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RESUMEN 
La lignina es una de las principales estructuras de la pared celular de las plantas y varía en su composición entre los grupos taxonómicos. 
El objetivo de este estudio fue revisar la estructura de la lignina, el proceso de lignificación y las propuestas de patrones de evolución de 
esta. Para esto se revisó la literatura existente, cada punto se analizó y explicó para finalmente proponer una hipótesis evolutiva del 
proceso de lignificación en angiospermas. La lignina está compuesta por diversos monómeros y polímeros, su biosíntesis ocurre en 
plastidios y retículo endoplasmático, para posteriormente polimerizarse mediante diferentes grupos enzimáticos en la pared celular, donde 
ocurre el proceso de lignificación cooperativa. Durante la evolución de las plantas se desarrollaron los sistemas genéticos y enzimáticos 
para la biosíntesis de la lignina. Los dos principales tipos de lignina que se acumulan en los elementos traqueales de las plantas son lignina 
de tipo guayacilo y lignina de tipo siringilo/guayacilo. La presencia de siringilo en especies de Isoetes, Selaginella, Lycophyta y algas por 
convergencia evolutiva confirió resistencia a patógenos y rayos UV. La presencia de enzimas promiscuas catalíticamente funcionales 
propició la aparición de lignina, suberina y cutina, además de que la diversificación anatómica y química de la pared celular en 
angiospermas favorecieron su distribución en diferentes condiciones ambientales. 

PALABRAS CLAVE: convergencia evolutiva, diversificación, guayacilo, lignina, siringilo. 

ABSTRACT 
Lignin is one of the main structures of the cell wall of plants and its composition varies between taxonomic groups. The objective of this 
study was to review the structure of lignin, the process of lignification and the proposals of evolutionary patterns of its evolution. For 
this, the existing literature was reviewed, each point was analyzed and explained to finally propose an evolutionary hypothesis of the 
lignification process in angiosperms. Lignin is composed of various monomers and polymers, its biosynthesis occurs in plastids and 
endoplasmic reticulum, to subsequently polymerize through different enzymatic groups in the cell wall, where the cooperative lignification 
process occurs. During the evolution of plants, the genetic and enzymatic systems for the biosynthesis of lignin were developed. The 
two main types of lignin that accumulate in the tracheary elements of plants are guayacil-type lignin and syringyl/guayacil type lignin. The 
presence of syringyl in Isoetes, Selaginella, Lycophyta and algae species due to evolutionary convergence conferred resistance to pathogens 
and UV rays. The occurrence of catalytically functional promiscuous enzymes led to the appearance of lignin, suberine and cutin; in 
addition, the anatomical and chemical diversification of the cell wall in angiosperms allowed their distribution in different environmental 
conditions. 

KEYWORDS: evolutionary convergence, diversification, guaiacyl, lignin, syringyl. 

 

 

INTRODUCCIÓN 
La lignina es un heteropolímero que forma parte de la pared 
celular del tejido vascular de las plantas (Lucas et al., 2013) 

y provee rigidez estructural, así como resistencia a la tensión 
y presión hídrica (Renault, Werck-Reichhart y Weng, 2019); 
además, confiere soporte a células especializadas en sostén 
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y almacenamiento (Lewis y Yamamoto, 1990). La lignina y 
la celulosa son los principales componentes de la biomasa 
que pueden ser utilizados en la obtención de productos 
renovables, como materia prima para biocombustibles y en 
la identificación de especies maderables (De Souza et al., 
2020; Yu y Kim, 2020). El estudio de la lignina se enfoca 
principalmente en la industria (Ekpo, Ogali, Ofodile y 
Achugasim, 2016), muy pocos estudios se han dirigido a 
entender los procesos evolutivos como el desarrollo 
anatómico-químico de los tejidos conductores (Weng y 
Chapple, 2010).  

De manera general, se consideran tres tipos principales 
de lignina en plantas, uno que presenta lignina de tipo 
guayacilo e hidroxifenilo (briofitas, licofitas y 
gimnospermas) (Ralph, 2010), el que presenta lignina de 
tipo siringilo, guayacilo e hidroxifenilo (predominante en 
angiospermas) (Barros, Serk, Granlund y Pesquet, 2015) y 
el que presentan los pastos (monocotiledóneas) que se 
compone de guayacilo, hidroxifenilo y en menor medida 
siringilo (Ralph, 2010). La lignina es un polímero fenólico 
cuya composición es diversa por los diferentes monómeros 
y enlaces que la componen, que son resultado de las 
distintas enzimas que participan en la biosíntesis (Barros et 
al., 2015) y durante la polimerización en la pared celular 
(Ros Barceló et al., 2004). Por lo anterior, el objetivo de esta 
revisión fue documentar las características sobresalientes de 
la molécula de lignina, su biosíntesis, polimerización en la 
pared celular y el devenir evolutivo del proceso de 
lignificación. 

CARACTERÍSTICAS DE LA LIGNINA 

Molécula 

La lignina es un heteropolímero compuesto por tres 
principales monómeros fenilpropanoides (monolignoles) 
(Fig. 1): alcohol p-cumarílico (p-hidroxifenilo), coniferílico 
(guayacilo) y sinapílico (siringilo) (Grabber, 2005) (Fig. 1). 
También se consideran como monómeros estructurales a 
monolignoles acetilados (esteres de coniferilo y esteres de 
sinapilo), hidroxicinamatos (ácido p-cumárico, ferulato y 

sinapato), coniferaldehído, sinapaldehído, ácido ferúlico y 
alcohol 5-hidroxiconiferaldehído (Ralph, 2010). Los 
monolignoles se unen por más de veinte enlaces distintos; 
sin embargo, los más comunes son: β-O-4, β-5, 5-5, 4-O-5, 
β-β, β-1, por lo que se conforman estructuras de 
guayacilglicerol-β aril éter, fenilcumaranos, diarilpropanos, 
resinol, bifenil y difenil éter (Ralph et al., 2004). El principal 
enlace que se presenta en la lignina son los β-aril éteres (β-
O-4), que es débil comparado con los enlaces β-5, β-1, β-β, 
5-5, y 5-O-4 (Fig. 2) (Lu y Ralph, 2010; Ros Barceló et al., 
2004). Durante la lignificación, los hidroxicinamatos (p-
cumarato, ferulato y sinapato) son copolimerizados dentro 
del polímero de la lignina en conjunto con los monolignoles 
(Ralph, 2010). Estas copolimerizaciones favorecen la 
formación de ramificaciones en la estructura de la lignina 
además de que provocan la acetilación de polisacáridos, 
como es el caso de los pastos en que los ferulatos y el p-
cumarato acetilan a los arabinoxilanos (Tuyet Lam, Iiyama 
y Stone, 1992). Los hidroxicinamatos están involucrados 
principalmente en la unión entre polisacáridos-
polisacáridos, además de la unión entre polisacáridos y 
lignina (Ralph, 2010). 

Por lo tanto, los ferulatos funcionan como sitios de 
nucleación donde la lignina se acumula (Carnachan y 
Harris, 2000), debido a que unen los monómeros de la 
lignina (siringilo y guayacilo) con los polisacáridos 
estructurales (xilanos y pectinas principalmente) mediante 
enlaces covalentes de tipo 8-O-4’, 5-β, 4-O-β’, β-5’, 5-5’ y 
8-β’ (Kang et al., 2019) (Fig. 2). La presencia de enlaces de 
tipo éster, entre monolignoles ferulados (F-MG o MS), 
permite que, mediante métodos de degradación, los 
monómeros sean fácilmente separados al ser enlaces 
débiles. Tal es el caso de la lignina de tipo siringilo-guayacilo 
(angiospermas) que presenta un número mayor de enlaces 
ésteres de tipo β-O-4 (Fig. 3), por lo que es menos resistente 
a hidrolisis que la lignina de tipo guayacilo (gimnospermas) 
(Ralph, 2010). Una nueva lignina de tipo C (alcohol 
catequilo) se ha detectado en la cubierta de las semillas de 
especies como vainilla y en cactáceas (Chen et al., 2013) pero 
no en el tejido vascular de otras plantas (Do et al., 2007).
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FIGURA 1. Ruta biosintética de la lignina. PAL: Fenilalanina amonia liasa; TAL: Tirosina amonia liasa; C4H: cinamato 4-hidroxilasa; 4CL: 

4-cumarato, CoA ligasa; HCT: p-hidroxicinamoil-CoA, quinato shikimato p-hidroxicinamoiltransferasa; C3H: p-cumarato 3-hidroxilasa; 

CCoACOMT: cafeoil-CoA O-metiltransferasa; CCR: cinamoil-CoA reductasa; COMT: ácido caféico / 5-hidroxiconiferaldehído O-

metiltransferasa; CAD: alcohol cinamílico dehidrogenasa; CCR: cinamoil CoA reductasa; 4CL: 4-(hidroxi)cinamoil CoA ligasa; F5H: 

ferulato 5-hidrolasa; Acyl-T, aciltransferasa; Px: peroxidasas, Lac: lacasas, fp: fenilpropanoide (Modificado de Lu y Ralph, 2010; Tobimatsu 

et al., 2013). 
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FIGURA 2. Principales enlaces que se presentan durante la polimerización de la lignina. 

 
 
 
Biosíntesis de la lignina 

La biosíntesis de lignina es energéticamente más costosa 
que la de celulosas y hemicelulosas (Amthor, 2003). Las 
plantas no pueden degradar la lignina, por lo que el proceso 
de su síntesis está muy regulado (Lewis y Yamamoto, 1990). 
La fenilalanina (en pastos tirosina) es el principal precursor 
de los monómeros de lignina que se producen mediante la 
ruta metabólica del ácido shikímico (Maeda, 2016; Xie et al., 
2018); este proceso se desarrolla en los plastidios (Rippert, 
Puyaubert, Grisollet, Derrier y Matringe, 2009). La 
fenilalanina se transforma en ácido cinámico, luego en ácido 
p-cumárico y después en p-cumaril CoA. Esta molécula es 

sustrato en dos rutas, la que formará al alcohol p-cumarílico 
(o lignina H) y la más compleja que producirá los 
monómeros de la lignina: ácido ferúlico (ferulatos), ácido 
sinápico, alcohol catequilo (lignina C), alcohol coniferílico 
(lignina G) y alcohol sinapílico (lignina S; Fig. 1) (Barros et 
al., 2015). 

Las principales enzimas durante la formación de los 
monómeros son la fenilalanina amonia liasa (PAL), 
cinamato 4-hidroxilasa (C4H), 4-cumarato coenzima A 
ligasa (4CL), p-cumarato 3-hidroxilasa (C3H), quinato p-
hidroxicinamil-CoA (HCT), cinamil-CoA reductasa (CCR), 
alcohol cinamílico deshidrogenasa (CAD), cafeoil-CoA O-
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metiltransferasa (CCoAOMT) y ácido caféico O-
metiltransferasa (COMT) (Vanholme, Demedts, Morreel, 
Ralph y Boerjan, 2010). La diferenciación de los 
monolignoles se da por la enzima F5H (sintetiza siringilo) y 
de los subsecuentes pasos catalizados por las enzimas 
COMT, 4CL, CCR y CAD (Campbell y Sederoff, 1996). La 
expresión enzimática va a depender de factores y 
condiciones estresantes tanto bióticas como abióticas 
(Moura, Bonine, de Oliveira Fernandes, Dornelas y 
Mazzafera, 2010). La lignificación comienza en los 
plastidios y se desarrolla en el retículo endoplasmático, 
donde la citocromo P450 oxidoreductasa actúa, mientras 
que en el citoplasma participan las enzimas PAL, 4CL, 
CCoAOMT, CCR, CAD y COMT (Barros et al., 2015). 
Posteriormente, los monolignoles sintetizados (Fig. 1) son 
transportados a la pared celular mediante tres sistemas de 
transporte: difusión pasiva, exocitosis asociada a vesículas y 
transporte activo dependiente de ATP con transportadores 
ABC y/o antiportadores asociados a protones (Barros et al., 
2015).  

POLIMERIZACIÓN EN LA PARED CELULAR 
El proceso de polimerización de la lignina se da en la pared 
celular mediante la polimerización oxidativa de los 
monómeros secretados. Los radicales de los monómeros de 
lignina se unen entre sí y forman enlaces condensados C-C 
de tipo 5-5’, β-5’, β-β y β-1’ (Fig. 2) y no condensados C-O-
C como β-O-4’ (Ros Barceló et al., 2004). La polimerización 
de la lignina es de tipo “endwise”, debido a que los nuevos 
monómeros se acumulan y entrelazan con los dímeros, 
trímeros y oligómeros que se formaron primero, por lo que 
se obtiene una molécula lineal que en ocasiones se ramifica 
por la presencia de enlaces de tipo 5-5 o 4-O-5 (Lu y Ralph, 
2010). Después de la deshidrogenación de radicales, se 
polimerizan bajo un estricto control químico denominado 
“aleatorio”. Actualmente, se ha evidenciado la participación 
de proteínas líderes en la lignificación, las cuales son de dos 
tipos, las lacasas dependientes de O2 (Fig. 3) y las 
peroxidasas dependientes de H2O2 (Tobimatsu y Schuetz, 

2019). Las enzimas lacasas actúan directamente en todos los 
monolignoles de la lignina, mediante la oxido-reducción de 
los p-difenoles al utilizar el O2 (Liang, Davis, Gardner, Cai 
y Wu, 2006). Estas enzimas forman parte de la 
polimerización de lignina, su actividad se detecta durante la 
lignificación del xilema y la transcripción de lacasas se 
regula de manera similar a la de los monómeros 
(Koutaniemi, Malmberg, Simola, Teeri y Kärkönen, 2015). 
La presencia de diferentes isoformas de las lacasas se 
relaciona con el tipo celular donde se encuentran (Berthet 
et al., 2011), además se pueden observar dos o más lacasas 
activas al mismo tiempo (Zhao et al., 2013). 

Las peroxidasas son una familia multigénica (Valério, 
De Meyer, Penel y Dunand, 2004), el número de isoformas 
de esta enzima es mucho mayor que las lacasas, y durante la 
evolución de las plantas se incrementaron a cerca de 138 
enzimas en las angiospermas (Weng y Chapple, 2010). Las 
peroxidasas son afines al alcohol coniferilo (Fagerstedt, 
Kukkola, Koistinen, Takahashi y Marjamaa, 2010) y muy 
poco al alcohol sinapílico (Aoyama et al., 2002) debido a que 
el alcohol coniferilo es propenso a la oxidación (Russell, 
Forrester, Chesson y Burkitt, 1996). Pocas enzimas 
peroxidasas son capaces de oxidar al alcohol sinapílico por 
el impedimento estérico que se forma entre el sitio de unión 
y los metoxilos del alcohol sinapílico (Christensen et al., 
2001), debido a que se forman contactos hidrófobos 
desfavorables entre los átomos metoxi del alcohol 
sinapílico y el esqueleto de la enzima de la peroxidasa 
(Ostergaard et al., 2000). Las enzimas capaces de oxidar los 
monómeros de siringilo se presentan en las gimnospermas 
basales y en plantas ancestrales (Ros Barceló et al., 2004). 
Lacasas y peroxidasas pueden tener especificidad durante la 
polimerización de lignina, como en las células de la banda 
de Caspary (peroxidasas) y en los elementos traqueales 
(lacasas) (Zhao et al., 2013), mientras que, en algunas 
especies, ambas enzimas pueden actuar durante el proceso 
de lignificación de los elementos traqueales (ET) 
(Sterjiades, Dean, Gamble, Himmelsbach y Eriksson, 
1993).
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FIGURA 3. A) Representación de la polimerización de monómeros de lignina mediante lacasas y peroxidasas, B) Representación de una 
molécula de lignina de madera de gimnospermas, C) Molécula típica de lignina de madera de angiospermas. 
Lac: lacasa, Px: Peroxidasa, H: Hidroxifenilo, G: Guayacilo, S: Siringilo, F: ferulato (Modificado de Ros Barceló et al., 2004; Z. Liu, Persson y Sánchez-Rodríguez, 2015; 
Hilgers, Vincken, Gruppen & Kabel, 2018. 
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Tres posibles modelos para la acción de las enzimas se han 
propuesto: en el primero hay diferencia secuencial en la 
intervención debido a la especificidad del substrato, las 
lacasas producen oligolignoles y posteriormente las 
peroxidasas los ocupan para seguir polimerizando 
monómeros (Barros et al., 2015). En el segundo modelo, 
hay una intervención secuencial debido a una expresión 
espacio-temporal diferente, ambas enzimas actúan en 
diferentes sitios y momento, no solo en el tejido lignificado 
si no en las células cooperativas de la lignificación como el 
parénquima no lignificado (Ros Barceló, 2005). En el tercer 
modelo, hay formación de diferentes complejos 
proteínicos, donde los monolignoles se unen a otros 
complejos proteínicos que restringe los sitios de unión 
(Barros et al., 2015). Para que las peroxidasas realicen su 
función de polimerizar la lignina, la enzima NADPH 
oxidasa participa en este proceso al proveer a las peroxi-
dasas de oxígeno reactivo durante la lignificación (Zhu, Du, 
Qian, Zou y Hua, 2013). La NADPH oxidasa forma parte 
de una familia multigenética de enzimas (Lee, Rubio, 
Alassimone y Geldner, 2013) y su trabajo lo realiza en 
conjunto con tres dismutasas superoxidasas (CuZn-SOD, 
Fe-SOD y Mn-SOD) que utilizan radicales producidos por 
NADPH oxidasa y transforman en O2 y H2O2 que sirven 
como sustrato para el funcionamiento de las peroxidasas 
(Gill y Tuteja, 2010; Sirokmány y Geiszt, 2019). 

LIGNIFICACIÓN DE LA PARED CELULAR 
La lignificación de la pared celular inicia en las esquinas de 
la célula (Iiyama, Lam y Stone, 1994), donde la lignina 
comienza a acumularse y conforme madura la célula se 
acumula en la pared secundaria de la misma (De Micco y 
Aronne, 2007). Los ferulatos fungen como sitios de 
nucleación y la lignina comenzará su acumulación en las 
paredes celulares (Fig. 4) (Grabber, Ralph y Hatfield, 2002). 
Durante el desarrollo del xilema primario, la acumulación 
de la lignina se da principalmente en la pared secundaria 
(Serk, Gorzsás, Tuominen y Pesquet, 2015) y está 
compuesta de monómeros de guayacilo (Li et al., 2001). 
Durante la lignificación del xilema secundario, los 
guayacilos se presenta en pared primaria, aunque también 

se acumulan en pared secundaria en los elementos de vaso 
(Fig. 4) (Herbette et al., 2015). Los guayacilos se depositan 
al inicio del proceso de lignificación debido a que la madera 
rica en guayacilo engrosa más rápido por la estructura que 
permite la formación de puentes de hidrógeno, pero 
lignifica lento similar a la lignina siringilo (Grabber, 2005); 
por lo que los elementos conductores acumulan 
principalmente guayacilo y para ser funcionales debe ocurrir 
la muerte celular programada (Bollhöner, Prestele y 
Tuominen, 2012); mientras que la lignina siringilo (S) 
engrosa y lignifica lento y su acumulación en las paredes 
secundarias tarda más en desarrollarse (Ruel et al., 2002). 
Las fibras comienzan su lignificación en la lámina media y 
se acumula gradualmente a través de la pared primaria y 
secundaria (Donaldson, 2001). La acumulación de lignina 
de tipo S, es la que predomina en la pared celular y su 
polimerización se da por lacasas y peroxidasas (Zhao et al., 
2013). La acumulación de siringilo hipotéticamente se ha 
considerado que da mayor resistencia y soporte a la pared 
celular (Li et al., 2001). Para el proceso de lignificación en 
fibras no es necesaria la muerte celular como ocurre con los 
elementos traqueales, por lo que se puede presentar una 
lignificación cooperativa (Ménard y Pesquet, 2015).  

LIGNIFICACIÓN COOPERATIVA 
En el proceso de lignificación de los elementos traqueales 
(ET) ocurre la muerte celular programada para conducir 
agua a través del lumen celular (Kozela y Regan, 2003). 
Durante el crecimiento de la planta, los ET continúan el 
proceso de lignificación (Ménard y Pesquet, 2015) mediante 
lignificación cooperativa (Pesquet et al., 2013). La 
lignificación cooperativa o hipótesis del buen vecino se 
presenta cuando las células parenquimáticas (en ocasiones 
fibras) sintetizan monómeros de lignina que son 
transportados a los elementos traqueales y se acumulan en 
sus paredes secundarias (Fig. 4) (Smith et al., 2013). La 
cooperación en la lignificación puede variar en cada tejido, 
en el caso de los ET es de tipo cooperativa (Gorzsás, 
Stenlund, Persson, Trygg y Sundberg, 2011). En las fibras 
se presenta una relación semiautónoma con el parénquima 
adyacente (Smith et al., 2013); mientras que las células de la 
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banda de Caspary presentan autonomía en el proceso de 
lignificación (Alejandro et al., 2012). La lignificación 
cooperativa es un proceso descubierto recientemente en la 
evolución de las plantas, en especial en angiospermas por la 
presencia de fibras y parénquima que contribuyen a la 
lignificación de los elementos traqueales (Smith et al., 2017). 

PATRÓN DE EVOLUCIÓN DE LA LIGNIFICACIÓN 
La suberina, cutina y lignina son compuestos que tienen 
similitudes en sus funciones entre ellas la resistencia a la 
sequía y conferir rigidez estructural. Además, comparten 
una ruta biosintética ancestral (Fig. 5) (Renault et al., 2017). 
En el desarrollo de los microorganismos fotosintetizadores, 
los genes involucrados en la ruta del shikimato, tuvieron 
varias mutaciones que permitieron la diversificación de la 
misma. Adicionalmente algunas enzimas funcionaron 
como enzimas promiscuas catalíticamente funcionales 

(MPEs) que permitieron la biosíntesis de diferentes 
polímeros fenólicos estructurales (Niklas, Cobb y Matas, 
2017). Una hipótesis menciona que un polímero aromático 
de la cutícula de musgos fue el predecesor de la biosíntesis 
de suberina, lignina y cutina por la similitud entre rutas 
metabólicas (Renault et al., 2017).  

En algunos microorganismos, algas rojas y carófitas, se 
descubrió la presencia de amonia liasas derivadas de 
fenilalanina y tirosina, además de monómeros similares a la 
lignina (Sørensen et al., 2011; Barros et al., 2016). La 
suberina presenta similitud estructural con la lignina (Fig. 5) 
por el dominio aromático similar (Dixon et al., 2002). 
Además, las peroxidasas involucradas en la polimerización 
son muy parecidas entre lignina y suberina (Quiroga et al., 
2000) y los ferulatos se unen a la suberina de forma similar 
a la lignina (Marques, Rencoret, Gutiérrez, Del Río y 
Pereira, 2016).

 
 

FIGURA 4. Representación esquemática de la lignificación cooperativa y semicooperativa en el tejido vascular. 
A) Al terminar la diferenciación celular, la lignina se produce, transporta y polimeriza en la pared primaria y secundaria de ET y F. Puntos 
negros representan los sitios de nucleación de la lignina donde se acumula lignina de tipo G. B) La lignina termina de acumularse en los 
ET y F con la ayuda del parénquima que los rodea. C) Ocurre la muerte celular programada de ET; sin embargo, conforme madura la planta, 
el parénquima puede proporcionar monolignoles que se acumulan en las paredes de los ET para reforzar su pared. Los puntos fucsia 
muestran la acumulación de lignina de tipo S/G. D) una vez reforzada la pared se detiene el proceso de lignificación en esta zona. ET: 
elementos traqueales (traqueidas o elementos de vaso), F: fibras, Mn: monolignoles, P: parénquima. 
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FIGURA 5. Productos derivados de la ruta metabólica del ácido shikímico y de la ruta de los fenilpropanoides (Basado en Vogt, 2010). 
 
 
La aparición del tejido vascular y los procesos de 
lignificación tuvieron consecuencias fisiológicas y 
anatómicas durante el desarrollo de las plantas (Pittermann, 
2010). Surgieron diferenciales en el potencial hídrico 

negativo tanto en condiciones normales como estresantes 
(Malavasi, Davis y Malavasi, 2016) y se formó una tensión 
xilemática que provocó la aparición de una estructura firme 
y resistente en el tejido vascular para evitar el colapso de los 
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elementos traqueales (Liu, Luo y Zheng, 2018). La 
resistencia y firmeza que agregó la lignina a la pared celular 
permitió el desarrollo de elementos de vaso con diámetros 
de lumen amplio y consecuentemente un mayor flujo de 
agua (Kozela y Regan, 2003). La lignificación no inició en 
el tejido vascular, sino que comenzó en los tejidos 
periféricos de las protraqueofitas (Boyce et al., 2003). 
Durante el devenir evolutivo se generaron mecanismos 
para mantener la lignificación en el xilema y evitar su 
proliferación en los tejidos periféricos (Peter y Neale, 2004), 
un ejemplo de exaptación (Armbruster, Lee y Baldwin, 
2009). Durante el proceso de formación de los elementos 
traqueales intervinieron procesos hormonales que 
conllevaron a una expansión y elongación celular, 
deposición de celulosa en la pared secundaria, muerte 
programada, digestión del citoplasma y formación de un 
conducto vascular con flujo de agua (Růžička, Ursache, 
Hejátko y Helariutta, 2015). Seguramente la rigidez de la 
pared celular surgió posiblemente con fines biomecánicos 
(Espiñeira et al., 2011), contra patógenos (Popper et al., 
2011) y protección contra rayos UV (Martone et al., 2009), 
antes de la formación de las células conductoras (Weng y 
Chapple, 2010). 

Durante las primeras etapas evolutivas del tejido 
vascular de las primeras traqueofitas hubo un incremento 
en la complejidad y robustez mecánica de la pared celular 
de los ET (Edwards, 2003). Se desarrollaron las traqueidas 
de los helechos y en sus paredes celulares se acumuló 
lignina de tipo guayacilo (Luna et al., 2015). Es importante 
señalar que para Selaginella se presenta lignina de tipo S que 
es similar a la detectada en angiospermas (Weng, Banks y 
Chapple, 2008). Sin embargo, es derivada de una 
convergencia evolutiva ya que las enzimas que participan en 
la biosíntesis son diferentes entre ambos grupos (Weng y 
Chapple, 2010). La presencia de lignina de tipo guayacilo se 
mantuvo durante el desarrollo de las gimnospermas, pero 
algunas especies de angiospermas primitivas y 
gimnospermas compartieron características en la 
proporción de guayacilo y de siringilo en los elementos 
traqueales (Jin, Shao, Katsumata y Iiyama, 2007). Con el 
surgimiento de las angiospermas, la especialización de las 

células del tejido vascular (fibras, elementos de vaso, 
parénquima) (Scholz et al., 2013), permitió que este grupo 
abarcara nuevos nichos ecológicos en el tiempo (Feild et al., 
2000). La especialización del tejido vascular en 
angiospermas favoreció la aparición de estrategias para 
mitigar problemas de embolismos y cavitaciones (Maherali, 
Pockman y Jackson, 2004), como la diversificación en los 
engrosamientos de la pared celular secundaria (anulares, 
helicoidales, reticulares) (Sperry, 2003) que permitieron una 
mayor humectabilidad y eficiencia en el ascenso del agua 
(Kohonen y Helland, 2009), la diversificación de las 
punteaduras para evitar embolismos (Li et al., 2016), la 
diversificación de las placas de perforación (Pereira, 
Domingues-Junior, Jansen, Choat y Mazzafera, 2018), así 
como la diversificación en la composición de las moléculas 
de lignina de la pared celular (Espiñeira et al., 2011). Un 
ejemplo de esta diversificación anatómica y química 
estructural como protección contra patógenos se da en la 
familia Cactaceae (Reyes-Rivera, Canché-Escamilla, Soto-
Hernández y Terrazas, 2018; Maceda et al., 2019).  

El cambio evolutivo en las angiospermas de traqueidas 
a elementos de vaso, al principio no fue necesariamente una 
ventaja adaptativa al comprometerse la resistencia a la 
sequía de las angiospermas (Carlquist, 1992); por lo que los 
cambios se dieron en la venación de las hojas donde se 
desarrolló el tejido conductor con elementos de vasos 
(Feild y Wilsony, 2012) y en condiciones ambientales 
estables (Sperry, Hacke, Feild, Sano y Sikkema, 2007). Con 
el tiempo, la diversificación de los elementos de vaso, junto 
con la diversificación de la estructura de la lignina permitió 
que las angiospermas prevalecieran y dominaran diferentes 
ambientes (Augusto, Davies, Delzon y de Schrijver, 2014).  
Además de la diversificación anatómica y química, se 
diversificaron los complejos enzimáticos que participan en 
la polimerización de lignina y otros compuestos (Mohnen, 
2008). Por ejemplo, la presencia de peroxidasas se dio en 
plantas terrestres y prevaleció durante la evolución de los 
diferentes linajes (Duroux y Welinder, 2003), especialmente 
las peroxidasas que oxidan a los monómeros de 
siringaldehído que se han localizado en algas y briofitas, y 
que su estructura se diversificó en las angiospermas, por lo 
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que son consideradas como proteínas altamente expresadas 
que evolucionaron y continúan evolucionando lentamente 
(Gómez Ros et al., 2007). Es importante resaltar que las 
peroxidasas afines a guayacilo, constituyen al estado más 
derivado de la familia de peroxidasas debido a que su 
mecanismo de síntesis surge durante el desarrollo de las 
traqueofitas (Gómez Ros et al., 2007). La diversificación 
genética y enzimática de las peroxidasas permitió que la 
molécula de lignina se conformara de una manera más 
compleja que la detectada en gimnospermas y otros grupos 
basales donde predomina la lignina guayacilo (Bakalovic et 
al., 2006).  

Los monómeros de siringilo están presentes en una 
gran cantidad de grupos taxonómicos como Isoetes, 
Selaginella, Lycophyta, helechos acuáticos y gnetofitas 
(Weng, Li, Stout y Chapple, 2008), por convergencia 
evolutiva (Espiñeira et al., 2011) o como una característica 
basal y que posiblemente se suprimió durante la 
diversificación de las especies que presentan solo lignina de 
tipo guayacilo e hidroxifenilo (Martone et al., 2009). En 
angiospermas, la presencia de lignina con diferente 
proporción de S/G, formó una barrera física con una 
composición química diversa (Lacayo, Hwang, Ding y 
Thelen, 2013), lo que disminuyó la especificidad de enzimas 
degradadoras de la madera de bacterias y hongos al existir 
una aletoriedad en la polimerización de la lignina (Skyba, 
Douglas y Mansfield, 2013). Esta diversidad permitió que 
las angiospermas pudieran establecerse exitosamente en 
diferentes condiciones ambientales (Feild y Wilsony, 2012). 
Durante la divergencia de las angiospermas con respecto a 
las gimnospermas hubo cambios genéticos. Surgió un 
control maestro para la síntesis de lignina S asociado a la 
presencia de los genes F5H y NST, que únicamente se han 
encontrado en las angiospermas (Zhao et al., 2010) y 
posiblemente evolucionaron como método de defensa ante 
diferentes patógenos (Menden, Kohlhoff y Moerschbacher, 
2007). Incluso se han preservado en angiospermas marinas, 
donde su acumulación se da para proteger los tejidos de 
patógenos a pesar del costo energético que conlleva (Klap, 
Hemminga y Boon, 2000).  

La diversificación en la composición química de las 
angiospermas va de la mano con los porcentajes de lignina 
que se acumulan en las plantas, porque la proporción de 
S/G/H, varía de manera intraespecífica (posición en el 
tallo, tipo de célula, xilema o floema) (Pomar, Merino y 
Barceló, 2002) e interespecífica (tamaño de la planta, forma 
de crecimiento) (Ros Barceló et al., 2004). La hipótesis de 
diversificación anatómica y química de la pared celular aún 
está en discusión, pero abre la posibilidad de entender el 
por qué de la diversidad de las angiospermas. 

CONSIDERACIONES FINALES 
La lignina es un heteropolímero complejo en su estructura 
y evolución; la molécula se conforma por diversos 
monómeros. Durante la biosíntesis de la lignina participan 
complejos enzimáticos y genéticos como el gen F5H que 
determina la presencia del monómero de siringilo. La 
polimerización de la lignina en la pared celular se da por la 
acción de dos grupos enzimáticos principales, las 
peroxidasas y las lacasas. El número de peroxidasas es 
mayor que el de lacasas y su diversificación se dio con el 
surgimiento de las angiospermas. La lignificación 
cooperativa se da entre elementos conductores (traqueidas 
y elementos de vaso) y parénquima-fibras, lo que refuerza 
el tejido vascular durante el desarrollo de la planta.  
Durante la evolución surgieron cambios en el proceso de 
lignificación en las plantas, ya que permitieron la adaptación 
a diversas condiciones ambientales, principalmente 
terrestres. La aparición de la ruta biosintética de los 
monómeros de la lignina surgió inicialmente como método 
de defensa contra patógenos y como protección contra 
rayos UV, posteriormente se acumuló en los elementos 
traqueales y permitió el desarrollo del xilema de las plantas. 
Las enzimas promiscuas catalíticamente funcionales 
(MPEs), permitieron el surgimiento de nuevos polímeros 
estructurales, lo que dio origen a la lignina, la suberina y la 
cutina. La aparición de monómeros de siringilo a lo largo 
de la historia evolutiva de las plantas, nos muestra la 
convergencia evolutiva de los procesos biosintéticos; por lo 
que la diversificación anatómica y química de la pared 
celular, fue una de las ventajas adaptativas de las 
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angiospermas para distribuirse y adaptarse exitosamente a 
diferentes condiciones ambientales. 
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