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Finalmente, sustituyendo la relacion (6) en la (2) se obtiene:
B = a,(apq)?» D Pp+oacy) (11)

que al compararla con la relacion (1) implica:
ag = a,(any)’ y bg = b, + byac, (12)

Si se usa p en el modelo A5, B = ap(pD"PH“P) (Schumacher
y Hall, 1933), se sigue el mismo procedimiento utilizado
para generar la relacion (10).

El caso de la relacion (4), caso particular de la rela-
cion (2), solo hay que sustituir b = 1 en las relaciones (9)
(Navar, 2010b).

Los desarrollos mostrados implican que todos los
modelos estdn relacionados entre si y que no hay un
“mejor” modelo a priori, dado que también los errores de
estimacion estan relacionados entre si, aunque si existe

una métrica de menor error.

Estimaciones estadisticas de los parametros de
los modelos alométricos

La ecuacién alométrica dada por:
Y = ax? (13)
puede transformarse logaritmica como:
In(Y) =Y’ =1In (a) + bin(X) + In (&) (14)

para estimar los parametros a y b por regresion lineal sim-
ple, donde ¢ es el error de estimacion.

Considerando que la transformacién inversa de la relacion
(14) introduce sesgos, es necesario corregirlos como (Bas-

kerville, 1972):
Y =exp [:—+a+bln(X)] (15)

donde o es la desviacion estandar (error estandar residual

o EER) del error ¢, el cual es supuesto como distribuido

normalmente con media cero y desviacién estindar o,

definida como:

1 N N
o = EER = ZY/—Y{Z
nop T (16)

donde ?i, es el valor estimado, Yi’ el valor medido, n el
namero de datos y p los parametros del modelo (p = 2).
El ajuste de los modelos alométricos se analiza usando
diferentes métricas del error de estimacién, incluyendo el
coeficiente de determinacién (R?), la raiz del error cuadra-

tico medio (RECM), S = In(Y):

RECM = m (17)

y por el error relativo medio (ERM) y error absoluto

medio (EAM), ambos en porcentaje:

1 Y -¥/
ERM=100{; . 7 } (18)

o1

EAM = 100{% n ;} (19)

La relacion entre el EER y la RECM esta dada por:

2

n
EER = [(n_p)z

] RECM (20)
Un punto importante de enfatizar es que los desarrollos
algebraicos de la equivalencia entre los modelos alométri-
cos son validos si y solo si para estimaciones de regresion
lineal simple (incluyendo el andlisis multivariado del
modelo AS5). En el caso de regresiones no lineales, las equi-
valencias mostradas no son validas y requieren de desa-
rrollos mas complejos. En esta perspectiva, todos los
analisis siguientes usan el espacio log-log para mostrar
resultados, lo que no invalida los desarrollos, al poder
transformar los resultados al espacio aritmético a través

de la relacion (15).
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Base de datos de alometria pantropical

La base de datos pantropical (bosques tropicales) anali-
zada es la utilizada por Chave et al. (2014), disponible
publicamente, la cual consiste en 4004 mediciones de D
(cm), H (m) y p (g cm™) en 58 sitios en diferentes partes del
mundo, donde 53 sitios son de vegetacion no perturbada.
En el caso de la densidad de la madera, en 58% de los
datos se midi6 y en el resto fue estimada por el valor pro-
medio de la especie, género o familia de una base de datos
global (Chave et al., 2009; Zanne et al., 2009). La docu-
mentacion de los sitios y de la base de datos se encuentra
en Chave et al. (2014), por lo que solo se presenta una
minima descripcion en este trabajo. Burt et al. (2020) ana-
lizan la base de datos pantropical con relacion a errores y

discuten sus implicaciones y limitaciones.

RESULTADOS Y DIsCcuUsION

Equivalencia entre modelos alométricos

Para poder analizar la base de datos alométrica pantropi-

cal, la densidad de la madera fue agrupada en clases de
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intervalos de 0.05 g cm™, para generar 20 intervalos, el
primero (0.09 gcm=®a 0.13 gcm™, n = 7) y el dltimo (1.08
gcm?a 1.12 gcm™, n = 7) con limites diferentes. La figura
1 muestra el nimero de datos (frecuencia) por clase de
densidad de la madera, donde se observa que en los limites
inferiores y superiores la frecuencia es baja, a diferencia de
las clases medias.

El objetivo de utilizar clases de densidad (todo el
rango presente en la base de datos) es para establecer la
hipétesis de que una clase representa a una especie (equi-
valente) asociada al valor de la densidad, ya que la base de
datos representa multiples especies en multiples sitios.
Para cada clase de densidad se ajustaron los modelos Al a
AS por regresion lineal simple en el espacio log-log.

Los intervalos 2 (patrén convexo y no concavo de la
relacion H-D) y 20 (R? cercano a cero de la relaciéon H-D)
no fueron considerados en el andlisis de la equivalencia de
los modelos alométricos.

En la figura 2 se muestran las relaciones (9) para los
modelos A2 y A3, donde la relacién en a_y a , esta mos-
trada en términos del formato aritmético y no del logarit-
mico. Esto es posible porque los ERR son pricticamente

iguales, dado que los modelos A2 y A3 son iguales.

FiGgura 1. Distribucion de frecuencias por clases de densidad de la madera. La clase 1

representa nominalmente el intervalo (0.10, 0.15], donde discretizacién de intervalos

de clases es de 0.05 g cm™
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FiGURA 2. Relacion entre los pardmetros del modelo A2 y A3 obtenidos del ajuste

por regresion lineal en el espacio log-log.

La relacion (10) establece la equivalencia entre el modelo
A3 con el Al, la cual estd mostrada en la figura 3. Se
observa que la relacion de a , (y b ,) con a, en el espacio
aritmético esta sesgada, dado que el error de estimacion
del modelo A1 es diferente al del modelo A3. La equiva-
lencia, usando el espacio log-log y transformando la rela-
cion (10) para a, en términos logaritmicos, esta mostrada
en la imagen central de la figura 3. La relacion entre los
exponentes b es similar en el espacio aritmético y logarit-
mico, dado que la correcciéon de sesgos solo se aplica al

pardmetro a, relacion (15).

La relacion (10) muestra una ecuacién potencial con
la densidad de la madera, por lo que define las bases de
esta relacion obtenida, o supuesta, en forma empirica por
varios autores. Por ejemplo, Pilli, Anfodillo y Carrer
(2006), usaron la relaciéon In(a,) = A + Bp (R* entre 0.56 y
0.61) y Ketterings, Coe, van Noordwijk, Ambagau y Palm
(2001), Chave et al. (2005), Navar (2010a) y Navar, Rios,
Pérez, Rodriguez-Flores y Dominguez-Calleros (2013)
propusieron la relacién a = Cp, donde A, B y C son cons-

tantes empiricas.
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Figura 3. Relacion entre los pardmetros del modelo A1y A3 obtenidos del ajuste por

regresion lineal en el espacio log-log.
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La figura 4 muestra la equivalencia entre los modelos
A5 y A1l definida por las relaciones (12). La transforma-
cion logaritmica de a, fue utilizada considerando que los

errores de estimacion de los dos modelos son diferentes.

Analisis alométrico de la base de datos
pantropical

La figura 5 muestra la relacion p y 4, ajustada por regre-
sion lineal en el espacio log-log, bajo la condicion b = 1.
De acuerdo con el modelo A4 (modelo A2 con b = 1),

la relacion entre a , y p debe ser lineal, pasando por el

origen, relacion (7). Si b # 1, la relacion potencial (7) debe
ser usada.

La tabla 1 muestra los ajustes estadisticos, regresion
lineal simple en el espacio log-log, de los modelos alomé-
tricos analizados. Las métricas de error son del espacio
transformado logaritmicamente.

Se observa en la tabla 1 que los modelos A2 y A3
locales (para cada clase de densidad) muestran los mejores
ajustes. El modelo A4 local muestra un buen ajuste, cer-
cano a los mejores modelos. El modelo A4 estimado de la

relaciéon mostrada en la figura 5 tiene un ajuste aceptable:

a,, = 0.0504p%34

-7.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.100
. 1 . r r r 0.00
4 -100
4 -2.00
y=1x
= R*=0.9999 4 -3.00
-]
= 4 -a00
4 -5.00
4 -6.00
-7.00
In(n'.-|,:|+ln[L:n.d]clJ
3.50
3.00
2.50 ¥=1x ﬁﬁ
R*=0.9999
2.00
b
r-~]
1.50
1.00
0.50
0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
bp + byaC p

FiGURra 4. Relacion entre los pardmetros del modelo A1y A5 obtenidos del ajuste por

regresion lineal en el espacio log-log.
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Para reducir el error de estimacion se estimaron los
parametros del modelo potencial, incluyendo el valor de

b, al minimizar RECM, y se obtuvo (modelo M1):

In(B) = In (0.0593p°#332) + 0.9748In (D2H)

Esta relacion considera que b, (exponente del primer tér-
mino) es diferente de la constante multiplicativa del

segundo término, lo cual es diferente a la relacion (7).
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Las métricas de error del modelo M1 estan mostradas
en la tabla 2. Adicionalmente se desarroll6 el modelo M2

considerando una relacién lineal entre los parametros

avO y va:

In(B) = In (0.0596p°8425) + [0.964 — 0.04(0.0596p°425)](In (D2H)

donde las métricas de error de este modelo estin mostra-

das en la tabla 2.

FIGURA $. Relacion entre el promedio de las clases de densidad y 4 del modelo A4

(b, =1, del modelo A2.

TABLA 1. Métricas del error de estimacion del ajuste de los modelos alométricos en el espacio log-log de las clases de densidad.

Modelo R? RECM
Al local 0.9514 0.4677
A2 local 0.9729 0.3494
A2 global 0.9550 0.4294
A3 local 0.9728 0.3499
A3 global 0.9716 0.3575
A4 local 0.9725 0.3562
A4 estimado de densidad (modelo potencial)  0.9719 0.3596
M1 0.9720 0.35501
M2 0.9720 0.35504
H1 local 0.6932 0.3864

RECM: raiz del error cuadritico medio
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Los modelos M1 y M2 tienen métricas de error simi-
lares y ligeramente mayores a los mejores modelos y lige-
ramente menores al mejor modelo global (para todas las
clases de densidad), definido por el modelo A3 global

Debe notarse que la relacién lineal entre los parame-
tros es condicional al uso de b, (modelo A4) y no del caso
general entre parametros de los otros modelos.

El uso de clases de densidad (especies equivalente de
acuerdo con cada intervalo de densidad) genera condicio-

nes con datos agrupados en intervalos de D acotados, lo

que produce que la relacién H-D, (Tabla 1), tenga impor-
tantes errores de estimacion.

En el caso de los modelos de alometria pantropical,
los andlisis son realizados a nivel de sitios (multiples espe-
cies), donde cada sitio tiene un modelo alométrico local y
se ajusta un modelo general (todos los sitios) como repre-
sentativo de los bosques tropicales (Chave et al., 2014).

En la tabla 2 se muestran los ajustes de regresion

lineal simple en el espacio log-log del formato de sitios.

TABLA 2. Métricas del error de estimacion del ajuste de los modelos alométricos en el espacio log-log de los sitios.

Modelo R? RECM ERM (%) EAM (%)
Al local 0.9683 0.3773 -2.4675 9.2973
A2 local 0.9738 0.3435 -1.9888 8.2688
A3 local 0.9810 0.2923 -1.0681 6.5724
A3 global 0.9716 0.3575 -1.4706 8.0312
A4 local 0.9708 0.3659 -1.3119 8.5545
A4 estimado de densidad (modelo potencial) 0.9719 0.3596 -0.5777 7.8700
Mi 0.9720 0.35501 -15401 7.9767
M2 0.9720 0.35507 -15328 7.9754
HI local 0.9260 0.1896 -0.0081 6.5181

RECM: raiz del error cuadritico medio; ERM: error relativo medio; EAM: error absoluto medio.

El modelo A3 local es el que tiene los menores errores
(RECM, ERM, EAM), por lo que puede ser utilizado
como la referencia del resto de modelos para tener métri-
cas similares o mejores. La alometria pantropical (Chave
et al., 2014) esta dada por el modelo A3 global:

In(B) = —2.7628 + 0.9759In (pD*H) (21)

Los modelos M1 y M2 para el caso de sitios multiples,

mismo procedimiento, estan dados por:

M1: In(B) = In (0.0593p°#332) + 0.9748In (D2H) (22)

M2:In(B) = In (0.0599p°£52%) + [0.9781 — 0.0837(0.0599p°#52%)](In (D2H) (23)
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El modelo M1 es similar al caso de clases de densi-
dad, pero el modelo M2 es diferente en su parametriza-
cién. En la tabla 2 se observa que los modelos M1 y M2
son ligeramente superiores al modelo A3 global, por lo
que pueden usarse como modelos pantropicales mas flexi-
bles al incluir explicitamente la densidad de la madera,
aunque la métrica ERM del modelo A3 global es ligera-
mente mejor que estos modelos.

Para tener una idea de como varia el error de estima-
ciéon (RECM) de los modelos globales (modelo A3 y M1)
con relacion al mejor modelo (M3 local), la figura 6 mues-
tra estos errores, donde hay casos en los que el modelo A3
es mejor que el M1, y viceversa. La tabla 3 muestra a deta-
lle las estadisticas de los errores de estimacion para los 58
sitios analizados.

Los cuatro sitios de mayor error (modelos M3 global

y M1) con relacion al modelo A3 local se resaltan en negri-
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tas en la tabla 3. Los sitios remarcados representan casos
donde hay diferencias grandes entre las métricas de error
del modelo mejor (A3 local) y los de tipo global.

Para definir el contexto de los errores observados se
muestra en la tabla 3 el nimero de datos y el didmetro
maximo de cada sitio. De acuerdo con Manuri et al.,
(2016), los sitios con pocos datos pueden inducir sesgos en
las estimaciones; adicionalmente, la presencia de arboles
grandes (D y H grandes) también puede ocasionar sesgos.

Aungque es posible argumentar que las estimaciones
usando las relaciones desarrolladas con la densidad de la
madera pueden depender de los errores de estimacion de
los ajustes estadisticos a los datos originales (Tabla 3),
esto no se justifica en el desarrollo de una relacion alomé-
trica generalizada que considere todos los casos de errores

de estimacién bajos o altos.

Ficura 6. Comparacion de las métricas RECM para el modelo A3 de alometria

local (referencia) y la de los modelos A3 global y M 1. La recta quebrada representa

la modelo M1.
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TABLA 3. Métricas de los errores de estimacion de los sitios de la base de datos pantropical para varios modelos alométricos.

N D max. Modelo A3 local Modelo A3 global Modelo MI Modelo M2
>ftio (cm) RECM ERM  EAM RECM ERM  EAM RECM ERM  EAM RECM ERM EAM
Australia 46 249 02723 -07049 67617 03574 -69694 92160 03172 -56174 81482 03164 -55984 81306
BraMan2 123 382 02093 -02678 44560 02121 -04443 45367 02108 -12577 44883 02106 -12572 44832
BraParal 127 1380 03261 -05540 50088 03358 08451 51064 03334 09013 50794 03334 09059 50784
BraPara3 21 550 02232 -02412 35850 02409 -08640 40573 02544 -12260 43100 02549 -12212 43184
BraRond 8 890 01652 -0.0605 23079 02106 16159 30710 02193 18387 31757 02198 18472 31817
Cambodia 34 1332 01318 -03143 42310 01507 -31207 48598 01521 -33397 49056 01524 -33496 49121
Cameroon 5 794 03854 0.153 74543 06270 -211459 219076 06317 -209501 219077 06328 -20.9602 219399
Cameroon3 59 2120 01716  -0.0307 13865 02589 1855l 21100 02564 15870 20370 02567 15643 20343
CentralAfric 2 522 02087 -0.0835 25436 02747 03498 33862 02768 07454 34360 02768 07692 34367
ColombiaCl 60 1267 03539 -03391 44639 03726 16731 48825 03469 11465 44961 03464 11332 44964
ColombiaGl 36 709 02620 -01374 33916 03159 17886 40567 02905 06295 37144 02910 06068 3724
ColombiaG2 10 125 02699 -09118 79462 04099 89373 101833 03739 72022 OI736 03748 7236l 92023
ColombiaM1 24 M9 04284 -03881 45519 04328 05084 46296 04226 05906 44861 04220 05974 44778
ColombiaM2 9 118 02395 -06665 65840 02904 -43363 74740 02955 -42960 77931 02955 -43I01 77915
CostaRic 97 1160 02222 -01766 27332 03303 -40152 45005 03343 -43120 46222 03350 -43312 46355
FrenchGu 360 117.8 03030 -10151 81517 04222 -5414 127675 04224 -115063 127580 04226 -15160 12767
Gabon 103 1094 02925 -01803 30273 03662 -30832 40314 03634 -29175 39707 03635 -29054  3.969I
Ghana 37 1800 02916 -03772 42194 03638 25998 48365 03571 23998 48229 03574 23911 48286
IndiaCha 23 347 03816 -06954 64732 04047 19667 64095 03932 207I 61735 03932 20793 61719
Jalisco 124 449 03768 -17326 103396 04607 -32582 127843 04380 -34806 119933 04385 -34357 120292
KKalimanl 23 776 03232 -02012 35252 03420 02915 40298 03207 -00540 37289 03200 -0.0745 37166
KKaliman2 69 1305 01846 -03438 39879 01986 20108 39132 OIS 12628 39740 01912 12792 39696
Kaliman4 40 689 02073 -01126 23663 02394 18562 31504 02349 18568 31187 02344 18504 31125
Kaliman6 25 844 01619 -0.0383 16180 01785 -10179 1766l 01989  -14834 20453 02001 -15097 20614
Karnataka 189 609 02169 -01231 29441 04270 58868 62188 04493 63166 66335 04503 63367 6.6532
Llanosec 24 233 03446 -09271 86203 03608 -48153 95946 03909 -89694 111342 03895 -88186 11034l
Llanosol 27 1560 0311  -01350 40941 03756 05321 47955 03649 01122 48398 03635 0102 48231
Madagascarl 76 540 02980 -02824 41323 03037 -13506 41505 03101 -12675 42282 03106 -12647 42362
Madagascar2 90 350 02870 -03959 51088 03687 51554 70743 03631 49758 68909 03632 49754  6.8932
Madagascar3 87 318 04048 -11.9033 227998 05187 76579 214989 05305 15107 236127 05292 19288 23.4112
Madagascar4 80 37.0 01935 -01332 28458 02243 15457 35585 02233 14547 35509 02232 14463 35495
Madagascar5 90 360 03104 -07689 61898 03451 13902 65788 03318 07907 63503 03321 07938 63530
Malaysia 139 1016 01947 -02389 42416 01968 03365 41691 01960 00965 42120 01960 0.0935 42123
Malaysia2 24 667 02221 -0716] 47697 02506 00083 49357 02542 -00523 50734 02543 -0.0565 50768
MFrenchG 29 420 02345 -06814 53291 02601 -41174 64665 02584 -34466 62604 02584 -34485 62668
MGuadel 55 407 01925 -01979 34307 02454 -38418 49758 02338 -31133 46323 02338 -30966 4.6294
Moluccas 25 417 01788 -01679 30593 02480 33382 40469 02542 29938 42353 02542 29889 42351
Mozambique 28 720 03898 -09455 76742 03983 08864 73454 04041 10245 74436 04042 10217 7.4470
NewGuinea 42 101 04085 -09119 66832 04919 -64617 79549 05017 -7.0288 82247 05023 -7.0465 82359
Peru 51 169.0 03273 -0.0978 32984 03378 -0.0949 32695 03627 -03799 34464 03639 -038l5 34540

PuertoRi 30 457 02806 -1.6910 86294 03049 -62959 9.6380 03066 -7.0229 98425 03063 -69908 98133
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TaBLA 3. Métricas de los errores de estimacién de los sitios de la base de datos pantropical para varios modelos alométricos.

Continuacion...
PuertoRi2 25 450 02346 -0.4038 49413 03862 8.0132 85402 03736 7.6035 8.5258 03743  7.6257 8.5333
SaoPaulo3 75 67.8 0.2887 -0.4205 5.3290 03277 -1.9888 55914 0.3331 -23057 5.8559 03330 -23080 5.8504
Sarawak 21 44 0.2071 -0.3036 4.2107 04345 -7.0117 7.6603 0.4449 -75600 7.9398 0.4452 -75640 7.9489
SouthAfrica 469 793 03469 -33093 140929 03684 -95379 161623 03570 -8.1522 155466 0.3571 -8.1875 15.5557
SouthBrazill 150 95.0 02476 -0.1330  4.4033 02552  -14752 45357 02430 -1.384l 43151 02428 -1.3836 43127
SouthBrazill 50 1248 02098 -0.2483 3.6491 0.2185 1.0153 3.7912 0.2145 0.9339 3.6534 0.2144 0.9370 3.6518
SouthBrazil3 64 345 03257 -0.6555 6.2746 0.4083 5.0481 75052 0.4069 5.0826 7.4878 0.4068 5.0786 7.4869
Sumatra 29 481 03501 -0.6011 6.6003 03540 -1.6978 6.6665 03472 -23966 63903 03475 -24064 6.3961
Sumatra2 n 14.6 0.1451 -0.0453 15523 0.1535 0.5369 1.6928 01506 0.1158 1.6716 01506 0.0829 1.6689
Tanzanial 38 780 03232 -01143 45695 05549 82314 91688 05427 81561 89979 05424 8154 8.9925
Tanzania2 42 110.0 03682 -0I391 56173 04089 30648 64293 04021 31690 63133 04017 31737 63050
Tanzania3 38 790 02544 -03003 36427 03732 39643 53651 03785 41810 54664 03786 41842 54683
Tanzania4 34 950 02872 -04381 45284 03238 21745 45665 03201 25676 43793 03201 25788 43760
Venezuela2 40 1368 02523 -01977 31857 03562 -27446 40331 03501 -27254 40297 03496 -27219 40270
WestJava 41 318 01652 -0.0409 60856 02093 -25270 68961 02239 -44305 7.0517 02244 -43833  7.0727
Yucatan 175 634 0.3201 -0.4188 5.0667 03593 22060 6.0382 03517 24304 5.9825 0.3514 24372 5.9774
Zambia 141 374 03097 -1.0919 7.8261 0.4373 82278 103569 0.4432 8.6994 105302 0.4430 8.6882 10.5245

RECM: raiz del error cuadratico medio; ERM: error relativo medio; EAM: error absoluto medio.

CONCLUSIONES

Los desarrollos algebraicos mostrados en este trabajo
plantean que los modelos alométricos mds usados en la
literatura son equivalentes entre si con errores de estima-
cién relacionados. En esta perspectiva, la discusion del
“mejor” modelo de estimacion depende de realizar trans-
formaciones algebraicas entre los modelos. Con la para-
metrizacion de un solo modelo, es posible estimar los
parametros de los otros.

La equivalencia entre modelos alométricos sigue razo-
namientos algebraicos simples que son aplicables al caso de
regresiones lineales simples en un espacio que transforme
los modelos no lineales a lineales (espacio log-log).

El ajuste de los modelos alométricos a la base de datos
pantropical, caso de clases de densidad y de sitios, muestra
que el desarrollo de un modelo dependiente de D’H con la
densidad de madera en forma explicita, genera métricas de
incertidumbre ligeramente mejores al caso de un modelo

pantropical general.

El marco metodoldgico desarrollado da soporte tedrico
a diversas aproximaciones empiricas definiendo cual modelo
tiene bases, independientemente de la estadistica de las rela-
ciones empiricas, fundamentando asi que el uso del conoci-
miento debe guiar las aproximaciones empiricas.

Con el marco teérico planteado, es posible desarrollar
otras aproximaciones para modelos alométricos generales
que sean cercanas a los modelos locales, particularmente en
el contexto del uso de métricas conjuntas de los errores de
estimacion.

Es importante enfatizar que los desarrollos algebraicos
son triviales (después del hecho) e implicitos en las relacio-
nes alométricas mas usadas en la literatura. La equivalencia
entre las formulaciones alométricas explica el porqué de su
seleccion en las aplicaciones. La relacién alométrica de refe-
rencia puede ser cualquiera de los modelos, u otro que se

formule apropiadamente.
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