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RESUMEN

Los humedales costeros son dinamicos y su variacion depende de la intensidad e interaccién entre los procesos continentales y matinos
que los influencian. Estos humedales son altamente productivos y sustentan servicios ambientales relevantes para la mitigacion de los
efectos del cambio climatico antropogénico. Considerando un enfoque paisajistico de conectividad entre los procesos costeros, se llevo
a cabo la evaluacién de los almacenes de C aéreo y subterrineo en ocho humedales. Estos conforman un paisaje continuo en la costa
norte de Yucatin denominado corredor transversal costero. El almacén de C para el corredor correspondio a 3 837 160 Mg de C. El
humedal de manglar chapatro presenté el mayor almacén de carbono total por unidad de area (371 Mg C ha'!), siendo también el
dominante en extension. El gradiente en el almacén de C aéreo entre humedales obedecié a patrones de inundacion, elevaciéon topografica,
salinidad intersticial y la tolerancia especifica de las especies. Los manglares almacenaron mas carbono por hectarea que los humedales
dominados por herbaceas emergentes y por la vegetacion sumergida. Los primeros estarfan dominados por procesos de produccion y
acumulacién de C, mientras que en los segundos la produccién y el reciclamiento serfan los mas importantes, repercutiendo en una menor
acumulacién de C. Los resultados contribuyen al entendimiento de los patrones de almacenamiento de C en un gradiente salino y
topografico en paisajes integrados por humedales costeros carsticos. Los resultados podran utilizarse para evaluar las afectaciones
regionales potenciales en el mediano y largo plazo ocasionados por impactos naturales y antropogénicos.

PALABRAS CLAVE: biomasa aérea, carbono azul, manglares, marismas, pastos marinos, sedimento.

ABSTRACT

Coastal wetlands are dynamic, and exhibit spatial variation associated to the intensity of the land-ocean interactions. These wetlands are
highly productive, and support relevant environmental services related to anthropogenic climate change mitigation. From a landscape
point of view, and assuming that connectivity among coastal processes does exist among coastal processes, the evaluations of the
aboveground and belowground C stocks were carried out in eight landscape units, along a wetland continuum located at the northern
coast of Yucatan, called “coastal transverse corridor”. The ecosystem C stock for the corridor was 3 837 160 Mg C. The dwarf mangrove
presented the largest total carbon stock per unit area (371 Mg C ha'), being also the dominant in extension. The gradient of the
aboveground C stocks followed flood patterns, the elevation of the wetland, interstitial salinity, and the specific tolerance of the species.
The mangroves stored more carbon per hectare than wetlands dominated by emergent herbaceous and submerged vegetation. The first
ones were dominated by production and accumulation rates of C, while the other two, were dominated by the production, and the
recycling which caused a low C storage. The results of this study contribute to the understanding of the C stocks patterns in the salinity
and topographic gradients along karst coastal wetlands. The results could be used to evaluate the potential of local and regional effects
in the medium and long term caused by natural and anthropogenic impacts.

KEYWORDS: aboveground biomass, blue carbon, mangroves, marshlands, seagrasses, sediment.
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INTRODUCCION

La costa es una zona dinamica de transicién entre
ambientes tetrestres y oceanicos que ha resultado de la
accion de forzantes fisicos (v. g. rios, mareas y olas),
evolucién geomorfologica (v. g. balance entre tasas de
erosion y sedimentacién) e hidrolégica (agua dulce
superficial y subterrdnea, agua marina, evaporacion,
precipitacion) (Rovai e al., 2018).

La variedad de combinaciones de estos forzantes
fisicos favorece la presencia de diferentes configuraciones
costeras; en el caso de los humedales costeros, se presentan
arreglos espaciales heterogéneos compuestos por un
mosaico de comunidades bioldgicas variadas tales como
ciénegas, marismas de agua dulce y marinas, bosques de
agua dulce y manglares, pastos marinos y arrecifes de coral,
entre los mas relevantes. La distribucién espacial de los
humedales costeros obedece a gradientes espaciales de
salinidad, niveles topograficos, hidroperiodo y fuente de
agua dulce (superficial o subterranea) o marina (Herrera-
Silveira y Comin, 2000; Flores-Verdugo e al, 2007,
Hernandez-Arana et al., 2015). Debido a la heterogeneidad
espacial de las comunidades biolégicas, la mejor
aproximacion a su estudio en las escalas local y regional es
a través de un enfoque paisajistico estructurado en
corredores transversales costeros.

Cada configuracién, o unidad dentro del paisaje de
humedal costero, tiene una huella ambiental especifica de
controladores y procesos responsables de las caracteristicas
de estructura y funcién que dan soporte a la diversidad de
servicios ambientales que ofrecen. Las unidades funcionales
del paisaje de humedal costero no estan aisladas debido a la
conexion transversal relacionada con la matriz hidrolégica
pudiéndose formar complejas conexiones con otras unidades
dentro del paisaje (Bornette, Amoros y Lamouroux, 1998;
Cohen ¢t al., 2016; Thotslund ez al., 2017).

La conservacién y permanencia del paisaje costero esta
vinculado con el bienestar humano a través de diversos
servicios ambientales (Calhoun ez al., 2017; Creed et al.,
2017; Yao et al., 2017) y constituyen una importante fuente
de biodiversidad (Costanza, ef al., 1997; Gibbs, 2000). Uno

de estos servicios ambientales con relevancia local, regional
y global es la regulacion de gases de efecto invernadero a
través de los almacenes y flujos de carbono organico aéreo
y subterraneo (Bridgham, Megonigal, Keller, Bliss y Trettin,
2000; Intergovernmental Panel on Climate Change [IPCC],
2011; Mitsch e# al., 2013; Herrera-Silveira ef al., 2010).

El carbono contenido en la vegetacion costera
principalmente en manglares, praderas de pastos marinos y
marismas de marea es denominado como "carbono azul"
(Mcleod ¢t al., 2011) y sus almacenes ya han sido evaluados
como muy importantes. Sin embargo, estin desapareciendo
o empeorando su condicion como resultado de las
continuas presiones de desarrollo antrépico, lo que se
traduce en emisiones de gases de efecto invernadero a la
atmosfera (Pendleton ez al., 2012).

La iniciativa de carbono azul es atractiva tanto en
investigacion como para los interesados en politicas de
consetvacion. El catbono azul ofrece un marco de
referencia como estrategia potencialmente rentable tanto
para lograr reducciones genuinas en las emisiones de gases
de efecto invernadero como para fortalecer los beneficios
colaterales de los almacenes y flujos de carbono. Por otra
parte, los ecosistemas de carbono azul proporcionan el
habitat para especies alimentarias valiosas, depuran la
contaminacién industrial y urbana y proporcionan una
defensa eficaz contra las tormentas y los fenémenos
(Nellemann ef al, 2009,
Grimsditch, Alder, Nakamura, Kenchington y Tamelander,

meteorologicos  extremos

2013). A pesar de los beneficios de mitigacién y adaptacion
que resultan de la protecciébn o restauracién de los
ecosistemas de carbono azul, 1a evaluacién de los almacenes
de carbono se ha centrado a un ecosistema de forma
individual, o bien, en el componente aéreo o subterraneo
en un solo ecosistema tal como el manglar (Walcker ez a/,
2018), los pastos marinos (Duarte ¢f al., 2010; Fourqurean
et al., 2012; Lavery, Mateo, Serrano y Rozaimi, 2013;
Campbell, Lacey, Decker, Crooks y Fourqurean, 2015;
Gullsttém et al., 2017), o las marismas (Bai et al, 2016;
Macreadie ef al., 2017; Sousa e# al., 2017), sin considerar que
forman parte de un paisaje a lo largo de un corredor

transversal costero. En la literatura son escasos los trabajos
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que incluyen mas de una comunidad en las evaluaciones de
almacenes de carbono organico en paisajes de humedales
costeros (Choi, Hsieh y Wang, 2001; Chmura, Anisfeld,
Cahoon y Lynch, 2003; Adame ef al, 2013; Huxham,
Whitlock, Githaigay Dencer-Brown, 2018). Entre otros
aspectos, estos estudios son escasos debido a que cada tipo
de  humedal
metodolégicas  (Howard, Hoyt, Isensee, Pidgeon vy
Telszewski, 2014).

Por otra parte, de los escenarios ambientales costeros

requiere  diferentes  aproximaciones

los de tipo carstico, como el de la Peninsula de Yucatan,
resultan de interés para la evaluacién de los almacenes de
carbono de los ecosistemas costeros. Esto es debido a que
la fuente de agua dulce es casi exclusivamente subterranea,
libre de materia particulada, con influencia marina por la
cufia salina que se origina gracias a las cavidades formadas
por la disolucién de la roca calcirea (Bautista, Palacio-
Aponte, Quintana y Zinck, 2011). Adicionalmente, la
plataforma de Yucatan tiene escasa pendiente, por lo que
en la zona costera existe marcada interaccién entre
elementos y caracterfsticas oceanicas (marea y oleaje) y
terrestres (descargas de agua subterranea, acuifero somero),
favoreciendo un paisaje de humedal costero cuya extensioén
puede abarcar mas de 20 km tierra adentro (Rejmankova,
Pope, Post y Maltby, 1996). En este contexto, la estructura
del paisaje de humedal costero, en el escenario carstico del
norte de Yucatan, es ideal para la cuantificacion y el registro
de la variacion que presentan los almacenes de carbono en
las distintas unidades de paisaje a lo largo de un corredor

transversal costero.

OBJETIVOS

Evaluar las reservas de carbono en ocho humedales; pastos
marinos en mar costero, asociaciones de herbiceas
haléfilas, manglar chaparro, manglar de ciénega, pastos
marinos en laguna costera, manglar de cuenca, vegetacion
emergente alta y sabana que forman un corredor transversal

costero continuo.
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MATERIALES Y METODOS

El 4rea de estudio comprendié un transecto paralelo a la
carretera federal 103 Sierra Papacal-Chuburna, en la costa
norte de la peninsula de Yucatan, México (Fig. 1) en la cual
fueron ubicados ocho unidades del paisaje de humedal, de
estos, seis fueron muestreados via terrestre: la sabana
inundable, la vegetacién acudtica emergente, el manglar de
cuenca, el manglar de ciénega, manglar chaparro y la
asociacién de vegetacion halofila; y dos por via acuitica: la
vegetacion acudtica sumergida de la laguna y la del mar
costero.

Durante el periodo 2013-2014 se establecieron en cada
sitio (unidad de paisaje) cinco parcelas de acuerdo con el
disefio de muestreo (Fig. 2). En cada sitio fueron tomados
datos a escala de parcela: la profundidad del suelo con ayuda
de una varilla metalica graduada (m), registros de pH
mediante un medidor portatil (MP-6p, HACH, USA), la
salinidad intersticial medida con refractometro &ptico
(ATAGO, Japon), registrada en ups y, finalmente, el nivel
de inundacién medido con una regla para el caso de los
humedales terrestres (cm); para el caso de vegetacién
sumergida se midi6 el nivel de profundidad, mediante un
profundimetro (Hondex ps-7) (m).

El petfil topografico se realiz6 mediante un sistema
diferencial con el método s7p and go (GPS LEICA, modelo
GS09, GS14 y GS15) registrado en alturas ortométricas, lo
cual para la regién es equiparable a la altitud sobre el nivel
del mar (m s.n.m.).

La cuantificacién de los almacenes de carbono aéreo y
subterraneo de pastos marinos y manglares fue realizada
segun los métodos propuestos en Fourqurean ez al., (2014).
En el caso de los humedales no contemplados en el manual
y dominados por herbaceas, se procedié a la identificacion
de las especies presentes y a la determinacién de su
cobertura, posteriormente se realizo la colecta de biomasa

por el método de cosecha en pie (Milner y Hughes, 1968).
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FIGURA 1. Localizacién de los ocho humedales estudiados en el corredor costero de la
Peninsula de Yucatan al sureste de México.
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FIGURA 2. Disefio de muestteo.
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La colecta de sedimento se realizé con un nucleador
metalico de 100 cm por 7 cm de didmetro interno. En todos
los casos los ntcleos obtenidos fueron seccionados
sistematicamente para obtener perfiles cada 10 cm. Se
realiz6 la caracterizacién de los nucleos por pertfil, la cual
incluy6 la identificacién del color en himedo (de acuerdo
con la escala de las tablas Munsell), as{ como su contenido
(raices finas, rocas calcareas, conchas, etcétera).

Las muestras de vegetacién y sedimentos fueron
secadas en un horno con circulacién forzada de aire
(Thermo Scientific™) a 70 °C por 72 h. Para ara la
vegetacion, se midié la biomasa seca (g m?) y para los
sedimentos, la densidad aparente. El contenido de materia
organica en el sedimento fue determinado por el método de
pérdida por ignicién (LOL, por sus siglas en inglés) (Sanders
et al., 2012), utilizando un factor de conversion de 1.724
para convertir el resultado del LOI a carbono organico
(Schumacher, 2002).

Las muestras de biomasa seca y las de sedimento
fueron maceradas, tamizadas y encapsuladas en celdas de
estafio para la determinacién de carbono total (CT) y
nitrégeno total (NT) en un autoanalizador elemental
Thermo Quest (Flash EA 1112), los resultados fueron
expresados como porcentaje. En el caso del sedimento se
realizé el analisis del fésforo total de acuerdo con los
métodos de Aspila, Agemian y Chau (1976), el resultado se
registré en porcentaje.

El almacén de carbono de la vegetacion fue estimado
como el producto del porcentaje de carbono (C) y la
biomasa; mientras que para el suelo se estimo a partir de la
densidad aparente seca y el contenido estimado de carbono
organico. Los resultados del almacén fueron expresados en
megagramos por hectarea.

El almacén aéreo de cada paisaje estuvo conformado
por la sumatoria de los elementos de la vegetacion tales
como hojas, ramas, tallos, neumatéforos, hojarasca;
mientras que el almacén subterraneo resulté de la suma
entre la biomasa subterrinea (raices y rizomas) y el
contenido del sedimento. Las estimaciones del almacén de

carbono por unidad de paisaje fueron realizadas utilizando
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aproximaciones de las extensiones conocidas de cada tipo
de humedal de acuerdo con el Programa de Ordenamiento
Ecolégico del Territorio Costero del Estado de Yucatan
[Poetcy] (2007) y para la vegetacion acuatica sumergida
(VAS) utilizando como referencia las areas observadas por

Palafox-Juarez y Liceaga-Correa (2017).

RESULTADOS

Caracteristicas ambientales de los humedales
costeros

De acuerdo con la tabla 1, los humedales terrestres se
encontraron distribuidos en el gradiente de tierra a mar en
niveles topograficos entre negativos y positivos. Esto indica
que se presentaron algunos sitios con inundacién
permanente como los pastos marinos, mientras que en
otros las fluctuaciones fueron frecuentes (manglares
chaparros y manglar de ciénega), periédicas (manglar de
cuenca y vegetacion emergente) o estacionales (sabana).

El sitio de sabana fue el menos influenciado por los
procesos marinos, presentindose en el nivel topografico
mas alto del corredor transversal y en suelo escaso (Tabla
1). Este humedal esta sobre roca impermeable que favorece
la acumulacién de agua de lluvia, sin embargo, la roca llega
a fracturarse facilitando la intrusion de la cufia salina y
registrandose niveles de inundacién bajos (< 5 cm), pero
continuos en el tiempo y con vatriacién en la salinidad
intersticial (5 ups - 30 ups).

Por lo que respecta al humedal de vegetacién
emergente, este se caracterizé por estar en suelo escaso,
pero rico en materia organica y amplia cobertura vegetal
(Tablas 1, 2 y 3); recibe influencia tanto del agua subterranea
como marina reflejindose en salinidades intersticiales que
van de muy bajas a marinas (de 2.9 ups a 35.8 ups).

Respecto al manglar de cuenca, este se desarrolld en
suelos organicos con profundidades de hasta 35 cm; su
nivel topografico (+ 0.16 m s.n.m. a + 0.22 m s.n.m.) le
confiere cierto aislamiento para el intercambio de agua, por
lo que se registrd una de las mas amplias variaciones en la
salinidad intersticial (14 ups - 120 ups) (Tabla 1).
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TABLA 1. Valores promedio * desviacién estandar (min-max) de las caracteristicas ambientales de los humedales costeros carsticos
tropicales de la costa norte de Yucatan.

Unidad del Nivel _Nivel de Salinidad Salinidad Profundidad del
. topografico inundacion ] . . pH sedimento/suelo

Paisaje superficial (ups) intersticial (ups)

(ms.nm) (cm) (cm)
Sabana +038a+ 5586 77 %27 136+75 65:12 125

029 (0-26) (4.9-15) (5.6-30) (6-7.8) (5-20)
Vegetacion +026a+ 18+7.4 86+7.6 134+83 67+13 206+77
emergente 029 (0-34) (1.5-43) (2.9-35.8) (61-7.9) (11-29)
Manglar de . Ol6as022 11103 262+226 442:258 7612 343:167
cuenca ’ ’ (0-45) (10-65) (]46-]20) (6-87) (]7-58)
38.8+31 813+ 0.1
VAS lagunar 04a-5 M3z+775 388+ 31 30-50
(50-280) (357-43.8) (35.7-43.8) (7.9-82)
Manglar de 092845.035 32122 219194 242+ 24] 7+019 45315
ciénega : : (0-30) (14-65) (92-93) (6.3-7.8) (40-50)
Manglar 0048100 31:54 2581247 5481:218 81:04 543 :243
chaparro : : (0-15) (2-66.9) (22-100) (7.6-87) (33-100)
N 3921262
Aso’cmcmn -027a-030 3.6+37 144+78 83:0l14 25+65
halfila (0-10) (6.3-315) (47-102) (8.-8.4) (15-31)
802014
. 2514 +1033 34911 35109

VAS marina <152 (160-500) (34.4-38.8) (34.4-38.8) (77-82) <30

TABLA 2. Especies principales y coberturas en las unidades de paisaje del corredor transversal de humedales carsticos del norte de Yucatin.

Paisaje Especie(s) dominate (s) Cobertura (%)
Sabana Spartina spartinae (Trin) (Merr) 40-100
Distichlis spicata (1) E. Greene. var. spicata 20
Typha domingensis Pers 40
Vegetacion emergente Conocarpus erectus var sericeus E Frorst ex D.C Avicennia germinans (L.) L.T ?8
Manglar de cuenca Avicennia germinans (L.) L. 80-90
Halodule wrightii (Asch.) 0-30
VAS lagunar Thalassia testudinum Bank ex Konig 5-10
Algas 30-40
Rizophora mangle (L.) C. DC 10
Manglar de ciénega Avicennia germinans (L.) L.T 60
Laguncularia racemosa (L.) C.F. Gaerth 2
Manalar chaparro Avicennia germinans (L.) L.T 80-90
9 P Rizophora mangle (L.) C. DC <1
Distichlis spicata (I) E. Greene. var. Spicata 70-80
Fimbristylis spadicea (L.) Vahl 20-45
Asociacion haléfila Monanthochloe littoralis Engelm 20-30
Salicornia bigelovii (Torr) 35
Sesuvium portulacastrum (L) L 10
Halodule wrightii (Asch.) 5-10
. Syringodium filiforme Kitzing <5
VAS marina Thalassia tesstudinum BanR ex Konig 4-20

Algas 20-30
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TABLA 3. Valores promedio * desviacién estindar (min-max) de las caracteristicas de los sedimentos en los primeros 30 cm de
profundidad en humedales costeros carsticos de la costa norte de Yucatan.

Paisaje DA (g cm?3) MO (%) PT (%) NT (%) N:P Cl (%) CO (%)
Sabana 03301 321141 0.05+0.01 0.47+0.03 9.47 + 0.50 491+0.18 93+035
(0.24-0.45) (30.83-33.62) (0.05-0.05) (0.45-0.50) (9.00-10.00) (4.74-5.10) (9.09-9.70)
Vegetacion 052+0.12 27.4+ 887 0.07 + 0.01 0.65+0.33 9.53+358 194+ 0.30 8.84 +1.05
emergente (0.32-0.62) (20.6-31.05) (0.05-0.08) (0.33-1.17) (5.71-14.63) (1.49-2.29) (7.66-10.28)
Manglar de 0.65 +0.08 15.66 + 2.68 0.09+0.03 053+0.37 7.88 +8.23 3.09+1.20 6.33+287
cuenca (0.51-0.74) (11.62-18.45) (0.05-0.12) (0.15-1.26) (1.50-25.20) (0.75-4.32) (1.97-8.58)
VAS laqunar 047 +0.37 1822 +7.45 0.05:0.01 050+0.10 1148 + 2.99 511+268 2.00+1.05
9 (0.11-1.23) (7.16-29.93) (0.03-0.06) (0.31-0.62) (6.20-15.50) (1.91-9.67) (0.75-3.79)
Manglar de 059:0.0 3159+ 8.34 0.07 £ 0.01 0.62+0.45 8.61 + 481 248+ 0.75 8.64 +118
ciénega (0.48-0.71) (18.65-38.98)  (0.05-0.08) (0.26-1.22) (5.17-15.25) (1.46-3.30) (6.83-9.55)
Manglar 0.79:0.13 5.6 +263 0.08 £ 0.01 035:0.26 472 +394 3.63+0.86 6.72 +1.02
chaparro (0.71-0.99) (2.20-8.18) (0.07-0.09) (0.14-0.72) (1.75-10.29) (2.71-4.37) (5.30-7.52)
Asociacion 0.67+0.26 753+752 0.09 £ 0.06 141 £1.20 2350+ 34.37 733+7.08 14.75+13.47
haldfila (0.37-1.65) (3.49-20.96) (0.03-0.17) (0.12-2.51) (1.5-83.67) (0.38-15.31) (0.54-30.60)
VAS marina 158 + 0.06 383+0.58 0.06 + 0.02 0.08 + 0.01 146 + 0.61 039:+0.03 0.55+0.05
(1.46-1.64) (3.20-4.93) (0.03-0.09) (0.07-0.11) (0.89-2.67) (0.34-0.43) (0.47-0.62)

En el caso del manglar de ciénega, este se presento en suelos
cuya profundidad promedio fue de 45 cm; esta constituido
en su mayoria por materia organica y su nivel topografico
(-0.28 m s.n.m. y -0.35 m s.n.m.) le confiere caracteristicas
de largos tiempos de inundacion y amplias variaciones en la
salinidad intersticial (Tabla 1). En el humedal de manglar
chaparro la profundidad promedio del suelo fue de 54 cm
y estuvo compuesto por materia organica mezclada con
arena; topograficamente fue relativamente homogéneo
(Tabla 1), pero con amplia variaciéon de la salinidad
intersticial (2 ups a 66.9 ups) (Tabla 1). Por dltimo, el
humedal de herbaceas haléfilas se presentd en suelos con
profundidades promedio de 25 cm, principalmente
compuesto de arenas con un registro de niveles de
inundacién bajos (< 5 cm), pero con amplias variaciones de
salinidad intersticial (4.7 ups-102 ups) (Tabla 1).

De los humedales que se encuentran en niveles

topograficos negativos (Tabla 1), el nivel del agua siempre

los cubre independientemente de la época del afio. Entre
estos el humedal de VAS lagunar estd a profundidades de -
1.5 m snm. a -0.4 m s.n.m. Los sedimentos son poco
profundos (Tabla 1) y presenta influencia marina de
acuerdo con la variacién de su salinidad (33 ups-43 ups). En
el caso del humedal de VAS marina la cobertura vegetal esta
a profundidades de entre 2 m y 6 m en areas de sedimentos
someros (S 30 cm) y arenosos sin evidencia de matetia
organica. La salinidad present6 escasa variacion tanto en la

laguna como en el mar (Tabla 1).

Biomasay carbono aéreo de los humedales costeros
En la figura 3 y en la tabla 4 se presenta la variabilidad de
biomasas y almacenes de carbono aéreo y subterraneo
registrada entre las unidades dentro del paisaje del humedal
que componen el corredor transversal costero del norte de
Yucatin. De forma esquemadtica estd trepresentado el
gradiente de salinidad y la variacién del nivel topografico.
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Almacenes de carbono a lo largo de un corredor transversal en
r
el humedal de Progreso, Yucatan
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FIGURA 3. Representacién del carbono total (Mg C ha!) almacenado en los diferentes tipos de humedales en el corredor costero carstico
de Yucatan. La barra indica la desviacion estandar a través de los diferentes estratos de cada componente y por la suma de ellos.
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TABLA 4. Promedio y desviacion estandar de la biomasa aérea (Baer), biomasa subterranea (B sup), carbono organico aéreo (Caer),
subterraneo (Csu), contribucion de raices (Cra), total (Cror) y ecosistémico (Creo).

Paisaje Extension Baer . Bsm;_] . Cher : Csub : CcRai Crot : Ceco :
(ha) (Mgha')* (Mgha')* (MgCha') (MgCha') (% (MgCha') (MgC ha)
Sabana 200 (:4 5*7.167) (ﬁgé) (¢ 02.65) (+ ?39) 16 (¢ 23c7).5) /335
Vegetacion emergente 161 (11;;2855) (11773‘35%) (s Egg) (¢ 32[]337) 35.6 (3[5'2) 56152
Manglar de cuenca 2937 (3625]263) (f%i%%) (¢ ?‘;2) (121?32) 18.6 (¢ ]356;'5) 1060 479
VAS lagunar 810 (ﬁgi) (174].31) (+ 2.9) (+ 539) 19 (+ gg.z;) 23354
Manglar de ciénega 906 (12 121?7'%) (i-] E)93'2)77) (+ 2&.5) (:24[;%1) 199 (137325.7) 303946
Manglar chaparro 5220 (t6445.2£?8) (1433(.)[.'_'-'?6) (;133) (¢ %3';4) 6 (¢ 3;?.2) 1936 240
Asociacion haléfila 1416 (lzgg) (;78%73) (:]’_]) (13]%75) 12, %‘(';_8) 441 035
VAS marina o4l (i%.52]4) (:Od].?z;) (:%.?3) (£ 0?04) 10 (£ 1?).3) 86020
Almacén en humedales 3837160
costeros
* Peso seco

De entre los humedales emergidos, el de sabana esta
dominado por Spartina spartinae con coberturas de 25% a
100% vy alturas promedio menores a 1.5 m, registrandose
también Distichlis spicata. (1), E. Greene. var. spicata. El
humedal de vegetacién emergente estuvo codominado por
Typha domingensis (altura =2.5 m) y dos especies de manglar
(Conocarpus erectus var. sericens 'y Avicennia germinans) con
coberturas de 40% y 20% del 4rea respectivamente; la altura
promedio del manglar fue de 2.5 m £ 0.09 m y didmetro a
la altura del pecho (DAP) de 4.4 cm * 0.27 cm, siendo C.
erectus var. sericeus la especie con mayor contribucién a la
biomasa aérea (91 kg peso seco m?) mientras que 7.
dominguensis solo aporté 4.1 kg de peso seco por metro
cuadrado. De entre los humedales de manglar el de cuenca
estuvo dominado por A. germinans con coberturas entre

80% y 90% mezclado con C. erectus var. sericens (<10%o); la

altura promedio fue de 3.1 m * 0.1 m y DAP de 4.8 cm £
0.17 cm, siendo el mangle negro el de mayor contribucién
a la biomasa (154 kg de peso seco por metro cuadrado). En
el caso del manglar de ciénega, este fue dominado por 4.
germinans con presencia de R. mangle y L. racemosa; la altura
promedio fue de 3.2 m £ 0.12 m y DAP de 4.88 cm £ 0.17
cm, siendo también el mangle negro la especie con mayor
contribucién a la biomasa aérea con 46 kg de peso seco por
metro cuadrado. El dltimo de los manglares que
corresponde al de tipo ecolégico chaparro fue dominado
pot A. germinans de altura promedio a 0.95 m + 0.04 m, con
estructura arbustiva y coberturas de 80% a 90%, DAP de
44 cm * 0.27 cm y biomasa de 8.7 kg de peso seco por
metro cuadrado; se observaron individuos aislados de R.
mangle (altura 0.45 m y DAP 1.5 cm); en el sotobosque se

presentaron Salicornia bigelovii Torr. y la herbacea haléfita
9
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Distichlis spicata, estas dos Gltimas en las areas mas elevadas
del terreno. En el caso del humedal conformado por la
asociaciéon de vegetacion haléfila estuvo dominado por
herbaceas como Distichlis spicata (L), E. Greene. var.
spicata, Fimbristylis spadicea (1..) Vahl, Monanthochloe littoralis
Engelm y Salicornia bigelovii Torr. y Sesuvium portulacastrum
(L) con coberturas de 60% a 90% y alturas promedio
menores a 50 cm.

De los

constantemente sumergidos, la VAS de la laguna presento

humedales que estan completa vy
baja cobertura del pasto marino Thalassia testudinum (10%),
mientras que Halodule wrightii cubrié aproximadamente
30%, ademas de macroalgas (Caulerpa sp. y H. incrassata) y
rodofitas (Laurencia sp.); pastos y macroalgas aportan bajas
biomasas respecto a los otros humedales (Tabla 4). La VAS
del ambiente marino, fue dominado por T. festudinum, con

valores de biomasa aun mas bajos que los de la laguna (Fig.

3, Tabla 4).

Biomasa y carbono subterraneo de los humedales
costeros
De los humedales que permanecen por arriba del nivel
medio del mar en la sabana, el sedimento presentd
coloracién de marrdn oscuro a negro con rocas, raices finas
y conchuela, registrandose baja densidad aparente, almacén
de carbono subterraneo de 35 Mg C ha' £ 1.29 Mg C ha'!
y contribucién de biomasa subterrinea (raices finas y
rizomas) menor a 15% (Tabla 3); ademas de que la relacién
NT:PT fue menor de 16 indicando limitacién aparente por
nitrégeno. El sitio de vegetacién emergente presentd
sedimento de coloracién gris muy oscuro a negro, con alto
contenido de material en  descomposicion y
concentraciones promedio de carbono subterraneo de 212
Mg C ha'! *+ 344 Mg C ha! y alto porcentaje de
contribucion de biomasa subterranea (35.6%); también con
bajos valores de la relacién NT:PT y porcentaje de carbono
inorganico (Tabla 3).

Los sedimentos de los humedales de manglar

presentaron los almacenes de carbono subterraneo mas

altos entre los sitios estudiados (> 240 Mg C ha'!; Tabla 4).

La coloracién de los sedimentos de los manglares varié de
grises (rosaceo, rojizo, parduzco) a café obscuro con
abundantes raices finas (Tabla 3). En el manglar de cuenca
el porcentaje de materia organica del sedimento no fue tan
alto como en otros humedales (Tabla 3), pero el carbono
organico alcanzé6 niveles de 266 Mg C ha'! + 11.22 Mg C
ha'l, a pesar de que la relacion NT:PT fue de las mas bajas
(<9). Para el manglar de ciénega, el contenido de matetia
organica fue alto al igual que el carbono organico (244 Mg
C ha'! £ 41.31 Mg C ha'), la contribucién de la biomasa
subterranea al carbono subterrineo fue de las mas altas
(20%), no obstante que presento limitacién de nitrégeno de
acuerdo con las relaciones NT:PT (< 9). En el caso del
sedimento del manglar chaparro, este registté la
concentracién de carbono organico mas alta de todos los
paisajes del corredor transversal costero (331 Mg C ha'! £
0.74 Mg C ha'!) y presenté valores bajos de contribucion de
la biomasa de raices al carbono subterraneo, al igual que de
la relacion NT:PT (Tablas 3 y 4).

La zona con vegetacion haléfila presentd suelos
arenosos con alta densidad aparente y bajo contenido de
materia organica. En este sitio el almacén de carbono
subterraneo fue de 307 Mg C ha' £ 1.05 Mg C ha'!, siendo
la contribucién de la biomasa de raices muy baja (< 2%).
Fue la tnica unidad de paisaje que podria estar limitada por
fésforo, de acuerdo con la relacién NT:PT (Tabla 4).

Respecto a los humedales con VAS, los sedimentos en
el ambiente lagunar y en el marino son de tipo arenoso de
color claro (casi blanco) con bajos contenidos de materia
organica y concentraciones de carbono (Tabla 4). El
humedal de VAS lagunar presentdé concentraciones de
carbono subterraneo mayores (20 Mg C ha'! + 0.79 Mg C
ha') que las de la VAS del ambiente marino (9 Mg C ha' +
0.04 Mg C ha'!). En ambos casos el contenido de materia
organica y la relacion NT:PT dieron bajos valores, pero con
diferencias en la contribucién de la biomasa subterranea, la
cual fue mayor para el humedal de VAS lagunar (Tabla 3).

Respecto al carbono organico total de los humedales
que componen el paisaje del corredor transversal costero
del escenario carstico del norte de Yucatan, los de manglar

de cuenca y chaparro fueron los de mayor concentracion de
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carbono total por unidad de area (361 Mg C ha' y 371 Mg
C ha! respectivamente), mientras que los de VAS tanto
lagunar como marina son los que menor carbono organico
total presentaron (Tabla 4). El carbono ecosistémico de este
paisaje de humedales costeros, cuando se pondera por la
superficie ocupada por cada humedal, es de 3 837 160 Mg
C, siendo los manglares de cuenca (28%) y chaparro (50%)
los que mayor contribucién tienen y la menor corresponde

al humedal de sabana con < 1%.

DISCUSION

La estimaciéon del carbono almacenado en humedales con
diferencias en productividad, nivel topografico y salinidad
intersticial permiti6 identificar la variacién en los procesos
que caracterizan a cada unidad de paisaje y proporciona una
linea de base para medir los impactos del cambio ambiental,
incluyendo el cambio climatico.

El gradiente en el almacén de C aéreo se ha relacionado
con patrones de la zonificacién que resulta de la interaccién
entre la inundacion, la elevacion del humedal, la salinidad
intersticial y la tolerancia particular de las especies presentes
en cada ecosistema (Pennings y Silliman, 2005; Battaglia,
Woodrey, Peterson, Dillon y Visser, 2012). En este estudio
y a diferencia de las marismas de marea ampliamente
abordados en la literatura (Batbier, 2011; Mcleod ez
al., 2011; Drake, Halifax, Adamowicz y Craft, 2015; Starr,
Jarnigan, Staudhammer y Cherry, 2018), los humedales de
sabana y vegetacion emergente del corredor transversal
costero de Yucatan no presentan inundacién superficial por
efecto directo de las mareas. Las caracteristicas de salinidad
y nivel de inundacién resultan de la acumulacién de la
precipitacion, la evaporacion y posiblemente de fenémenos
a nivel subterraneo tales como la intrusion salina y recarga
del acuifero.

Durante la época de lluvias, el agua de las
precipitaciones de la zona costera se puede acumular en la
superficie debido a la presencia de una roca impermeable
localizada a escasa profundidad (< 1 m) denominada caliche
o laja. Se ha registrado que debajo del caliche existe agua
subterranea parcialmente confinada y con las fisuras o

grietas de la roca se favorece que las aguas contenidas
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emerjan y mantengan inundados los humedales o broten en
forma de manantiales a lo largo de la costa (Marin, Perry,
Essaid y Steinich, 2001; Perry, Velazquez-Oliman y Socki,
2003; Rocha ez al., 2015). Por lo tanto, el hidroperiodo de
estos humedales serfa mas complejo y susceptible a las
fluctuaciones del agua subterranea ocasionadas por la
recarga del acuifero que se origina tierra adentro y durante
la época de lluvias, al que se le suma la intrusién salina
ocasionada por el adelgazamiento de la capa de agua dulce
durante la época de secas y la presion de la marea, la cual
puede transmitirse al agua subterranea de 20 km hasta 90
km tierra adentro (Matrin ef a/., 2001; Graniel ¢f al., 2010).

Este comportamiento hidrolégico y el corto ciclo de
vida de las plantas favorecen que el contenido de materia
organica del sedimento sea alto y que posiblemente
predomine el de origen autdctono; al estar tierra adentro el
intercambio de materia con otras unidades del paisaje es
bajo y el reciclamiento de nutrientes alto. Las plantas de tipo
C4, como en el caso del género Spartina que caracterizan a
la sabana, son mas eficaces para transformar el carbono en
biomasa, ademas de que presentan un uso mas eficiente del
nitrégeno, en comparacién con las C3, como el caso de
Typha dominguensis presente en el humedal de vegetacion
emergente. Los humedales herbaceos de baja salinidad solo
son eficientes en el almacén de C en el corto plazo (Odum,
Smith I, Hoover y Mclvor, 1984; De Deyn, Cornelissen y
Bardgett, 2008).

En el humedal de asociaciones haléfilas pudo ser un
factor de impulso a la dindmica de carbono del ecosistema,
a través de sus efectos sobre la productividad, el hecho de
que el agua tenga valores mds altos de salinidad y las plantas
estan adaptadas a tal estrés. Adicionalmente, las
condiciones anaerébicas promovidas por los suelos
inundados con agua salada y durante largos periodos de
tiempo, favorecieron la acumulacién de C en los suelos.
Esto puede extremarse al no haber exportacién de materia,
ya que se encuentra aislado de la influencia directa de la
marea. Numerosos estudios han demostrado relacion entre
la salinidad intersticial, la concentracién de materia organica

y la hidrologia (Langenheder y Ragnarsson, 2007; Berga,
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Székely y Langenheder, 2012), sin embargo, aun no se ha
determinado bajo qué circunstancias la salinidad y tiempo
de inundacién aumentan o disminuyen las tasas de
descomposicion en los humedales (Roache, Bailey y Boon,
20006; Weston, Dixon y Joye, 2006; Craft, 2007; Neubauer,
Franklin y Berrier, 2013). Al respecto, se ha documentado
que algunos humedales localizados a lo largo de los tramos
rflo asociados a estuarios que normalmente no son
considerados al determinar la cantidad de carbono
almacenado, presentan reservorios importantes de C que
son de suma importancia pata el intercambio o exportacién
de este desde ecosistemas terrestres hacia la costa por la
subida de nivel de los rfos y bajo tiempo de inundacién
(Krauss ez al., 2018).

En cuanto al almacén de carbono aéreo en los
humedales dominados por manglar, la zonificaciéon de las
especies y distribucién de los tipos ecoldgicos dentro del
corredor costero estuvo en concordancia con los niveles,
frecuencia y tiempos de inundacién que se han registrado
para cada tipo ecologico de manglar (Castafieda-Moya,
Twilley y Rivera-Monroy, 2013). _Awvicennia germinans
presenté plasticidad y domina los humedales de tipo
chaparro, de cuenca y el de ciénega, donde las altas
salinidades (>70 ups) solo son toleradas por esta especie.
En este sentido, se reconoce que la plasticidad de la
vegetacién para adaptarse a los cambios en el medio
ambiente y a distintos grados de estrés ambiental (v. g
variaciones de salinidad, el pH, el potencial redox,
interaccién con las mareas, nivel de inundacién y presiones
antropogénicas) favorece una alta biomasa (Neue,
Wassmann, Kludze, Wang y Lantin, 1997).

En el caso del manglar de cuenca, localizarse en la
parte alta del corredor le es favorable para acumular
carbono subterraneo ya que las inundaciones periédicas por
mareas reducen biogeoquimicamente el ambiente
inhibiendo la respiracion aerdbica y reduciendo la
descomposicion de la materia organica, lo cual se traduce
en C organico incorporado al almacén subterraneo, el cual
puede mantenerse almacenado en el largo plazo debido a
las condiciones de inundacién, salinidad y pH (Twilley,
Chen y Hargis, 1992; Chmura ez a/., 2003; Donato e# al.,

2011; Ouyang y Lee, 2014). Este manglar de cuenca soporta
vegetacion arbustiva bien desarrollada y con abundancia de
raices aunque el suelo es escaso, esto que sugiere que la
produccién de acido sulthidrico en condiciones anaerébicas
durante la descomposicion de la materia organica
posiblemente induce la disolucién del suelo carbonatado, lo
que a su vez permite el desarrollo y penetracion de las raices
hasta el agua subterranea, rica en nitratos (Herrera-Silveira
y Morales-Ojeda 2009), sin requerir nutrientes del
sedimento.

En lo referente al manglar de ciénega, este tipo de
humedal costero se presenta en condiciones ambientales
particulares como periodos completamente ausentes de
agua que lo cubra, esto favorece la oxidaciéon de material
organico superficial, formandose una costra (seca, negra y
agrietada) debajo de la cual se conserva la humedad y el agua
intersticial es retenida permitiendo que prosigan los
procesos de descomposicion lenta en el medio andxico.

El manglar chaparro es el tipo morfolégico mas
extendido en la peninsula de Yucatan (Adame ez /., 2013),
generalmente es asociado a deficiencias de nutrientes,
particularmente fésforo en los suelos carsticos de Yucatan.
Sin embargo, en este estudio la mayorfa de los sitios registrd
limitacién por nitrégeno y no por fésforo, esto puede
deberse a fuentes biolégicas (reciclado de nutrientes por
procesos de la ciénega, mortalidad de peces atrapados en la
temporada de secas) o antropogénicas (a través del agua
subterranea). De acuerdo con Adame, Cherian, Reef y
Stewart-Koster (2017), los manglares de bajos valores de
didmetros de tronco invierten mas C en la produccion de
biomasa de raices por area, en comparaciéon con otras
plantas terrestres, debido a que estas son vitales para
sobrellevar las condiciones de anoxia, hipersalinidad y falta
de nutrientes a las que estan expuestos (Ball, 1988; Reef,
Feller y Lovelock, 2010). Por otra parte, factores como
disponibilidad de nutrientes inorganicos, sedimento
mineral y la frecuencia de inundacién puede influir en la
acumulacion de materia organica en suelos de humedales de
tipo arbustivo como el manglar chaparro (Baustian e a/,
2017; Valiela, Teal y Persson, 1976), ademas de que se ve

favorecida una baja tasa de descomposicién y mayor
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acumulacién de carbono en sus sedimentos (Turner,
Brouwer y Georgiou, 2009), siendo el mayor de todos los
humedales analizados (Tabla 3).

Finalmente, por lo que respecta a la vegetacion
acuatica sumergida constituida principalmente por pastos
marinos y algunas macroalgas, si bien los procesos costeros
de corrientes y mareas de la region son considerados poco
dinamicos (Enriquez, Marifio-Tapia y Herrera-Silveira,
2010), se observa el flujo de materia y energfa en sentido
bidireccional entre la tierra y el mar, especialmente como
pulsos durante eventos de alta energia como huracanes y
nortes que caracterizan a la regién, con lo cual se podria
estar subsidiando de materia organica aldctona a este
humedal costero. En el caso de la vegetacién acudtica
sumergida marina, las mareas y las olas constituyen un
subsidio de energfa auxiliar que probablemente no permite
a los pastos matinos almacenar carbono, pero si que el
producido iz situ sea transportado hacia fuera del sistema,
por lo que mas que un almacén podria ser una fuente de
catbono para otros ecosistemas. En el caso de la laguna
costera, la baja transparencia y resuspensién producto de la
hidrodindmica, podria limitar el desarrollo de la vegetacion
al interior de la laguna costera, al igual que los cambios de
fase de una comunidad dominada por pastos H. wrightii o
T. testudinum a una dominada por Rupia maritima o algas
filamentosas oportunistas (verdes o rojas) promovidos por
el suministro excesivo de materia organica de origen
antrépico.

Los mayores valores de carbono organico total
registrado en este estudio correspondieron a los humedales
de manglar de cuenca y chaparro (361 Mg C ha''y 371 Mg
C ha'! respectivamente). Estas concentraciones de carbono
estan en el intervalo de la media nacional estimada por
diferentes autores (364 Mg C ha' en Herrera-Silveira ez al.,
2016; 442 Mg C ha' en Adame ¢t al, 2018), pero son
mayores a la media observada para bosques terrestres (62
Mg C ha'en Vega-Lopez, 2008). No obstante, el clima
semiarido donde se localizan los humedales de este
corredor transversal costero y las condiciones ambientales

que podrian estar experimentando algun tipo de impacto
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por la modificacion hidrolégica a causa de una carretera que
atraviesa a los ocho humedales estudiados (Teutli-
Hernandez y Herrera-Silveira, 2018), los almacenes de
carbono de estos representan una opcién para medidas de
mitigacion de los efectos del cambio climatico y es probable
que contribuyan de manera importante a los servicios

ambientales locales y regionales.

CONCLUSIONES

El contenido de carbono determinado para las ocho
unidades de paisaje present6 una contrastante vatriacién en
los almacenes por unidad de area desde 9 Mg C ha'! (VAS
marina) hasta 371 Mg C ha! (manglar chaparro). Respecto
a la contribucién por tipo de humedal, considerando su
extension, el manglar chaparro presenté mayor almacén,
seguido por el manglar de cuenca y la vegetacion herbacea
haléfila. Estos almacenes son resultado de la interaccién
entre hidroperiodo (nivel y frecuencia de inundacién) y
salinidad intersticial principalmente alta, que si bien no
favorecen alta productividad reflejada en baja biomasa
aérea, si contribuye al almacenamiento a largo plazo por la
lenta descomposiciéon de la materia organica. En este
sentido, es importante destacar el papel de la vegetacion
haléfila por evitar las emisiones de gases de efecto
invernadero hacia la atmosfera.

El estudio simultaneo del C almacenado en humedales
contiguos a lo largo de un gradiente de salinidad vy
vegetacién de diferente tipo de desarrollo (herbaceas y
lefiosas), son un precedente para analizar la conectividad y
su efecto en el tipo y magnitud de los servicios ambientales
de cada humedal. En este caso, los resultados fortalecen el
valor como almacenes de catbono para el paisaje que
conforma el conjunto de humedales costeros del corredor
transversal y permiten mejorar la identificacién de sitios
prioritarios de proteccion y restauracion.

Conocer la variabilidad en la capacidad para almacenar
C de distintos humedales que forman parte de un paisaje
costero, asi como los factores que la determinan, es el
primer paso para identificar las posibles afectaciones

regionales en el mediano y largo plazo ocasionados por
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impactos naturales y antropogénicos, como es el caso del
cambio climatico actual.

Los resultados de este estudio, con el enfoque de
paisaje como corredor costero, permiten avanzar en el
entendimiento de los patrones naturales del almacén de C
aéreo y C subterraneo. Este tipo de estudios realizados en
un gradiente salino y topografico natural abre la posibilidad
de plantear preguntas que ayuden mejorat la comprension
de la biogeoquimica de los almacenes de C en escenario
carsticos. Este tipo de aproximaciones permitiran
comprender mejor los posibles efectos de la alteracion del
ciclo hidrolégico, disminucién del insumo de agua dulce
por via subterrdnea, incremento en la intrusién de agua
salada, cambios en la vegetacion, en el ciclo de nutrientes y
modificacién de la relacién produccidn-respiracion,
muchos de estos efectos relacionados con el cambio

climatico.
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