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ABSTRACT 
The scarcity of meteorological stations and the strong need for climatic information in alpine forests require the use of large-scale climatic 
algorithms but the lack of in situ information produces high uncertainty on their suitability. In this study, we used linear mixed models to 
study the topographic effect (elevation and aspect) and time variations (from hourly to monthly) on temperature (T) and relative humidity 
(RH) with a 5-year instrumental database. Furthermore, we compared climatic information from a geographical algorithm and our in-situ 
data. Our data covered two mountains (Tláloc-TLA and Jocotitlán-JOC, State of México), four elevation belts (from 3500 m to 3900 m 
a.s.l.), and two aspects (Northwest and Southwest). We found differences for average temperature (TLA = 7.56 °C ± 0.03 °C and JOC 
= 6.98 °C ± 0.02 °C), and relative humidity between mountains (TLA = 69.3% ± 0.12% and JOC = 72.5% ± 0.13%,). The most 
significant variables explaining T were the elevation (Δ= -0.36 °C by 100 m) and aspect, while the aspect was relevant for RH. May was 
the warmest month (9.50 °C ± 0.10 °C for average temperature) while September the wettest for both mountains (85.1% ± 0.30% and 
87.4% ± 0.25 % RH, respectively). Despite the higher correlations between climatic sources (up to r = 0.83), the geographical algorithm 
overestimates T and underestimates RH. We propose that when climatic information from geographical algorithms is used in alpine 
forests, calibrations are needed whenever possible with in situ information. 

KEYWORDS: Pinus hartwegii, relative humidity, temperature. 

RESUMEN 
La escasez de estaciones meteorológicas y la necesidad de información climática en bosques de alta montaña implica el uso de algoritmos 
climáticos a gran escala, pero la falta de información in situ produce una alta incertidumbre en su idoneidad. En este estudio, se usaron 
modelos lineares mixtos para estudiar el efecto de la topografía (elevación y exposición) y tiempo (de nivel hora a mensual) en temperatura 
(T) y humedad relativa (RH) en una base de datos instrumental de cinco años. Además, se comparó información climática de un algoritmo 
geográfico y una base de datos in situ. Los datos incluyeron dos montañas (Tláloc-TLA and Jocotitlán-JOC, Estado de México), cuatro 
niveles altitudinales (de 3500 m a 3900 m s.n.m.) y dos exposiciones (Noroeste y Suroeste). Se encontraron diferencias para temperatura 
promedio (TLA = 7.56 °C ± 0.03 °C and JOC = 6.98 °C ± 0.02 °C), y humedad relativa entre montañas (TLA = 69.3% ± 0.12% and 
JOC = 72.5% ± 0.13%). Las variables más importantes que explicaron T fueron la elevación (Δ= -0.36 °C cada 100 m) y exposición, 
mientras que la exposición para RH. Mayo fue el mes más caluroso (9.50 °C ± 0.10 °C para temperatura promedio) mientras que 
septiembre, el más húmedo para ambas montañas (85.1% ± 0.30% y 87.4% ± 0.25% RH, respectivamente). A pesar de las altas 
correlaciones entre fuentes de información climática (hasta r = 0.83), el algoritmo geográfico sobreestima T y subestima RH. Se propone 
que cuando la información climática proveniente de algoritmos geográficos sea usada en bosques de alta montaña, es necesaria una 
calibración con información in situ cuando sea posible. 

PALABRAS CLAVE: Pinus hartwegii, humedad relativa, temperatura. 
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INTRODUCTION 
High-elevation forests in México have gained increasing 
attention due to their vulnerability to climate variability that 
impacts their species range distribution (Astudillo-Sánchez, 
Fowler, Villanueva-Díaz, Endara-Agramont y Soria-Díaz, 
2019; Rehfeldt, Crookston, Sáenz-Romero y Campbell, 
2012), physiological traits (Correa-Díaz, Gómez-Guerrero, 
Vargas-Hernández, Rozenberg y Horwath, 2020; Gómez-
Guerrero, Silva, Barrera-Reyes, Kishchuk, Velazquez-
Martinez et al., 2013; Saenz-Romero, Lamy, Loya-Rebollar, 
Plaza-Aguilar, Burlett et al., 2013), and forest productivity 
(Correa-Díaz, Silva, Horwath, Gómez-Guerrero, Vargas-
Hernández et al., 2019). However, despite their prominent 
ecological importance (Holtmeier, 2009; Körner, 2012), 
climatic information at high elevations is often unavailable, 
which strongly limits any further analysis and interpretation 
of ecological processes. In México, climatic stations are 
mainly located at lower elevations or close to human 
settlements as their distribution was mostly planned for 
agricultural purposes. Indeed, according to the (National 
Meteorological Service database of México [SMN] 2020), 
only 30 of the 5467 climatic stations (0.5%) were 
established above 3000 m a.s.l. whereas 17 of them have 
already been suspended. 

In this context, other climatic sources have been 
generated to fulfill the climatic data need. For example, the 
Climatic Research Unit (CRU) database from the University 
of East Anglia, has been turned into a regular source of 
climatic information but with limited local adequacy due to 
its coarse resolution (0.5° resolution) (Harris, Jones, 
Osborn y Lister, 2014). Other approaches have relied on 
downscaling approaches (Mosier, Hill y Sharp, 2014; Wang, 
Hamann, Spittlehouse y Carroll, 2016) or spline 
interpolators (Cuervo-Robayo, Téllez-Valdés, Gómez-
Albores, Venegas-Barrera, Manjarrez et al., 2014) which 
allow generating time series at finer resolutions. For 
example, the use of downscaling approaches through a 
combination of local interpolations and terrain elevation 
adjustments has improved the accuracy and the scale of 
climatic data. Nevertheless, the lack of in situ information 

produces high uncertainty at mountain regions where the 
topographic factors temporally and spatially shape the 
climate (Körner, 2007), making it a challenging task to 
calibrate models or disentangle the impact of climate 
change in forest ecosystem functioning.  

Currently, some efforts have been made by locating 
weather stations to record climatic variables in Mexican 
high-elevation forests (Biondi, Hartsough y Galindo-
Estrada, 2009; Biondi, Hartsough y Galindo-Estrada, 
2005). However, out of these examples, there are few 
reports of climatic conditions at high-elevation forests. It is 
therefore worthy to investigate how the weather varies 
across time scales (from hourly to a monthly level) and how 
the topography of the landscape shapes the temperature 
and relative humidity in alpine ecosystems, and most 
importantly, how we can verify the correlation of gross 
climate sources to local instrumental measurements. 

Ecological systems are often hierarchically organized, 
with levels of organization nested within higher levels 
usually measured across time, thus traditional statistical 
approaches are unsuitable to analyze variables from these 
datasets since the observations measured within a higher 
level (e.g., mountains) are more correlated to observations 
between levels, violating therefore the independence 
assumption (Wagner, Hayes y Bremigan, 2006). Linear 
mixed models (also called hierarchical linear models) 
include a combination of fixed and random effects as 
predictor variables, which allow modeling the non-
independence and the correlation structure (Everitt, 2005). 
Fixed effects represent all possible levels of a factor of study 
for which researchers are interested while random effects 
typically represent some grouping variable affecting 
indirectly the main response (Harrison, Donaldson, Correa-
Cano, Evans, Fisher et al., 2018). Thus, the fixed effects are 
used to model the effects of individual levels of a 
categorical variable on a continuous variable while random 
effects express additional model variability, which is usually 
represented by parametrized covariances structures (Ćwiek-
Kupczyńska, Filipiak, Markiewicz, Rocca-Serra, Gonzalez-
Beltran et al., 2020).  In this way, the fixed effects define the 
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expected values of the observations, and random effects 
define their variance and covariance. 

In this work, through linear mixed models we analyzed 
in situ data of two climatic variables (temperature and 
relative humidity), gathered at 4-hours intervals from 2016 
to 2020, at forests located in separately mountains, namely, 
Tláloc (TLA) and Jocotitlán (JOC), in the State of México, 
México. We retrieved climatic data from two contrasting 
aspects (Northwest and Southwest) across elevation belts 
(from 3500 m to 3900 m a.s.l.), representing a hierarchical 
structure for the distribution range of the Mexican 
Mountain Pine (Pinus hartwegii Lindl.). 

OBJECTIVES 
Our goals were first to evaluate the topographic effect 
(elevation and aspect) on climatic variables (temperature 
and relative humidity) and their interannual behavior 
(hourly and monthly), and second, to compare this 
instrumental information with data extracted from the 
ClimateNA software (Wang et al., 2016), a large-scale 
algorithm which allows a downscaling process using a 
digital elevation model. 

MATERIALS AND METHODS 

Study design and dataloggers installation 

We studied the climatic conditions in two mountains 
located across the Trans-Mexican volcanic belt (TLA 
19.39° N, -98.74°O, 4125 m a.s.l.; and JOC - 19.72° N, -
99.76°O, 3910 m a.s.l.). At each mountain, we selected two 
different elevations with contrasting aspects (four sites per 
mountain). Thus, for TLA, we placed commercial 
dataloggers (HOBO Pro v2) at 3500 m and 3900 m a.s.l. 
with contrasting aspects each (Northwest and Southwest), 
and for JOC at 3700 m and 3800 m a.s.l. using the same 
aspects that TLA (Fig. 1). These elevations represent the 
middle and upper (timberline) natural distribution of pure 
stands of Pinus hartwegii at each mountain. The dataloggers, 
registering 4-hour intervals of climatic information 
(temperature and relative humidity), were placed at a high 
of 2.5 m above the soil level using trees as supports. The 
HOBO Pro v2 dataloggers have an operation range from -
40 °C to 70 °C and 0% to 100%, with an accuracy of ± 0.21 
°C and ± 0.25% for temperature and relative humidity, 
respectively. 

 
 
 

 

FIGURE 1. Study design used for the analysis of temperature and relative humidity. 
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Statistical analysis 

We use linear mixed models to test the effect of the 
mountain origin, elevation, aspect, and time on temperature 
and relative humidity, using the “nlme” package in R 
(Pinheiro, Bates, DebRoy, Sarkar y Team, 2018). 
Conversely to traditional methods, repeated measure data 
requires special methods of analysis since measurements 
are often correlated temporally; thus, the linear mixed 
models allow modeling heterogeneous variance and 
correlated data. 

Our climatic dataset contained three hierarchy levels: 
the climatic variables (temperature and relative humidity) 
registered over time (level-1) were selected from eight 
datalogger locations (level-2) within two mountains (level-
3). Therefore, our predictors were time (as hourly and 
monthly factors) [1], elevation and aspect [2], and finally the 
mountain origin [3]. 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜋𝜋0𝑗𝑗𝑗𝑗 + 𝜋𝜋1𝑗𝑗𝑗𝑗  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  [1] 

Where 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = climatic variable (temperature or relative humidity) 

on the time i in site j and mountain k 
𝜋𝜋0𝑗𝑗𝑗𝑗 = intercept for site j in mountain k 
𝜋𝜋1𝑗𝑗𝑗𝑗 = coefficient for the fixed effect of time on the 

climatic variable 
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖= level-1 random effect (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎2)) 
𝜎𝜎2 = residual variance component due to differences on 

time within sites nested within mountains 

𝜋𝜋0𝑗𝑗𝑗𝑗 =  𝐵𝐵00𝑘𝑘 +  𝛽𝛽01𝑘𝑘(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)𝑗𝑗𝑗𝑗
+ 𝛽𝛽 02𝑘𝑘

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗𝑗𝑗 + 𝑟𝑟0𝑗𝑗𝑗𝑗 

[2] 

𝜋𝜋1𝑗𝑗𝑗𝑗 =  𝐵𝐵10𝑘𝑘 

Where: 
𝐵𝐵00𝑘𝑘 = intercept for mountain k 
𝛽𝛽01𝑘𝑘 = coefficient for the fixed effect of elevation in site j 

and mountain k 

𝛽𝛽02𝑘𝑘 = coefficient for the fixed effect of aspect in site j and 
mountain k 

𝐵𝐵10𝑘𝑘= fixed effect representing the coefficient for the 
effect of time on the climatic variables 

𝑟𝑟0𝑗𝑗𝑗𝑗   = level-2 random effect (𝑟𝑟0𝑗𝑗𝑗𝑗~ 𝑁𝑁(0, 𝜏𝜏𝜋𝜋)) 
𝜏𝜏𝜋𝜋 =  variance between sites nested within mountains 

𝐵𝐵00𝑘𝑘 =  𝛾𝛾000 + 𝛾𝛾001(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝑢𝑢00𝑘𝑘 [3] 

𝛽𝛽01𝑘𝑘 = 𝛾𝛾010 
𝛽𝛽02𝑘𝑘 = 𝛾𝛾020 
𝛽𝛽10𝑘𝑘 = 𝛾𝛾100 

where: 
𝛾𝛾000 = global intercept 
𝛾𝛾001 = coefficient for the fixed effects of the mountain on 

the climatic variables 
𝛾𝛾010 = coefficient for the fixed effects of the elevation 

aspect on the climatic variables 
𝛾𝛾020 = coefficient for the fixed effects of the aspect on the 

climatic variables 
𝛾𝛾100 = coefficient for the fixed effects of the time on the 

climatic variables 
𝑢𝑢00𝑘𝑘 = level-3 random effect (𝑢𝑢00𝑘𝑘~ 𝑁𝑁�0, 𝜏𝜏𝛽𝛽�) 
𝜏𝜏𝛽𝛽 = variance between mountains. 

Thus, the combined model is described in [4]. 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛾𝛾000 + 𝛾𝛾001(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝛾𝛾010(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) +
𝛾𝛾020(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝛾𝛾100(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) +

𝛾𝛾(010,020)(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝑢𝑢00𝑘𝑘 + 𝑟𝑟0𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
           [4] 

To achieve linear assumptions in modeling, we transformed 
our original variables (T and RH) into a new dataset, 
comparing different transformations and selecting the best 
one based on the Pearson P test statistic for normality 
(Gross y Ligges, 2015). We compared the arcsinh, Box-Cox, 
logarithm, Yeo-Johnson, and ordered quantile 
normalization (ORQ) transformations using the 
“bestNormalize” package in R (Peterson y Cavanaugh, 2020). 
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Furthermore, due to the temporal correlation of the data 
and the desirable parsimony of the models, different 
correlation (covariance) structures (autoregressive process - 
AR, autoregressive moving average process- ARMA, and 
constant correlation) and variance functions (Power 
variance and constant variance) were tested to model the 
correlational structure across time and homogenize the 
residual variance, respectively (Everitt, 2005). The best 
model for each variable (T and RH) was defined according 
to the lowest Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC), and the highest 
marginal and conditional R2 (Mehtatalo, 2013). All analyses 
were done in R 4.03 (R Core Team, 2020) and visualized 
using the “ggplot” package (Wickham, 2016). We used our 
climatic data to test the null hypothesis that temperature 
and relative humidity do not change over time, or across 
elevations, aspects, or between mountains. 

Climatic comparison between sources 

For our second objective, we extracted temperature and 
relative humidity values using the ClimateNA v630 
software package for our datalogger locations (Wang et al., 
2016; Wang, Hamann, Spittlehouse y Murdock, 2012). 
ClimateNA allows producing monthly time series at a scale-
free level using the climatic database of the University of 
East Anglia (Harris et al., 2014). Overall, the ClimateNA 
software uses bilinear interpolations to estimate values 
between midpoints of the four neighbor grids from a 
specific location, and thus, generate a surface for each 
monthly climatic variable. Then, the climate and elevation 
values from surrounding cells are used to calculate 
differences between all possible pairs. Finally, a simple 
linear regression of the differences in the climatic variable 
on the elevation difference is established, using the slope of 
the model to predict the climatic value at each specific 
location (Wang et al., 2016). For comparison purposes, we 
used a downscaled climatic time series according to a 15-m 

digital elevation model of our study sites (ClimateNA), and 
our hourly climatic data was reduced to monthly values. We 
used the Pearson correlation coefficient (r) between sources 
and a paired samples t-test to prove that the mean 
difference between in situ data and the geographical 
algorithm (ClimateNA) was equal to zero.  

RESULTS AND DISCUSSION 

Average temperature and relative humidity at 

mountain level 

A total of 36 930 and 32 411 observations were retrieved 
from TLA and JOC, respectively, covering from September 
2016 to December 2020. Although not all the sites had the 
maximum span, they covered at least from the 2017 year. 
At a mountain level, TLA had an average temperature of 
7.56 °C ± 0.03 °C while JOC 6.98 °C ± 0.2 °C with 
significative statistical difference between mountains (p = 
0.01). The average temperature was within the expected 
values for treelines around the world (6.7 °C ± 0.8 °C) 
(Körner y Paulsen, 2004), but slightly warmer than other 
Mexican mountains (Nevado de Toluca, Pico de Orizaba, 
and Iztaccihuatl) (Körner, 2012). The extreme temperatures 
observed were -6.01 °C and 34.73 °C for TLA, and -7.09 
°C and 33.2 °C for JOC, respectively (Fig. 2a). The highest 
weather station in México (Nevado de Toluca – 4283 m 
a.s.l.) reported extreme temperatures of -10 °C and 23 °C, 
while Biondi et al. (2005) at Nevado de Colima (3 760 m 
a.s.l.) reported -12.7 °C and 18.2 °C, but notably, none of 
them reached our maximum temperature values. Trees 
growing at alpine ecosystems have acquired a remarkable 
frost tolerance during winter; for example, some trees from 
the genus of Abies and Pinus can tolerate temperatures 
around -35 °C (Holtmeier, 2009) but higher temperatures 
can have serious implications for water stress and 
photosynthetic activity at treeline zones (Hoch y Korner, 
2003). 
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FIGURE 2. Monthly boxplots of (a) temperature and (b) relative humidity displaying five statistics (the median, two hinges, and two 
whiskers). 
The lower and upper hinges correspond to the first and third quartiles while the lower and upper whiskers extend from the hinge to the smallest/largest value at 1.5 of inter-

quartile range. The datalogger locations (sites) are defined as a combination of elevation (3500 m, 3700 m, 3800 m, and 3900 m a.s.l.) and aspect (Northwest – NW, and 

Southwest – SW) within each Mountain. 



7 

Madera y Bosques         vol. 27, no. 3, e2732206          Autumn 2021 

 

For relative humidity, JOC had a higher average relative 
humidity than TLA (72.5% ± 0.12% vs 69.30% ± 0.13%, 
respectively) (p = 0.01), values similar for those reported by 
Biondi et al. (2005) at Nevado de Colima (69% annual 
average). Although these differences in relative humidity 
seem to be small, the differences in terms of water vapor 
pressure are higher. Usually, alpine forests showed high 
values of relative humidity due to cloudy conditions and 
that lower temperatures can retain less humidity than the 
warmer air (Fig. 2b). 

The monthly, daily, and hourly trends 

At a monthly level, May was the warmest month for TLA 
and JOC (9.61 °C ± 0.10 °C and 9.39 °C ± 0.08 °C for 
average temperature, respectively), when cloud-free 
conditions occur (Fig. 2a). However, the highest single 
temperature was in November (34.73 °C) for TLA and in 
February (33.20 °C) for JOC. On the other hand, January 
was the coldest month (5.42 °C ± 0.13 °C and 4.36 °C ± 
0.10 °C for TLA and JOC, respectively). Similar trends were 
reported by Biondiy Hartsough (2010) in Nevado de 
Colima where May (8.4 °C) and January (4.2 °C) were the 
warmest and coldest months, respectively. Finally, average 
temperatures decrease again in June and July (Fig. 2a), 
probably due to the presence of rainfall and clouds (rainy 
season) which must have reduced sun radiation inputs and 
air temperature (Körner, 2012). 

Temperature is a key limiting-factor in tree-growth 
formation (e.g., xylogenesis), for example, several authors 
have highlighted that either minimum air temperature (Li, 
Liang, Gričar, Rossi, Čufar et al., 2017; Li, Rossi, Liang y 
Julio Camarero, 2016; Rossi, Deslauriers, Griçar, Seo, 
Rathgeber et al., 2008) or degree-day sum (Liang y 
Camarero, 2017) are the dominant climatic factors for tree 
growth cycles. Correa-Díaz et al. (2019) found that the 
minimum temperature in May was positively correlated 
with the tree-ring width of P. hartwegii in TLA. Thus, 
testable effects of climate change on alpine forests (e.g. 
tree-line expansion, tree-growth increase/decrease, 

phenology modification) must be supported by accurate 
weather information. 

Temperature showed a higher amplitude (maximum-
minimum temperature) at high elevations during the winter 
and spring seasons. For example, site 3900-NW (i.e., 
combination of elevation and aspect) at TLA showed a 
temperature variation from -4.8 °C to 35 °C in November, 
this is a difference of around 40 °C which is remarkably 
high (Fig. 3a). Lauer (1978) reported similar results in the 
treeline of Pico de Orizaba (up to 4,000 m asl) where 
differences were around 44 °C (-7 °C to 37 °C). However, 
it is important to highlight that compared to air and forest 
canopy, surface soil variations in temperatures are lower, 
with biologically suitable temperatures to allow meristem 
activity in the trunk and the root growth processes (Wieser 
y Tausz, 2007). Notably, the last recorded year showed the 
highest average temperature in TLA, nevertheless, due to a 
low number of years in our database, we cannot asseverate 
a warming trend (Fig. 3a).  

Regarding relative humidity, September was the month 
with the highest relative humidity (85.1% ± 0.25%) for 
TLA and JOC (87.4% ± 0.25%) (Fig. 2b). The highest 
single values were common during the rainy season (June 
to October) while highly contrasting values for the rest of 
the year (Fig. 2b). Northern aspects exhibited higher 
humidity than Southern (p = 0.02) aspects as expected in 
North hemisphere locations.  

Not all sites showed the typical sinewave form on the 
daily temperature over the year. For example, 
Southernmost aspects were more prone to show a lower 
interannual variability than Northern aspects on average 
temperature (Fig. 3a). Moreover, an unexpected result was 
the trend found in 3900-NW at TLA for maximum 
temperature, where high values were almost constant 
during the studied period. This finding contrasts with the 
common belief that northern aspects at high elevations 
present lower maximum temperatures. For relative 
humidity, all sites reached their maximum during summer 
and a minimum in winter (Fig. 3b).
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FIGURE 3. Time series of (a) average temperature (°C) and (b) relative humidity (%) for each site. 
The datalogger locations (sites) are defined as a combination of elevation (3500 m, 3700 m, 3800 m, and 3900 m a.s.l.) and aspect (Northwest – NW, and Southwest – 

SW) within each Mountain. Inset numbers represent the mean value ± standard error. Red lines are splines to highlight daily trends.  
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Four-hourly temperature measurements showed a daily 
cycle characterized by a maximum at 16:00 hours with a 
decrease during the night and early morning (4:00 am) (Fig. 
4a). Conversely, the lowest relative humidity was found at 
16:00 hours and the highest during midnight (0:00 am). A 

reduction in the average relative humidity was found during 
the dry season (November to May) while high values were 
more common during the wet season (June to October) 
(Fig. 4b).

 
 
 

 

 

FIGURE 4. Hourly measurements of (a) temperature (°C) and (b) relative humidity (%). 
The dotted line is the Tláloc Mountain (TLA) and the solid line the Jocotitlán Mountain (JOC). 



10 

Correa-Díaz et al. Daily temperature and moisture in two Mexican high-elevation forests 

 

Elevation and aspect as drivers of climatic 

conditions 

Elevation and aspect were relevant factors explaining 
temperature (p = 0.01 and p = 0.02, respectively) (Table 1). 
The elevation effect on temperature is a well-known fact 
establishing that temperature decreases as elevation 
increases. The theoretical thermal gradient ranged between 
0.5°C - 0.6 °C by 100 m in the region (Lauer, 1978). 
However, the rate of decrease was 0.36 °C by 100 m of 
elevation at TLA. Thus, the lower thermal gradient found 
in TLA highlights the requirement for in situ data if the 
extrapolated data is needed. For example, Astudillo-

Sánchez et al. (2019) estimated the mean annual 
temperature in 4.2 °C at the treeline of TLA (≈ 4000 m 
a.s.l.) which is lower than our data suggest, even if we 
corrected for the last 100 m of elevation (6.1 °C). On the 
other hand, the aspect affects the temperature by an 
enhanced incoming irradiation and evaporation demand in 
South aspects (Binkley y Fisher, 2020). Contrary to 
temperature, elevation was not significant for relative 
humidity (p = 0.52), but aspect was a significant factor (p = 
0.02) (Table 1). In general, northern aspects had higher 
humidity than southern aspects (p < 0.05), explained by the 
lower incoming irradiation as described above.

 
 
 
TABLE 1. Linear mixed model results for temperature and relative humidity.  

 Temperature Relative humidity 

Predictors Estimates S.E. p-value Estimates S.E. p-value 

Intercept 0.88 0.33 < 0.0001 0.95 0.32 0.03 

Mountain -0.13 0.20 0.01 -0.17 0.03 0.01 

Elevation -0.001 0.00 0.01 0.00 0.00 0.52 

Aspect 2.82 1.20 0.02 -1.11 0.77 0.02 

Time (months) 0.86 0.02 < 0.0001 0.08 0.04 < 0.0001 

Time (hours) 1.32 0.01 <0.0001 -0.03 0.00 < 0.0001 

Elevation x aspect -0.01 0.00 0.08 0.00 0.00 0.30 

Random effects       

𝜎𝜎2 (Residual variance) 0.28   0.71   

𝜏𝜏𝜋𝜋 (Variance from the random site effect) 0.03   0.01   

𝜏𝜏𝛽𝛽 (Variance between mountains) 0.00   0.00   

Observations 69 341   69 341   

Marginal R2 / Conditional R2 0.678 / 0.682   
0.329 / 

0.331 
  

Akaike Inf. Criterion (AIC) 110 446.90   94 680.99   

Bayesian Inf. Criterion (BIC) 110 446.90   94 937.08   

Mountain, elevation, aspect, and time (expressed as months and hours) were considered as fixed effects while the datalogger location (site) and repeated measurement 

were random effects. Both response variables were transformed with the ordered quantile normalization (ORQ) to achieve linear assumptions 
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The importance of hierarchically organized data in 

modelling 

The hierarchical models accounted for the fact that 
repeated measurements in time were nested within 
dataloggers locations (sites) and mountains (Table 1). 
Furthermore, trought linear mixed models we were able to 
separate the fixed and random effects on the T and RH. 
However, a desirable property for random effects is that 
require at least five levels (e.g. mountains) to achieve a 
robust estimate of variance (Harrison et al., 2018).  

We found that the ORQ was the best normalization 
transformation for both variables (T and RH). 
Nevertheless, it is important to highlight that a common 
issue with transformations is that also affect the 
relationship between predictors and response, making it 
difficult the prediction and interpretation of the 
transformed variables (e.g. logarithm of T). Contrary to 
other methods, the ORQ transformation is reversible (i.e. 
one-to-one), thus any analysis performed on transformed 
data can be interpreted using the original units (Peterson y 
Cavanaugh, 2020). Once transformed, the addition of an 
AR2 process (ARIMA2,0,0) to model the temporal 
autocorrelation coupled with Power variance treatment for 
residual variance (time-varying across mountains) was 
better than simple models. Overall, the fixed factors 
explained ~70% of the T and ~33% for RH (marginal R2). 
On the other hand, the conditional R2 was slightly higher 
explained by the combination of fixed factors and 
accounting for site and time variance (Table 1). 
Conceptually, random effects resolve the non-
independence issue by assuming that the parameters follow 
a random distribution (usually a normal distribution) across 
the subjects. Assuming that the intercept in a regression 
model is the random parameter implies that every site has a 
different intercept and that these intercepts are assumed to 
be drawn from a (normal) distribution (Fig. 5a and 5b) 
(Riha, Güntensperger, Kleinjung y Meyer, 2020). Notably, 
despite modeling the hierarchy of the data and accounting 
for their structure, some residual variance remained 
relatively high, likely due to a strong variability in T over 

specific days in TLA (Fig. 5c) and the common values close 
to 100% of RH during the rainy seasons (Fig. 5d). 

Comparison between downscaled and in situ data 

Although we found statistically significant correlations 
between sources and among variables (r = 0.37 to 0.83, p < 
0.05, Table 2), some overestimations arise from downscaled 
data for temperature and underestimations for relative 
humidity at both mountains (p < 0.001). For example, we 
found a difference of +3.5 °C for average temperature (7.06 
°C vs 10.76 °C, p < 0.001). This difference was more 
evident for the maximum temperature (+ 4.6 °C, p < 
0.001), where low correlations were also found (r = 0.37 
and 0.42 for TLA and JOC, respectively) (Fig. 6; Table 2). 
For minimum temperature, despite that higher correlation 
(r = 0.83 and 0.78 for TLA and JOC, respectively) were 
coupled with lower variations (+ 1.18 °C), the differences 
remained statistically significant (p < 0.001) (Fig. 6). 
Regarding relative humidity, we found a higher correlation 
between sources (r = 0.83 and 0.79 for TLA and JOC, 
respectively) however, calculated data tend to present lower 
values than observed (≈ 10 %) mainly for the rainy season 
where differences were about 15%. 

CONCLUSIONS 
Because of the scarcity of meteorological stations and the 
strong need for climatic information for alpine forests, the 
in situ information and the validation with algorithm sources 
are important. While we confirmed the effect of elevation 
and aspect on temperature, a lesser-known effect of aspect 
on relative humidity was revealed. Extreme amplitudes on 
daily- temperature (around 40 °C) were found at high-
elevation sites where less variation is traditionally assumed. 
Although we confirmed statistically significant correlations 
between derived and instrumental data, the degree of 
correlation varied among climatic variables. The minimum 
temperature was the most significantly correlated variable 
with the large-scale algorithm. Therefore, we propose that 
whenever possible, downscaled and in situ data should be 
calibrated for better interpretation of historical and 
ecological processes in alpine forests.
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FIGURE 5. Probability plots of estimated random intercepts, random slopes, and residuals for (a)Temperature, and (b) Relative humidity; 
residual plots to tests homogeneity of variance(c) and (d). 
Note that both response variables were transformed with the ordered quantile normalization (ORQ) to achieve linear assumptions. 
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TABLE 2. Linear association between observed and calculated data (ClimateNA derived) by the mountain.  

Variable Mountain 
Pearson 
correlation  

Regression Slope + 
SE 

R2 R2-adj 

Maximum temperature 
Tláloc 0.37*** 0.47 + 0.10 0.14 0.13 

Jocotitlán 0.42*** 0.88 + 0.17 0.18 0.17 

Average temperature Tláloc 0.80*** 0.69 + 0.04 0.64 0.64 

 Jocotitlán 0.69*** 0.80 + 0.07 0.48 0.47 

Minimum temperature Tláloc 0.83*** 0.68+ 0.04 0.68 0.68 

 Jocotitlán 0.78*** 0.50 + 0.03 0.62 0.61 

Relative humidity Tláloc 0.83*** 1.56 + 0.09 0.69 0.69 

 Jocotitlán 0.79*** 1.47 + 0.10 0.62 0.62 

Average, maximum, and minimum temperatures are expressed in °C while relative humidity is %. 

 
 
 

          
FIGURE 6. Scatterplot between observed and calculated data (ClimateNA derived) by the mountain. 
Average, maximum, and minimum temperatures are expressed in °C while relative humidity is %. Solid lines are linear regression between data while shaded areas are 
confidence intervals. Inset values are Pearson correlation coefficients between observed and calculated data (n = 132 each Mountain). 
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