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Resumen
La estimación de la biomasa aérea total en bosques tropicales es una tarea crítica para la gestión forestal y los mercados del carbono. 
Los modelos pantropicales multiespecies y multisitios tratan de desarrollar estimaciones para el caso general de falta de conocimiento de 
modelos locales específicos. Bajo un enfoque algebraico simple, este trabajo presenta las equivalencias entre los modelos analizados, los 
cuales son parametrizados por regresión lineal simple en el espacio log-log mediante una base de datos pantropical (bosques tropicales), 
con 4004 mediciones en 58 sitios en el mundo; incluye mediciones del diámetro a la altura del pecho (D) y altura total (H), así como 
estimaciones de la densidad de la madera (ρ). Los resultados soportan la equivalencia de los modelos alométricos. Adicionalmente se 
realizó una parametrización de los modelos alométricos usando la base de datos pantropical a través de regresión lineal simple de las 
transformaciones logarítmicas de los modelos. El modelo que usa D, H y ρ a nivel local (clases de densidad o sitios) resulta en la estima-
ción con menor error. El modelo alométrico pantropical estimado se propone como un modelo global; aunque con una discusión sobre 
su aplicabilidad con relación a los modelos locales. Una aproximación al modelo global es introducida al parametrizar un modelo en 
función de la densidad de la madera y dos enfoques con relación al exponente de la relación potencial analizada. Los modelos pantro-
picales desarrollados muestran estimaciones ligeramente mejores que el modelo pantropical, dando flexibilidad al error de estimación al 
asociarlo a la densidad de la madera de las especies de árboles.

Palabras clave: bosques tropicales, densidad de la madera, modelos generales, relación entre constantes y exponentes, transformación 
logarítmica.

Abstract
Estimating total aerial biomass, and carbon, in tropical forests is a critical task for forest management and carbon markets, for which 
various allometric models have been developed for this purpose. Pantropical, multi-species and multi-site models, try to develop esti-
mates for the general case of lack of knowledge of specific local models. The application of allometric models is based on the selection 
of the "best" model using some metric of the estimation error. To put into perspective the equivalence of the main models used in the 
literature, under a simple algebraic approach, this paper presents the equivalences between the analyzed models, which are parameterized 
by simple linear regression in the log-log space, using a pantropical database (tropical forests) with 4004 measurements at 58 sites in 
the world, which includes measurements of diameter at breast height (D) and total height (H), as well as measurements or estimates of 
wood density (ρ). The results support the equivalence of the allometric models. Additionally, a parameterization of the allometric models 
was carried out utilizing the pantropical database using simple linear regression of the logarithmic transformations of the models. The 
results show that the model that uses D, H and ρ at the local level (density classes or sites) results in the estimation with the lowest error. 
The pantropical allometric model estimated from the database has been proposed as a global model, although with a discussion about 
its applicability in relation to local models. An approach to the global model is introduced by parameterizing a model as a function of 
the density of the wood and two approaches in relation to the exponent of the analyzed potential relationship. The results show that the 
pantropical models developed show slightly better estimates than the pantropical model in use, giving flexibility to the estimation error 
when associating it with the wood density of the tree species.

Keywords: tropical forests, wood density, general models, relationship between constants and exponents, logarithmic transformation.
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Introducción

La estimación del volumen y biomasa aérea de bosques y 

selvas permite cuantificar los almacenes de madera y car-

bono para la gestión forestal y los mercados del carbono. 

Para realizar esta tarea, generalmente se hace uso del con-

cepto de alometría (Huxley, 1924), usando un modelo del 

tipo Y = aXb, donde a y b son parámetros empíricos. Las 

variables medidas de los árboles utilizadas para X son, 

por lo general (Brown, 1997; Chave et al., 2005 y 2014; 

Vargas et al., 2017): el diámetro a la altura del pecho (1.3 

m) o D, la altura total o H y la densidad de la madera o ρ; 

aunque también son utilizadas las dimensiones de la copa 

de los árboles (Goodman, Phillips y Baker, 2014).

Con relación a la incertidumbre de las estimaciones 

alométricas para cuantificar biomasa aérea o carbono, la 

selección del modelo alométrico es una de las principales 

fuentes de error (Pelletier, Kirby y Potvin, 2010; Molto, 

Rossi y Blanc, 2013; Picard, Boyemba y Rossi, 2015). La 

selección de un modelo alométrico está basada en la utili-

zación de una o varias métricas del error de estimación 

(error residual estándar, coeficiente de determinación, 

sesgo, etc.), por lo que no hay un criterio universal acep-

tado de incertidumbre para esta tarea. Generalmente, los 

modelos alométricos son generados a nivel de especie 

arbórea en un sitio específico, por lo que se han generado 

compilaciones de modelos de especies (Jenkins, Choj-

nacky, Heath y Birdsey, 2004; Henry et al., 2011; Rojas-

García, de Jong, Martínez y Paz, 2015) para su aplicación 

a escala regional y nacional bajo el supuesto de que existe 

una representación espacial de las ecuaciones alométricas 

más allá de su lugar de desarrollo, lo cual conlleva alta 

incertidumbre (Jenkins, Chojnacky, Heath y Birdsey, 

2003; Temesgen, Affleck, Poudel, Gray y Sessions, 2015), 

ya que los parámetros de los modelos alométricos son 

dependientes de múltiples factores, entre los cuales están 

el tipo de vegetación, clima, estructura de la población 

arbórea, arquitectura de los árboles, condición del sitio, 

ontogenia, entre otros (Nuno, Tomé, Tomé, Soares y Fon-

tes, 2007; Wutzler, Wirth y Schumacher, 2008; Genet et 

al., 2011; Chave et al., 2014; Paul et al., 2016; Forrester et 

al., 2017).

La alternativa al uso de ecuaciones alométricas a 

nivel especies es el desarrollo de modelos alométricos a 

nivel de conjuntos de árboles de diferentes especies en 

tipos de vegetación específicos o generales (Brown, Gille-

spie y Lugo, 1989; Djomo, Ibrahima, Saborowski y Grav-

enhorst, 2010; Chave et al., 2005 y 2014; Feldpausch et 

al., 2011). Estos modelos son implementados directamente 

en bases de datos de mediciones en cada árbol. Un enfo-

que diferente a las mediciones de campo es la extracción 

de valores de las ecuaciones alométricas compiladas para 

conjuntos de especies (Pastor, Aber y Melillo, 1984), de 

donde se seleccionan datos uniformemente espaciados 

entre el máximo y mínimo de D, para después ajustar un 

modelo alométrico general  (Jenkins et al., 2003; Choj-

nacky, Heath y Jenkins, 2014).

Las variables consideradas en el ajuste de modelos 

alométricos multiespecie y multisitio utilizan solo el diá-

metro (Brown, Gillespie y Lugo 1989), aunque algunos 

autores (Chave et al., 2005 y 2014; Feldpausch et al., 

2011) consideran que la inclusión de la altura reduce los 

errores de estimación, y otros (Molto, Rossi y Blanc, 2013; 

Paul et al., 2016), argumentan que su inclusión no mejora 

significativamente las estimaciones. Otra variable consi-

derada en el desarrollo de modelos alométricos generali-

zados para determinar la biomasa es la densidad de la 

madera, ya que esta se relaciona con la filogenia (Baker et 

al., 2004) y ordena los puntos agrupándolos en clases para 

el desarrollo de ecuaciones alométricas por grupos (Jen-

kins et al., 2003; Chojnacky et al., 2014; Nam, van Kuijk 

y Anten, 2016; Huy et al., 2016). El desarrollo reciente de 

modelos alométricos generalizados usa las variables D, H 

y ρ (Chave et al., 2005 y 2014), donde la densidad que se 

considera es la densidad promedio de la madera de cada 

especie, ya sea medida o estimada de bases de datos globa-

les (Chave et al., 2009; Zanne et al., 2009). Las medicio-

nes de la densidad de madera muestran alta variabilidad 

(Álvarez, Benítez, Velázuez y Cogollo, 2013), por lo que el 

uso de estimaciones usando la especie, género o familia de 

bases de datos (Chave et al., 2014) conlleva una incerti-

dumbre no cuantificada. La densidad de la madera a nivel 

de sitio, o sitios, muestra una reducción en sus valores al 
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incrementarse D (Chave et al., 2004) o H (lida et al., 2012; 

Tesfaye, Bravo-Oviedo, Brao, Pando y Herrero de Aza, 

2019), por lo que algunos autores han propuesto un ajuste 

de los modelos alométricos por la densidad de la madera 

de cada especie en relación con el promedio general (Baker 

et al., 2004; Chave et al., 2004).

Actualmente existe una discusión sobre el uso de 

modelos generales o específicos al sitio, donde muchos 

autores (van Breugel, Ransijn, Craven, Bongers y Hall, 

2001; Basuki, van Laake, Skidmore y Hussin, 2009; 

Henry et al., 2010; Álvarez et al., 2012; Ngomanda et al., 

2013; Sato et al., 2015; Ploton et al., 2016; Manuri et al., 

2016) argumentan que existen diferencias significativas en 

las estimaciones; aunque otros autores (Vieilledent et al., 

2012; Fayolle, Doucet, Gillet, Bourland y Lejeune, 2013; 

Chave et al., 2014; Paul et al., 2016) registran estimacio-

nes no significativamente diferentes a los modelos genera-

les. La discusión está sesgada, ya que el uso de un modelo 

alométrico multisitio y multiespecie en cada sitio tiene 

mayor incertidumbre en relación con los modelos específi-

cos de los sitios, a menos que la dispersión de las medicio-

nes sea pequeña en el análisis multiespecie o multisitio, 

cosa que raramente sucede en la realidad.

Objetivos

Los objetivos de este trabajo fueron demostrar que los 

modelos alométricos generalmente usados en la literatura 

son equivalentes entre sí, con métricas de incertidumbre 

relacionadas, y desarrollar un modelo alométrico pantro-

pical (bosques tropicales) flexible con menor o igual incer-

tidumbre que los publicados. Los objetivos anteriores son 

condicionales a la hipótesis de que la densidad promedio 

de una especie de árbol no varía con las dimensiones de 

los árboles y es representativa de la especie.

Materiales y métodos

Modelos alométricos y su equivalencia

Los principales modelos alométricos para estimar la bio-

masa aérea total (B) son los siguientes:

		  (1)

		 (2)

	 (3)

			   (4)

			   (5)

Una relación complementaria es el modelo alométrico 

entre la altura (H) y el diámetro (D), la cual es la siguiente 

(Niklas, 1994; Feldpausch et al., 2011 y 2012; Hulshof, 

Swenson y Weiser, 2015):

		  	 (6)

En lo siguiente, el modelo A3 será usado como referencia, 

y todos los modelos (A1-A5) serán convertidos al modelo 

A1 para entender las relaciones entre los parámetros a y b.

Comparando la relación (3) con la (2), se obtiene:

		  	 (7)

que implica que no hay diferencias entre el uso de ambos 

modelos y av está relacionada con ρ a través de un modelo 

potencial.

Ahora bien, sustituyendo la relación (6) en relación (2) se 

obtiene:

		  		 (8)

Al compararla con la relación (1) implica:

	       	 (9)

Dadas las relaciones (7), se obtiene:

        (10)



4

Paz-Pellat et al. Equivalencia entre modelos alométricos y alometría pantropical flexible 

Finalmente, sustituyendo la relación (6) en la (2) se obtiene:

		  		 (11)

que al compararla con la relación (1) implica:

	        	 (12)

Si se usa ρ en el modelo A5, B = ap(ρDbpHcp) (Schumacher 

y Hall, 1933), se sigue el mismo procedimiento utilizado 

para generar la relación (10).

El caso de la relación (4), caso particular de la rela-

ción (2), solo hay que sustituir bv = 1 en las relaciones (9) 

(Návar, 2010b).

Los desarrollos mostrados implican que todos los 

modelos están relacionados entre sí y que no hay un 

“mejor” modelo a priori, dado que también los errores de 

estimación están relacionados entre sí, aunque sí existe 

una métrica de menor error.

Estimaciones estadísticas de los parámetros de 

los modelos alométricos

La ecuación alométrica dada por:

			   		  (13)

puede transformarse logarítmica como:

	 	 (14)

para estimar los parámetros a y b por regresión lineal sim-

ple, donde ε es el error de estimación.

Considerando que la transformación inversa de la relación 

(14) introduce sesgos, es necesario corregirlos como (Bas-

kerville, 1972):

		  		 (15)

donde σ es la desviación estándar (error estándar residual 

o EER) del error ε, el cual es supuesto como distribuido 

normalmente con media cero y desviación estándar σ, 

definida como:

	 		 (16)

donde  es el valor estimado,  el valor medido, n el 

número de datos y p los parámetros del modelo (p = 2).

El ajuste de los modelos alométricos se analiza usando 

diferentes métricas del error de estimación, incluyendo el 

coeficiente de determinación (R2), la raíz del error cuadrá-

tico medio (RECM), S = ln(Y):

	          		 (17)

y por el error relativo medio (ERM) y error absoluto 

medio (EAM), ambos en porcentaje:

		  		 (18)

		  	 (19)

La relación entre el EER y la RECM está dada por:

		      		  (20)

Un punto importante de enfatizar es que los desarrollos 

algebraicos de la equivalencia entre los modelos alométri-

cos son válidos sí y solo sí para estimaciones de regresión 

lineal simple (incluyendo el análisis multivariado del 

modelo A5). En el caso de regresiones no lineales, las equi-

valencias mostradas no son válidas y requieren de desa-

rrollos más complejos. En esta perspectiva, todos los 

análisis siguientes usan el espacio log-log para mostrar 

resultados, lo que no invalida los desarrollos, al poder 

transformar los resultados al espacio aritmético a través 

de la relación (15).
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Base de datos de alometría pantropical

La base de datos pantropical (bosques tropicales) anali-

zada es la utilizada por Chave et al. (2014), disponible 

públicamente, la cual consiste en 4004 mediciones de D 

(cm), H (m) y ρ (g cm-3) en 58 sitios en diferentes partes del 

mundo, donde 53 sitios son de vegetación no perturbada. 

En el caso de la densidad de la madera, en 58% de los 

datos se midió y en el resto fue estimada por el valor pro-

medio de la especie, género o familia de una base de datos 

global (Chave et al., 2009; Zanne et al., 2009). La docu-

mentación de los sitios y de la base de datos se encuentra 

en Chave et al. (2014), por lo que solo se presenta una 

mínima descripción en este trabajo. Burt et al. (2020) ana-

lizan la base de datos pantropical con relación a errores y 

discuten sus implicaciones y limitaciones.

 

Resultados y Discusión

Equivalencia entre modelos alométricos

Para poder analizar la base de datos alométrica pantropi-

cal, la densidad de la madera fue agrupada en clases de 

intervalos de 0.05 g cm-3, para generar 20 intervalos, el 

primero (0.09 g cm-3 a 0.13 g cm-3, n = 7) y el último (1.08 

g cm-3 a 1.12 g cm-3, n = 7) con límites diferentes. La figura 

1 muestra el número de datos (frecuencia) por clase de 

densidad de la madera, donde se observa que en los límites 

inferiores y superiores la frecuencia es baja, a diferencia de 

las clases medias.

El objetivo de utilizar clases de densidad (todo el 

rango presente en la base de datos) es para establecer la 

hipótesis de que una clase representa a una especie (equi-

valente) asociada al valor de la densidad, ya que la base de 

datos representa múltiples especies en múltiples sitios. 

Para cada clase de densidad se ajustaron los modelos A1 a 

A5 por regresión lineal simple en el espacio log-log.

Los intervalos 2 (patrón convexo y no cóncavo de la 

relación H-D) y 20 (R2 cercano a cero de la relación H-D) 

no fueron considerados en el análisis de la equivalencia de 

los modelos alométricos.

En la figura 2 se muestran las relaciones (9) para los 

modelos A2 y A3, donde la relación en av y avd está mos-

trada en términos del formato aritmético y no del logarít-

mico. Esto es posible porque los ERR son prácticamente 

iguales, dado que los modelos A2 y A3 son iguales.

Figura 1. Distribución de frecuencias por clases de densidad de la madera. La clase 1 

representa nominalmente el intervalo (0.10, 0.15], donde discretización de intervalos 

de clases es de 0.05 g cm-3.
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La relación (10) establece la equivalencia entre el modelo 

A3 con el A1, la cual está mostrada en la figura 3. Se 

observa que la relación de avd (y bvd) con ad en el espacio 

aritmético está sesgada, dado que el error de estimación 

del modelo A1 es diferente al del modelo A3. La equiva-

lencia, usando el espacio log-log y transformando la rela-

ción (10) para ad en términos logarítmicos, está mostrada 

en la imagen central de la figura 3. La relación entre los 

exponentes b es similar en el espacio aritmético y logarít-

mico, dado que la corrección de sesgos solo se aplica al 

parámetro a, relación (15).

La relación (10) muestra una ecuación potencial con 

la densidad de la madera, por lo que define las bases de 

esta relación obtenida, o supuesta, en forma empírica por 

varios autores. Por ejemplo, Pilli, Anfodillo y Carrer 

(2006), usaron la relación ln(ad) = A + Bρ (R2 entre 0.56 y 

0.61) y Ketterings, Coe, van Noordwijk, Ambagau y Palm 

(2001), Chave et al. (2005), Návar (2010a) y Návar, Ríos, 

Pérez, Rodríguez-Flores y Domínguez-Calleros (2013) 

propusieron la relación a = Cρ, donde A, B y C son cons-

tantes empíricas.

Figura 2. Relación entre los parámetros del modelo A2 y A3 obtenidos del ajuste 

por regresión lineal en el espacio log-log.
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Figura 3. Relación entre los parámetros del modelo A1 y A3 obtenidos del ajuste por 

regresión lineal en el espacio log-log.
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La figura 4 muestra la equivalencia entre los modelos 

A5 y A1 definida por las relaciones (12). La transforma-

ción logarítmica de ad fue utilizada considerando que los 

errores de estimación de los dos modelos son diferentes.

Análisis alométrico de la base de datos 

pantropical

La figura 5 muestra la relación ρ y av0 ajustada por regre-

sión lineal en el espacio log-log, bajo la condición bv = 1.

De acuerdo con el modelo A4 (modelo A2 con bv = 1), 

la relación entre av0 y ρ debe ser lineal, pasando por el

origen, relación (7). Si bv ≠ 1, la relación potencial (7) debe 

ser usada.

La tabla 1 muestra los ajustes estadísticos, regresión 

lineal simple en el espacio log-log, de los modelos alomé-

tricos analizados. Las métricas de error son del espacio 

transformado logarítmicamente.

Se observa en la tabla 1 que los modelos A2 y A3 

locales (para cada clase de densidad) muestran los mejores 

ajustes. El modelo A4 local muestra un buen ajuste, cer-

cano a los mejores modelos. El modelo A4 estimado de la 

relación mostrada en la figura 5 tiene un ajuste aceptable:

Figura 4. Relación entre los parámetros del modelo A1 y A5 obtenidos del ajuste por 

regresión lineal en el espacio log-log.
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Para reducir el error de estimación se estimaron los 

parámetros del modelo potencial, incluyendo el valor de 

bv0, al minimizar RECM, y se obtuvo (modelo M1):

Esta relación considera que bvd (exponente del primer tér-

mino) es diferente de la constante multiplicativa del 

segundo término, lo cual es diferente a la relación (7). 

Las métricas de error del modelo M1 están mostradas 

en la tabla 2. Adicionalmente se desarrolló el modelo M2 

considerando una relación lineal entre los parámetros  

av0 y bv0:

donde las métricas de error de este modelo están mostra-

das en la tabla 2.

Figura 5. Relación entre el promedio de las clases de densidad y av0 del modelo A4 

(bv = 1, del modelo A2.

Tabla 1. Métricas del error de estimación del ajuste de los modelos alométricos en el espacio log-log de las clases de densidad.

Modelo R2 RECM

A1 local 0.9514 0.4677

A2 local 0.9729 0.3494

A2 global 0.9550 0.4294

A3 local 0.9728 0.3499

A3 global 0.9716 0.3575

A4 local 0.9725 0.3562

A4 estimado de densidad (modelo potencial) 0.9719 0.3596

M1 0.9720 0.35501

M2 0.9720 0.35504

H1 local 0.6932 0.3864 

RECM: raíz del error cuadrático medio
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Los modelos M1 y M2 tienen métricas de error simi-

lares y ligeramente mayores a los mejores modelos y lige-

ramente menores al mejor modelo global (para todas las 

clases de densidad), definido por el modelo A3 global

Debe notarse que la relación lineal entre los paráme-

tros es condicional al uso de bv0 (modelo A4) y no del caso 

general entre parámetros de los otros modelos.

El uso de clases de densidad (especies equivalente de 

acuerdo con cada intervalo de densidad) genera condicio-

nes con datos agrupados en intervalos de D acotados, lo 

que produce que la relación H-D, (Tabla 1), tenga impor-

tantes errores de estimación.

En el caso de los modelos de alometría pantropical, 

los análisis son realizados a nivel de sitios (múltiples espe-

cies), donde cada sitio tiene un modelo alométrico local y 

se ajusta un modelo general (todos los sitios) como repre-

sentativo de los bosques tropicales (Chave et al., 2014).

En la tabla 2 se muestran los ajustes de regresión 

lineal simple en el espacio log-log del formato de sitios.

El modelo A3 local es el que tiene los menores errores 

(RECM, ERM, EAM), por lo que puede ser utilizado 

como la referencia del resto de modelos para tener métri-

cas similares o mejores. La alometría pantropical (Chave 

et al., 2014) está dada por el modelo A3 global:

         )         (21)

Los modelos M1 y M2 para el caso de sitios múltiples, 

mismo procedimiento, están dados por:

)   (22)

Tabla 2. Métricas del error de estimación del ajuste de los modelos alométricos en el espacio log-log de los sitios.

Modelo R2 RECM ERM (%) EAM (%)

A1 local 0.9683 0.3773 -2.4675 9.2973

A2 local 0.9738 0.3435 -1.9888 8.2688

A3 local 0.9810 0.2923 -1.0681 6.5724

A3 global 0.9716 0.3575 -1.4706 8.0312

A4 local 0.9708 0.3659 -1.3119 8.5545

A4 estimado de densidad (modelo potencial) 0.9719 0.3596 -0.5777 7.8700

M1 0.9720 0.35501 -1.5401 7.9767

M2 0.9720 0.35507 -1.5328 7.9754

H1 local 0.9260 0.1896 -0.0081 6.5181

RECM: raíz del error cuadrático medio; ERM: error relativo medio; EAM: error absoluto medio.

	      		    	 (23)
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El modelo M1 es similar al caso de clases de densi-

dad, pero el modelo M2 es diferente en su parametriza-

ción. En la tabla 2 se observa que los modelos M1 y M2 

son ligeramente superiores al modelo A3 global, por lo 

que pueden usarse como modelos pantropicales más flexi-

bles al incluir explícitamente la densidad de la madera, 

aunque la métrica ERM del modelo A3 global es ligera-

mente mejor que estos modelos.

Para tener una idea de cómo varía el error de estima-

ción (RECM) de los modelos globales (modelo A3 y M1) 

con relación al mejor modelo (M3 local), la figura 6 mues-

tra estos errores, donde hay casos en los que el modelo A3 

es mejor que el M1, y viceversa. La tabla 3 muestra a deta-

lle las estadísticas de los errores de estimación para los 58 

sitios analizados.

Los cuatro sitios de mayor error (modelos M3 global 

y M1) con relación al modelo A3 local se resaltan en negri-

tas en la tabla 3. Los sitios remarcados representan casos 

donde hay diferencias grandes entre las métricas de error 

del modelo mejor (A3 local) y los de tipo global.

Para definir el contexto de los errores observados se 

muestra en la tabla 3 el número de datos y el diámetro 

máximo de cada sitio. De acuerdo con Manuri et al., 

(2016), los sitios con pocos datos pueden inducir sesgos en 

las estimaciones; adicionalmente, la presencia de árboles 

grandes (D y H grandes) también puede ocasionar sesgos.

Aunque es posible argumentar que las estimaciones 

usando las relaciones desarrolladas con la densidad de la 

madera pueden depender de los errores de estimación de 

los ajustes estadísticos a los datos originales (Tabla 3), 

esto no se justifica en el desarrollo de una relación alomé-

trica generalizada que considere todos los casos de errores 

de estimación bajos o altos.

Figura 6. Comparación de las métricas RECM para el modelo A3 de alometría 

local (referencia) y la de los modelos A3 global y M1. La recta quebrada representa 

la modelo M1.
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Sitio n
D max. 

(cm)

Modelo A3 local Modelo A3 global Modelo M1 Modelo M2

RECM ERM EAM RECM ERM EAM RECM ERM EAM RECM ERM EAM

Australia 46 24.9 0.2723 -0.7049 6.7617 0.3574 -6.9694 9.2160 0.3172 -5.6174 8.1482 0.3164 -5.5984 8.1306

BraMan2 123 38.2 0.2093 -0.2678 4.4560 0.2121 -0.4443 4.5367 0.2108 -1.2577 4.4883 0.2106 -1.2572 4.4832

BraPara1 127 138.0 0.3261 -0.5540 5.0088 0.3358 0.8451 5.1064 0.3334 0.9013 5.0794 0.3334 0.9059 5.0784

BraPara3 21 55.0 0.2232 -0.2412 3.5850 0.2409 -0.8640 4.0573 0.2544 -1.2260 4.3100 0.2549 -1.2212 4.3184

BraRond 8 89.0 0.1652 -0.0605 2.3079 0.2106 1.6159 3.0710 0.2193 1.8387 3.1757 0.2198 1.8472 3.1817

Cambodia 34 133.2 0.1318 -0.3143 4.2310 0.1507 -3.1207 4.8598 0.1521 -3.3397 4.9056 0.1524 -3.3496 4.9121

Cameroon 5 79.4 0.3854 0.1153 7.4543 0.6270 -21.1459 21.9076 0.6317 -20.9501 21.9077 0.6328 -20.9602 21.9399

Cameroon3 59 212.0 0.1716 -0.0307 1.3865 0.2589 1.8551 2.1100 0.2564 1.5870 2.0370 0.2567 1.5643 2.0343

CentralAfric 12 52.2 0.2087 -0.0835 2.5436 0.2747 0.3498 3.3862 0.2768 0.7454 3.4360 0.2768 0.7692 3.4367

ColombiaC1 60 126.7 0.3539 -0.3391 4.4639 0.3726 1.6731 4.8825 0.3469 1.1465 4.4961 0.3464 1.1332 4.4964

ColombiaG1 36 70.9 0.2620 -0.1374 3.3916 0.3159 1.7886 4.0567 0.2905 0.6295 3.7144 0.2910 0.6068 3.7241

ColombiaG2 10 12.5 0.2699 -0.9118 7.9462 0.4099 8.9373 10.1833 0.3739 7.2022 9.1736 0.3748 7.2361 9.2023

ColombiaM1 24 111.9 0.4284 -0.3881 4.5519 0.4328 0.5084 4.6296 0.4226 0.5906 4.4861 0.4220 0.5974 4.4778

ColombiaM2 9 11.8 0.2395 -0.6665 6.5840 0.2904 -4.3363 7.4740 0.2955 -4.2960 7.7931 0.2955 -4.3101 7.7915

CostaRic 97 116.0 0.2222 -0.1766 2.7332 0.3303 -4.0152 4.5005 0.3343 -4.3120 4.6222 0.3350 -4.3312 4.6355

FrenchGu 360 117.8 0.3030 -1.0151 8.1517 0.4222 -11.5414 12.7675 0.4224 -11.5063 12.7580 0.4226 -11.5160 12.7671

Gabon 103 109.4 0.2925 -0.1803 3.0273 0.3662 -3.0832 4.0314 0.3634 -2.9175 3.9707 0.3635 -2.9054 3.9691

Ghana 37 180.0 0.2916 -0.3772 4.2194 0.3638 2.5998 4.8365 0.3571 2.3998 4.8229 0.3574 2.3911 4.8286

IndiaCha 23 34.7 0.3816 -0.6954 6.4732 0.4047 1.9667 6.4095 0.3932 2.0711 6.1735 0.3932 2.0793 6.1719

Jalisco 124 44.9 0.3768 -1.7326 10.3396 0.4607 -3.2582 12.7843 0.4380 -3.4806 11.9933 0.4385 -3.4357 12.0292

Kaliman1 23 77.6 0.3232 -0.2012 3.5252 0.3420 0.2915 4.0298 0.3207 -0.0540 3.7289 0.3200 -0.0745 3.7166

Kaliman2 69 130.5 0.1846 -0.3438 3.9879 0.1986 2.0108 3.9132 0.1911 1.2628 3.9740 0.1912 1.2792 3.9696

Kaliman4 40 68.9 0.2073 -0.1126 2.3663 0.2394 1.8562 3.1504 0.2349 1.8568 3.1187 0.2344 1.8504 3.1125

Kaliman6 25 84.4 0.1619 -0.0383 1.6180 0.1785 -1.0179 1.7661 0.1989 -1.4834 2.0453 0.2001 -1.5097 2.0614

Karnataka 189 60.9 0.2169 -0.1231 2.9441 0.4270 5.8868 6.2188 0.4493 6.3166 6.6335 0.4503 6.3367 6.6532

Llanosec 24 23.3 0.3446 -0.9271 8.6203 0.3608 -4.8153 9.5946 0.3909 -8.9694 11.1342 0.3895 -8.8186 11.0341

Llanosol 27 156.0 0.3111 -0.1350 4.0941 0.3756 0.5321 4.7955 0.3649 0.1122 4.8398 0.3635 0.1021 4.8231

Madagascar1 76 54.0 0.2980 -0.2824 4.1323 0.3037 -1.3506 4.1505 0.3101 -1.2675 4.2282 0.3106 -1.2647 4.2362

Madagascar2 90 35.0 0.2870 -0.3959 5.1088 0.3687 5.1554 7.0743 0.3631 4.9758 6.8909 0.3632 4.9754 6.8932

Madagascar3 87 31.8 0.4048 -11.9033 22.7998 0.5187 7.6579 21.4989 0.5305 1.5107 23.6127 0.5292 1.9288 23.4112

Madagascar4 80 37.0 0.1935 -0.1332 2.8458 0.2243 1.5457 3.5585 0.2233 1.4547 3.5509 0.2232 1.4463 3.5495

Madagascar5 90 36.0 0.3104 -0.7689 6.1898 0.3451 1.3902 6.5788 0.3318 0.7907 6.3503 0.3321 0.7938 6.3530

Malaysia 139 101.6 0.1947 -0.2389 4.2416 0.1968 0.3365 4.1691 0.1960 0.0965 4.2120 0.1960 0.0935 4.2123

Malaysia2 24 66.7 0.2221 -0.7161 4.7697 0.2506 0.0083 4.9357 0.2542 -0.0523 5.0734 0.2543 -0.0565 5.0768

MFrenchG 29 42.0 0.2345 -0.6814 5.3291 0.2601 -4.1174 6.4665 0.2584 -3.4466 6.2604 0.2584 -3.4485 6.2668

MGuadel 55 40.7 0.1925 -0.1979 3.4307 0.2454 -3.8418 4.9758 0.2338 -3.1133 4.6323 0.2338 -3.0966 4.6294

Moluccas 25 41.7 0.1788 -0.1679 3.0593 0.2480 3.3382 4.0469 0.2542 2.9938 4.2353 0.2542 2.9889 4.2351

Mozambique 28 72.0 0.3898 -0.9455 7.6742 0.3983 0.8864 7.3454 0.4041 1.0245 7.4436 0.4042 1.0217 7.4470

NewGuinea 42 110.1 0.4085 -0.9119 6.6832 0.4919 -6.4617 7.9549 0.5017 -7.0288 8.2247 0.5023 -7.0465 8.2359

Peru 51 169.0 0.3273 -0.0978 3.2984 0.3378 -0.0949 3.2695 0.3627 -0.3799 3.4464 0.3639 -0.3815 3.4540

PuertoRi 30 45.7 0.2806 -1.6910 8.6294 0.3049 -6.2959 9.6380 0.3066 -7.0229 9.8425 0.3063 -6.9908 9.8133

Tabla 3. Métricas de los errores de estimación de los sitios de la base de datos pantropical para varios modelos alométricos.
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PuertoRi2 25 45.0 0.2346 -0.4038 4.9413 0.3862 8.0132 8.5402 0.3736 7.6035 8.5258 0.3743 7.6257 8.5333

SaoPaulo3 75 67.8 0.2887 -0.4205 5.3290 0.3277 -1.9888 5.5914 0.3331 -2.3057 5.8559 0.3330 -2.3080 5.8504

Sarawak 21 44.1 0.2071 -0.3036 4.2107 0.4345 -7.0117 7.6603 0.4449 -7.5600 7.9398 0.4452 -7.5640 7.9489

SouthAfrica 469 79.3 0.3469 -3.3093 14.0929 0.3684 -9.5379 16.1623 0.3570 -8.1522 15.5466 0.3571 -8.1875 15.5557

SouthBrazil1 150 95.0 0.2476 -0.1330 4.4033 0.2552 -1.4752 4.5357 0.2430 -1.3841 4.3151 0.2428 -1.3836 4.3127

SouthBrazil1 50 124.8 0.2098 -0.2483 3.6491 0.2185 1.0153 3.7912 0.2145 0.9339 3.6534 0.2144 0.9370 3.6518

SouthBrazil3 64 34.5 0.3257 -0.6555 6.2746 0.4083 5.0481 7.5052 0.4069 5.0826 7.4878 0.4068 5.0786 7.4869

Sumatra 29 48.1 0.3501 -0.6011 6.6003 0.3540 -1.6978 6.6665 0.3472 -2.3966 6.3903 0.3475 -2.4064 6.3961

Sumatra2 11 114.6 0.1451 -0.0453 1.5523 0.1535 0.5369 1.6928 0.1506 0.1158 1.6716 0.1506 0.0829 1.6689

Tanzania1 38 78.0 0.3232 -0.1143 4.5695 0.5549 8.2314 9.1688 0.5427 8.1561 8.9979 0.5424 8.1541 8.9925

Tanzania2 42 110.0 0.3682 -0.1391 5.6173 0.4089 3.0648 6.4293 0.4021 3.1690 6.3133 0.4017 3.1737 6.3050

Tanzania3 38 79.0 0.2544 -0.3003 3.6427 0.3732 3.9643 5.3651 0.3785 4.1810 5.4664 0.3786 4.1842 5.4683

Tanzania4 34 95.0 0.2872 -0.4381 4.5284 0.3238 2.1745 4.5665 0.3201 2.5676 4.3793 0.3201 2.5788 4.3760

Venezuela2 40 136.8 0.2523 -0.1977 3.1857 0.3562 -2.7446 4.0331 0.3501 -2.7254 4.0297 0.3496 -2.7219 4.0270

WestJava 41 31.8 0.1652 -0.0409 6.0856 0.2093 -2.5270 6.8961 0.2239 -4.4305 7.0517 0.2244 -4.3833 7.0727

Yucatan 175 63.4 0.3201 -0.4188 5.0667 0.3593 2.2060 6.0382 0.3517 2.4304 5.9825 0.3514 2.4372 5.9774

Zambia 141 37.4 0.3097 -1.0919 7.8261 0.4373 8.2278 10.3569 0.4432 8.6994 10.5302 0.4430 8.6882 10.5245

RECM: raíz del error cuadrático medio; ERM: error relativo medio; EAM: error absoluto medio.

Tabla 3. Métricas de los errores de estimación de los sitios de la base de datos pantropical para varios modelos alométricos. 

Continuación...

Conclusiones

Los desarrollos algebraicos mostrados en este trabajo 

plantean que los modelos alométricos más usados en la 

literatura son equivalentes entre sí con errores de estima-

ción relacionados. En esta perspectiva, la discusión del 

“mejor” modelo de estimación depende de realizar trans-

formaciones algebraicas entre los modelos. Con la para-

metrización de un solo modelo, es posible estimar los 

parámetros de los otros.

La equivalencia entre modelos alométricos sigue razo-

namientos algebraicos simples que son aplicables al caso de 

regresiones lineales simples en un espacio que transforme 

los modelos no lineales a lineales (espacio log-log).

El ajuste de los modelos alométricos a la base de datos 

pantropical, caso de clases de densidad y de sitios, muestra 

que el desarrollo de un modelo dependiente de D2H con la 

densidad de madera en forma explícita, genera métricas de 

incertidumbre ligeramente mejores al caso de un modelo 

pantropical general.

El marco metodológico desarrollado da soporte teórico 

a diversas aproximaciones empíricas definiendo cuál modelo 

tiene bases, independientemente de la estadística de las rela-

ciones empíricas, fundamentando así que el uso del conoci-

miento debe guiar las aproximaciones empíricas.

Con el marco teórico planteado, es posible desarrollar 

otras aproximaciones para modelos alométricos generales 

que sean cercanas a los modelos locales, particularmente en 

el contexto del uso de métricas conjuntas de los errores de 

estimación.

Es importante enfatizar que los desarrollos algebraicos 

son triviales (después del hecho) e implícitos en las relacio-

nes alométricas más usadas en la literatura. La equivalencia 

entre las formulaciones alométricas explica el porqué de su 

selección en las aplicaciones. La relación alométrica de refe-

rencia puede ser cualquiera de los modelos, u otro que se 

formule apropiadamente.
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