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RESUMEN

La lignina es una de las principales estructuras de la pared celular de las plantas y varfa en su composicion entre los grupos taxon6émicos.
El objetivo de este estudio fue revisar la estructura de la lignina, el proceso de lignificacién y las propuestas de patrones de evolucion de
esta. Para esto se revisé la literatura existente, cada punto se analizé y explico para finalmente proponer una hipétesis evolutiva del
proceso de lignificacion en angiospermas. La lignina esta compuesta por diversos monémeros y polimeros, su biosintesis ocurre en
plastidios y reticulo endoplasmatico, para posteriormente polimerizarse mediante diferentes grupos enzimaticos en la pared celular, donde
ocurre el proceso de lignificaciéon cooperativa. Durante la evoluciéon de las plantas se desarrollaron los sistemas genéticos y enzimaticos
para la biosintesis de la lignina. Los dos principales tipos de lignina que se acumulan en los elementos traqueales de las plantas son lignina
de tipo guayacilo y lignina de tipo sitingilo/guayacilo. La presencia de sitingilo en especies de Lsoefes, Selaginella, Lycophyta y algas pot
convergencia evolutiva confirié resistencia a patégenos y rayos UV. La presencia de enzimas promiscuas cataliticamente funcionales
propicié la apariciéon de lignina, suberina y cutina, ademas de que la diversificacion anatémica y quimica de la pared celular en
angiospermas favorecieron su distribucion en diferentes condiciones ambientales.

PALABRAS CLAVE: convergencia evolutiva, diversificacién, guayacilo, lignina, siringilo.

ABSTRACT

Lignin is one of the main structures of the cell wall of plants and its composition varies between taxonomic groups. The objective of this
study was to review the structure of lignin, the process of lignification and the proposals of evolutionary patterns of its evolution. For
this, the existing literature was reviewed, each point was analyzed and explained to finally propose an evolutionary hypothesis of the
lignification process in angiosperms. Lignin is composed of various monomers and polymers, its biosynthesis occurs in plastids and
endoplasmic reticulum, to subsequently polymerize through different enzymatic groups in the cell wall, where the cooperative lignification
process occurs. During the evolution of plants, the genetic and enzymatic systems for the biosynthesis of lignin were developed. The
two main types of lignin that accumulate in the tracheaty elements of plants are guayacil-type lignin and syringyl/guayacil type lignin. The
presence of syringyl in Isoetes, Selaginella, Lycophyta and algae species due to evolutionary convergence conferred resistance to pathogens
and UV rays. The occurrence of catalytically functional promiscuous enzymes led to the appearance of lignin, suberine and cutin; in
addition, the anatomical and chemical diversification of the cell wall in angiosperms allowed their distribution in different environmental
conditions.

KEYWORDS: evolutionary convergence, diversification, guaiacyl, lignin, syringyl.

INTRODUCCION y provee rigidez estructural, asi como resistencia a la tensién
La lignina es un heteropolimero que forma parte de la pared y presion hidrica (Renault, Werck-Reichhart y Weng, 2019);

celular del tejido vascular de las plantas (Lucas ez a/., 2013) ademas, confiere soporte a células especializadas en sostén




y almacenamiento (Lewis y Yamamoto, 1990). La lignina y
la celulosa son los principales componentes de la biomasa
que pueden ser utilizados en la obtencién de productos
renovables, como materia prima para biocombustibles y en
la identificacién de especies maderables (De Souza ef al,
2020; Yu y Kim, 2020). El estudio de la lignina se enfoca
principalmente en la industria (Ekpo, Ogali, Ofodile y
Achugasim, 2016), muy pocos estudios se han dirigido a
entender los procesos evolutivos como el desarrollo
anatémico-quimico de los tejidos conductores (Weng y
Chapple, 2010).

De manera general, se consideran tres tipos principales
de lignina en plantas, uno que presenta lignina de tipo
guayacilo e hidroxifenilo  (briofitas, licofitas 'y
gimnospermas) (Ralph, 2010), el que presenta lignina de
tipo siringilo, guayacilo e hidroxifenilo (predominante en
angiospermas) (Barros, Serk, Granlund y Pesquet, 2015) y
el que presentan los pastos (monocotiledéneas) que se
compone de guayacilo, hidroxifenilo y en menor medida
siringilo (Ralph, 2010). La lignina es un polimero fendlico
cuya composicion es diversa por los diferentes monémeros
y enlaces que la componen, que son resultado de las
distintas enzimas que participan en la biosintesis (Barros e
al., 2015) y durante la polimerizacién en la pared celular
(Ros Barcel6 et al., 2004). Por lo anterior, el objetivo de esta
revisién fue documentar las caracteristicas sobresalientes de
la molécula de lignina, su biosintesis, polimerizacién en la

pared celular y el devenir evolutivo del proceso de

lignificacion.

CARACTERISTICAS DE LA LIGNINA

Molécula

La lignina es un heteropolimero compuesto por tres
principales monémeros fenilpropanoides (monolignoles)
(Fig. 1): alcohol p-cumarilico (p-hidroxifenilo), coniferilico
(guayacilo) y sinapilico (siringilo) (Grabber, 2005) (Fig. 1).
También se consideran como mondémeros estructurales a
monolignoles acetilados (esteres de coniferilo y esteres de

sinapilo), hidroxicinamatos (acido p-cumarico, ferulato y
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sinapato), coniferaldehido, sinapaldehido, acido fertlico y
alcohol 5-hidroxiconiferaldehido (Ralph, 2010). Los
monolignoles se unen por mas de veinte enlaces distintos;
sin embargo, los mas comunes son: -O-4, g-5, 5-5, 4-O-5,
p-p, (-1, por lo que se conforman estructuras de
guayacilglicerol-g aril éter, fenilcumaranos, diarilpropanos,
resinol, bifenil y difenil éter (Ralph ez /., 2004). El principal
enlace que se presenta en la lignina son los f-aril éteres (f-
O-4), que es débil comparado con los enlaces §-5, 5-1, -5,
5-5, y 5-0-4 (Fig. 2) (Lu y Ralph, 2010; Ros Barcel6 ¢t al.,
2004). Durante la lignificacion, los hidroxicinamatos (p-
cumarato, ferulato y sinapato) son copolimerizados dentro
del polimero de la lignina en conjunto con los monolignoles
(Ralph, 2010). Estas copolimerizaciones favorecen la
formacién de ramificaciones en la estructura de la lignina
ademas de que provocan la acetilaciéon de polisacaridos,
como es el caso de los pastos en que los ferulatos y el p-
cumarato acetilan a los arabinoxilanos (Tuyet Lam, liyama
y Stone, 1992). Los hidroxicinamatos estan involucrados
principalmente en la unién entre polisacaridos-
polisacaridos, ademas de la unién entre polisacaridos y
lignina (Ralph, 2010).

Por lo tanto, los ferulatos funcionan como sitios de
nucleacién donde la lignina se acumula (Carnachan vy
Harris, 2000), debido a que unen los mondémeros de la
lignina (siringilo y guayacilo) con los polisacaridos
estructurales (xilanos y pectinas principalmente) mediante
enlaces covalentes de tipo 8-O-4’, 5-8, 4-O-f’, 3-5°, 5-5’ y
8- (Kang e al., 2019) (Fig. 2). La presencia de enlaces de
tipo éster, entre monolignoles ferulados (F-MG o MS),
permite que, mediante métodos de degradacién, los
monoémeros sean facilmente separados al ser enlaces
débiles. Tal es el caso de la lignina de tipo siringilo-guayacilo
(angiospermas) que presenta un nimero mayor de enlaces
ésteres de tipo 3-O-4 (Fig. 3), por lo que es menos resistente
a hidrolisis que la lignina de tipo guayacilo (gimnospermas)
(Ralph, 2010). Una nueva lignina de tipo C (alcohol
catequilo) se ha detectado en la cubierta de las semillas de
especies como vainilla y en cacticeas (Chen e7 al., 2013) pero

no en el tejido vascular de otras plantas (Do ez al., 2007).
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FIGURA 1. Ruta biosintética de la lignina. PAL: Fenilalanina amonia liasa; TAL: Tirosina amonia liasa; C4H: cinamato 4-hidroxilasa; 4CL:

4-cumarato, CoA ligasa; HCT: p-hidroxicinamoil-CoA, quinato shikimato p-hidroxicinamoiltransferasa; C3H: p-cumarato 3

-hidroxilasa;

CCoACOMT: cafeoil-CoA O-metiltransferasa; CCR: cinamoil-CoA reductasa; COMT: acido caféico / 5-hidroxiconiferaldehido O-

metiltransferasa; CAD: alcohol cinamilico dehidrogenasa; CCR: cinamoil CoA reductasa; 4CL: 4-(hidroxi)cinamoil CoA ligasa; F5H:

ferulato 5-hidrolasa; Acyl-T, aciltransferasa; Px: peroxidasas, Lac: lacasas, fp: fenilpropanoide (Modificado de Lu y Ralph, 2010; Tobimatsu

et al., 2013).
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FIGURA 2. Principales enlaces que se presentan durante la polimerizacién de la lignina.

Biosintesis de la lignina

La biosintesis de lignina es energéticamente mds costosa
que la de celulosas y hemicelulosas (Amthor, 2003). Las
plantas no pueden degradar la lignina, por lo que el proceso
de su sintesis esta muy regulado (Lewis y Yamamoto, 1990).
La fenilalanina (en pastos tirosina) es el principal precursor
de los mondémeros de lignina que se producen mediante la
ruta metabélica del acido shikimico (Maeda, 2016; Xie ¢ .,
2018); este proceso se desarrolla en los plastidios (Rippert,
Puyaubert, Grisollet, Dertrier y Matringe, 2009). La
fenilalanina se transforma en 4cido cinamico, luego en 4cido

p-cumarico y después en p-cumaril CoA. Esta molécula es

sustrato en dos rutas, la que formara al alcohol p-cumarilico
(o lignina H) y la mds compleja que producird los
monémeros de la lignina: 4cido ferulico (ferulatos), acido
sinapico, alcohol catequilo (lignina C), alcohol coniferilico
(lignina G) y alcohol sinapilico (lignina S; Fig. 1) (Barros e#
al., 2015).

Las principales enzimas durante la formacién de los
monoémeros son la fenilalanina amonia liasa (PAL),
cinamato 4-hidroxilasa (C4H), 4-cumarato coenzima A
ligasa (4CL), p-cumarato 3-hidroxilasa (C3H), quinato p-
hidroxicinamil-CoA (HCT), cinamil-CoA reductasa (CCR),
alcohol cinamfilico deshidrogenasa (CAD), cafeoil-CoA O-
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metiltransferasa (CCoAOMT) vy 4acido caféico O-
metiltransferasa (COMT) (Vanholme, Demedts, Morreel,
Ralph y Boerjan, 2010). La diferenciacién de los
monolignoles se da por la enzima F5H (sintetiza siringilo) y
de los subsecuentes pasos catalizados por las enzimas
COMT, 4CL, CCR y CAD (Campbell y Sederoff, 1996). La
expresion enzimatica va a depender de factores vy
condiciones estresantes tanto bidticas como abidticas
(Moura, Bonine, de Oliveira Fernandes, Dornelas y
Mazzafera, 2010). La lignificacién comienza en los
plastidios y se desatrolla en el reticulo endoplasmatico,
donde la citoctomo P450 oxidoreductasa actia, mientras
que en el citoplasma participan las enzimas PAL, 4CL,
CCoAOMT, CCR, CAD y COMT (Barros et al., 2015).
Posteriormente, los monolignoles sintetizados (Fig. 1) son
transportados a la pared celular mediante tres sistemas de
transporte: difusion pasiva, exocitosis asociada a vesiculas y
transporte activo dependiente de ATP con transportadores
ABCy/o antiportadores asociados a protones (Barros ez al.,
2015).

POLIMERIZACION EN LA PARED CELULAR

El proceso de polimerizacion de la lignina se da en la pared
celular mediante la polimerizaciéon oxidativa de los
mondmeros secretados. Los radicales de los monémeros de
lignina se unen entre si y forman enlaces condensados C-C
de tipo 5-5°, 8-5’, B-B y B-1” (Fig. 2) y no condensados C-O-
C como B-O-4" (Ros Barcel6 ez al., 2004). La polimerizacién
de la lignina es de tipo “endwise”, debido a que los nuevos
monoémeros se acumulan y entrelazan con los dimeros,
trimeros y oligdmeros que se formaron primero, por lo que
se obtiene una molécula lineal que en ocasiones se ramifica
por la presencia de enlaces de tipo 5-5 0 4-O-5 (Lu y Ralph,
2010). Después de la deshidrogenacion de radicales, se
polimerizan bajo un estricto control quimico denominado
“aleatorio”. Actualmente, se ha evidenciado la participacién
de proteinas lideres en la lignificacién, las cuales son de dos
tipos, las lacasas dependientes de O (Fig. 3) y las

peroxidasas dependientes de HoO» (Tobimatsu y Schuetz,
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2019). Las enzimas lacasas actian directamente en todos los
monolignoles de la lignina, mediante la oxido-reduccién de
los p-difenoles al utilizar el O» (Liang, Davis, Gardner, Cai
y Wu, 20006). Estas enzimas forman parte de la
polimerizacion de lignina, su actividad se detecta durante la
lignificacién del xilema y la transcripcién de lacasas se
regula de manera similar a la de los mondémeros
(Koutaniemi, Malmberg, Simola, Teeri y Kirkoénen, 2015).
La presencia de diferentes isoformas de las lacasas se
relaciona con el tipo celular donde se encuentran (Berthet
¢t al., 2011), ademas se pueden observar dos o mas lacasas
activas al mismo tiempo (Zhao ez al., 2013).

Las peroxidasas son una familia multigénica (Valério,
De Meyer, Penel y Dunand, 2004), el numero de isoformas
de esta enzima es mucho mayor que las lacasas, y durante la
evolucién de las plantas se incrementaron a cerca de 138
enzimas en las angiospermas (Weng y Chapple, 2010). Las
peroxidasas son afines al alcohol coniferilo (Fagerstedst,
Kukkola, Koistinen, Takahashi y Marjamaa, 2010) y muy
poco al alcohol sinapilico (Aoyama ¢ al., 2002) debido a que
el alcohol coniferilo es propenso a la oxidaciéon (Russell,
Forrester, Chesson y Burkitt, 1996). Pocas enzimas
peroxidasas son capaces de oxidar al alcohol sinapilico por
el impedimento estérico que se forma entre el sitio de unién
y los metoxilos del alcohol sinapilico (Christensen e/ 4/,
2001), debido a que se forman contactos hidréfobos
desfavorables entre los 4atomos metoxi del alcohol
sinapilico y el esqueleto de la enzima de la peroxidasa
(Ostergaard ef al., 2000). Las enzimas capaces de oxidar los
monoémeros de siringilo se presentan en las gimnospermas
basales y en plantas ancestrales (Ros Barcel6 ¢ al., 2004).
Lacasas y peroxidasas pueden tener especificidad durante la
polimerizacién de lignina, como en las células de la banda
de Caspary (peroxidasas) y en los elementos traqueales
(lacasas) (Zhao e al, 2013), mientras que, en algunas
especies, ambas enzimas pueden actuar durante el proceso
de lignificaciéon de los elementos traqueales (ET)
(Sterjiades, Dean, Gamble, Himmelsbach y Eriksson,
1993).
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FIGURA 3. A) Representacion de la polimerizacién de mondémeros de lignina mediante lacasas y peroxidasas, B) Representacion de una
molécula de lignina de madera de gimnospermas, C) Molécula tipica de lignina de madera de angiospermas.

Lac: lacasa, Px: Peroxidasa, H: Hidroxifenilo, G: Guayacilo, S: Siringilo, F: ferulato (Modificado de Ros Barceld et al, 2004; Z. Liu, Persson y Sanchez-Rodriguez, 2015;

Hilgers, Vincken, Gruppen & Kabel, 2018.
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Tres posibles modelos para la accion de las enzimas se han
propuesto: en el primero hay diferencia secuencial en la
intervenciéon debido a la especificidad del substrato, las
lacasas producen oligolignoles y posteriormente las
peroxidasas los ocupan para seguir polimerizando
monoémeros (Barros ef al, 2015). En el segundo modelo,
hay una intervencién secuencial debido a una expresion
espacio-temporal diferente, ambas enzimas actian en
diferentes sitios y momento, no solo en el tejido lignificado
si no en las células cooperativas de la lignificacion como el
parénquima no lignificado (Ros Barcel6, 2005). En el tercer
modelo, hay formacién de diferentes complejos
proteinicos, donde los monolignoles se unen a otros
complejos proteinicos que restringe los sitios de unién
(Barros ez al., 2015). Para que las peroxidasas realicen su
funcién de polimerizar la lignina, la enzima NADPH
oxidasa participa en este proceso al proveer a las peroxi-
dasas de oxigeno reactivo durante la lignificacién (Zhu, Du,
Qian, Zou y Hua, 2013). La NADPH oxidasa forma parte
de una familia multigenética de enzimas (Lee, Rubio,
Alassimone y Geldner, 2013) y su trabajo lo realiza en
conjunto con tres dismutasas superoxidasas (CuZn-SOD,
Fe-SOD y Mn-SOD) que utilizan radicales producidos por
NADPH oxidasa y transforman en Oz y H2O» que sirven
como sustrato para el funcionamiento de las peroxidasas

(Gill y Tuteja, 2010; Sirokmany y Geiszt, 2019).

LIGNIFICACION DE LA PARED CELULAR

La lignificacién de la pared celular inicia en las esquinas de
la célula (liyama, Lam y Stone, 1994), donde la lignina
comienza a acumularse y conforme madura la célula se
acumula en la pared secundaria de la misma (De Micco y
Aronne, 2007). Los ferulatos fungen como sitios de
nucleacién y la lignina comenzard su acumulaciéon en las
paredes celulares (Fig. 4) (Grabber, Ralph y Hatfield, 2002).
Durante el desarrollo del xilema primario, la acumulacién
de la lignina se da principalmente en la pared secundaria
(Serk, Gorzsas, Tuominen y Pesquet, 2015) y estd
compuesta de monémeros de guayacilo (Li e a/, 2001).
Durante la lignificaciéon del xilema secundario, los

guayacilos se presenta en pared primaria, aunque también
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se acumulan en pared secundaria en los elementos de vaso
(Fig. 4) (Herbette ¢z al., 2015). Los guayacilos se depositan
al inicio del proceso de lignificacién debido a que la madera
rica en guayacilo engrosa mas rapido por la estructura que
permite la formaciéon de puentes de hidrégeno, pero
lignifica lento similar a la lignina siringilo (Grabber, 2005);
por lo que los elementos conductores acumulan
principalmente guayacilo y para ser funcionales debe ocurtir
la muerte celular programada (Bollhoner, Prestele y
Tuominen, 2012); mientras que la lignina siringilo (S)
engrosa y lignifica lento y su acumulacién en las paredes
secundarias tarda mds en desarrollarse (Ruel ez a/., 2002).

Las fibras comienzan su lignificacién en la lamina media y
se acumula gradualmente a través de la pared primaria y
secundaria (Donaldson, 2001). La acumulacién de lignina
de tipo S, es la que predomina en la pared celular y su
polimerizacién se da por lacasas y peroxidasas (Zhao e7 al.,
2013). La acumulacién de siringilo hipotéticamente se ha
considerado que da mayor resistencia y soporte a la pared
celular (Li ez al, 2001). Para el proceso de lignificacion en
fibras no es necesaria la muerte celular como ocurre con los
elementos traqueales, por lo que se puede presentar una

lignificacion cooperativa (Ménard y Pesquet, 2015).

LIGNIFICACION COOPERATIVA

En el proceso de lignificacién de los elementos traqueales
(ET) ocurre la muerte celular programada para conducir
agua a través del lumen celular (Kozela y Regan, 2003).
Durante el crecimiento de la planta, los ET contindan el
proceso de lignificacion (Ménard y Pesquet, 2015) mediante
lignificacién cooperativa (Pesquet e al, 2013). La
lignificacién cooperativa o hipétesis del buen vecino se
presenta cuando las células parenquimaticas (en ocasiones
fibras) sintetizan mondémeros de lignina que son
transportados a los elementos traqueales y se acumulan en
sus paredes secundarias (Fig. 4) (Smith ez @/, 2013). La
cooperacion en la lignificacién puede variar en cada tejido,
en el caso de los ET es de tipo cooperativa (Gorzsas,
Stenlund, Persson, Trygg y Sundberg, 2011). En las fibras
se presenta una relacién semiautbnoma con el parénquima

adyacente (Smith e a/., 2013); mientras que las células de la



banda de Caspary presentan autonomia en el proceso de
lignificacién (Alejandro et al, 2012). La lignificacion
cooperativa es un proceso descubierto recientemente en la
evolucién de las plantas, en especial en angiospermas por la
presencia de fibras y parénquima que contribuyen a la

lignificacién de los elementos traqueales (Smith e a/., 2017).

PATRON DE EVOLUCION DE LA LIGNIFICACION
La suberina, cutina y lignina son compuestos que tienen
similitudes en sus funciones entre ellas la resistencia a la
sequia y conferir rigidez estructural. Ademas, comparten
una ruta biosintética ancestral (Fig. 5) (Renault ez a/, 2017).
En el desatrollo de los microorganismos fotosintetizadores,
los genes involucrados en la ruta del shikimato, tuvieron
varias mutaciones que permitieron la diversificacién de la
misma. Adicionalmente algunas enzimas funcionaron

como enzimas promiscuas cataliticamente funcionales
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(MPEs) que permitieron la biosintesis de diferentes
polimeros fenodlicos estructurales (Niklas, Cobb y Matas,
2017). Una hipétesis menciona que un polimero aromatico
de la cuticula de musgos fue el predecesor de la biosintesis
de suberina, lignina y cutina por la similitud entre rutas
metabolicas (Renault e a/., 2017).

En algunos microorganismos, algas rojas y carofitas, se
descubrié la presencia de amonia liasas derivadas de
fenilalanina y tirosina, ademas de monémeros similares a la
lignina (Serensen et al., 2011; Barros et al, 2016). La
suberina presenta similitud estructural con la lignina (Fig. 5)
por el dominio aromatico similar (Dixon e al, 2002).
Ademias, las peroxidasas involucradas en la polimerizacién
son muy parecidas entre lignina y suberina (Quiroga e7 al.,
2000) y los ferulatos se unen a la suberina de forma similar
a la lignina (Marques, Rencoret, Gutiérrez, Del Rio y
Pereira, 20106).

-~ —

FIGURA 4. Representacion esquematica de la lignificaciéon cooperativa y semicooperativa en el tejido vascular.

A) Al terminar la diferenciacion celular, la lignina se produce, transporta y polimeriza en la pared primaria y secundaria de ET y F. Puntos
negros representan los sitios de nucleacion de la lignina donde se acumula lignina de tipo G. B) La lignina termina de acumularse en los
ETy F con la ayuda del parénquima que los rodea. C) Ocurre la muerte celular programada de ET; sin embargo, conforme madura la planta,
el parénquima puede proporcionar monolignoles que se acumulan en las paredes de los ET para reforzar su pared. Los puntos fucsia
muestran la acumulacion de lignina de tipo S/G. D) una vez reforzada la pared se detiene el proceso de lignificacion en esta zona. ET:
elementos traqueales (tragueidas o elementos de vaso), F: fibras, Mn: monolignoles, P: parénquima.
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FIGURA 5. Productos derivados de la ruta metabdlica del acido shikimico y de la ruta de los fenilpropanoides (Basado en Vogt, 2010).

La aparicién del tejido vascular y los procesos de

lignificaciéon  tuvieron consecuencias fisiologicas y

anatémicas durante el desarrollo de las plantas (Pittermann,

2010). Surgieron diferenciales en el potencial hidrico

negativo tanto en condiciones normales como estresantes
(Malavasi, Davis y Malavasi, 2016) y se formé una tension
xilematica que provocé la aparicién de una estructura firme

y resistente en el tejido vascular para evitar el colapso de los



elementos traqueales (Liu, Luo y Zheng, 2018). lLa
resistencia y firmeza que agregd la lignina a la pared celular
permiti6 el desarrollo de elementos de vaso con diametros
de lumen amplio y consecuentemente un mayor flujo de
agua (Kozela y Regan, 2003). La lignificacién no inicié en
el tejido vascular, sino que comenzé en los tejidos
periféricos de las protraqueofitas (Boyce ez al, 2003).
Durante el devenir evolutivo se generaron mecanismos
para mantener la lignificacién en el xilema y evitar su
proliferacion en los tejidos periféricos (Peter y Neale, 2004),
un ejemplo de exaptaciéon (Armbruster, Lee y Baldwin,
2009). Durante el proceso de formacién de los elementos
traqueales intervinieron procesos hormonales que
conllevaron a una expansién y elongaciéon celular,
deposicion de celulosa en la pared secundaria, muerte
programada, digestion del citoplasma y formaciéon de un
conducto vascular con flujo de agua (Ruzic¢ka, Ursache,
Hejatko y Helariutta, 2015). Seguramente la rigidez de la
pared celular surgié posiblemente con fines biomecanicos
(Espifieira ez al, 2011), contra patégenos (Popper et al.,
2011) y proteccién contra rayos UV (Martone ez al., 2009),
antes de la formacién de las células conductoras (Weng y
Chapple, 2010).

Durante las primeras etapas evolutivas del tejido
vascular de las primeras traqueofitas hubo un incremento
en la complejidad y robustez mecanica de la pared celular
de los ET (Edwards, 2003). Se desarrollaron las traqueidas
de los helechos y en sus paredes celulares se acumuld
lignina de tipo guayacilo (Luna ¢ 4/, 2015). Es importante
sefialar que para Selaginella se presenta lignina de tipo S que
es similar a la detectada en angiospermas (Weng, Banks y
Chapple, 2008). Sin embargo, es derivada de una
convergencia evolutiva ya que las enzimas que participan en
la biosintesis son diferentes entre ambos grupos (Weng y
Chapple, 2010). La presencia de lignina de tipo guayacilo se
mantuvo durante el desarrollo de las gimnospermas, pero
algunas  especies  de

angiospermas  primitivas y

gimnospermas  compartieron  caracteristicas en la
proporciéon de guayacilo y de siringilo en los elementos
traqueales (Jin, Shao, Katsumata y liyama, 2007). Con el

surgimiento de las angiospermas, la especializacién de las
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células del tejido vascular (fibras, elementos de vaso,
parénquima) (Scholz ez al., 2013), permitié que este grupo
abarcara nuevos nichos ecolégicos en el tiempo (Feild ez a/,
2000). La

angiospermas favorecié la apariciéon de estrategias para

especializaciéon  del tejido vascular en

mitigar problemas de embolismos y cavitaciones (Maherali,
Pockman y Jackson, 2004), como la diversificaciéon en los
engrosamientos de la pared celular secundaria (anulares,
helicoidales, reticulares) (Sperry, 2003) que permitieron una
mayor humectabilidad y eficiencia en el ascenso del agua
(Kohonen y Helland, 2009), la diversificaciéon de las
punteaduras para evitar embolismos (Li e al, 2016), la
diversificacion de las placas de perforaciéon (Pereira,
Domingues-Junior, Jansen, Choat y Mazzafera, 2018), as{
como la diversificacién en la composicion de las moléculas
de lignina de la pared celular (Espifieira ez a/, 2011). Un
ejemplo de esta diversificacién anatémica y quimica
estructural como proteccién contra patdgenos se da en la
familia Cactaceae (Reyes-Rivera, Canché-Escamilla, Soto-
Hernandez y Terrazas, 2018; Maceda ef al., 2019).

El cambio evolutivo en las angiospermas de traqueidas
a elementos de vaso, al principio no fue necesariamente una
ventaja adaptativa al comprometerse la resistencia a la
sequia de las angiospermas (Carlquist, 1992); por lo que los
cambios se dieron en la venacién de las hojas donde se
desarrollé el tejido conductor con elementos de vasos
(Feild y Wilsony, 2012) y en condiciones ambientales
estables (Sperry, Hacke, Feild, Sano y Sikkema, 2007). Con
el tiempo, la diversificacién de los elementos de vaso, junto
con la diversificacién de la estructura de la lignina permitié
que las angiospermas prevalecieran y dominaran diferentes
ambientes (Augusto, Davies, Delzon y de Schrijver, 2014).
Ademas de la diversificacion anatémica y quimica, se
diversificaron los complejos enzimaticos que participan en
la polimerizaciéon de lignina y otros compuestos (Mohnen,
2008). Por ejemplo, la presencia de peroxidasas se dio en
plantas terrestres y prevalecié durante la evolucién de los
diferentes linajes (Duroux y Welinder, 2003), especialmente
las  peroxidasas que oxidan a los mondémeros de
siringaldehido que se han localizado en algas y briofitas, y

que su estructura se diversificd en las angiospermas, por lo
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que son consideradas como proteinas altamente expresadas
que evolucionaron y continian evolucionando lentamente
(Gomez Ros et al., 2007). Es importante resaltar que las
peroxidasas afines a guayacilo, constituyen al estado mas
derivado de la familia de peroxidasas debido a que su
mecanismo de sintesis surge durante el desarrollo de las
traqueofitas (Gémez Ros ¢ al, 2007). La diversificacion
genética y enzimatica de las peroxidasas permitié que la
molécula de lignina se conformara de una manera mas
compleja que la detectada en gimnospermas y otros grupos
basales donde predomina la lignina guayacilo (Bakalovic ez
al., 20006).

Los mondémeros de siringilo estin presentes en una
gran cantidad de grupos taxonémicos como Isoetes,
Selaginella, Lycophyta, helechos acuaticos y gnetofitas
(Weng, Li, Stout y Chapple, 2008), por convergencia
evolutiva (Espineira ef al., 2011) o como una caracteristica
basal y que posiblemente se suprimié durante la
diversificacion de las especies que presentan solo lignina de
tipo guayacilo e hidroxifenilo (Martone e al, 2009). En
angiospermas, la presencia de lignina con diferente
proporciéon de S/G, formé una barrera fisica con una
composicién quimica diversa (Lacayo, Hwang, Ding y
Thelen, 2013), lo que disminuy6 la especificidad de enzimas
degradadoras de la madera de bacterias y hongos al existir
una aletoriedad en la polimerizacién de la lignina (Skyba,
Douglas y Manstield, 2013). Esta diversidad permitié6 que
las angiospermas pudieran establecerse exitosamente en
diferentes condiciones ambientales (Feild y Wilsony, 2012).
Durante la divergencia de las angiospermas con respecto a
las gimnospermas hubo cambios genéticos. Surgié un
control maestro para la sintesis de lignina S asociado a la
presencia de los genes F5H y NST, que unicamente se han
encontrado en las angiospermas (Zhao e al, 2010) y
posiblemente evolucionaron como método de defensa ante
diferentes patégenos (Menden, Kohlhoff y Moerschbacher,
2007). Incluso se han preservado en angiospermas marinas,
donde su acumulacién se da para proteger los tejidos de
patégenos a pesar del costo energético que conlleva (Klap,

Hemminga y Boon, 2000).
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La diversificacién en la composiciéon quimica de las
angiospermas va de la mano con los porcentajes de lignina
que se acumulan en las plantas, porque la proporcion de
S/G/H, varfa de manera intraespecifica (posicion en el
tallo, tipo de célula, xilema o floema) (Pomar, Merino y
Barcel6, 2002) e interespecifica (tamafio de la planta, forma
de crecimiento) (Ros Barcel6 ef al., 2004). La hipotesis de
diversificacion anatémica y quimica de la pared celular aun
esta en discusion, pero abre la posibilidad de entender el

por qué de la diversidad de las angiospermas.

CONSIDERACIONES FINALES

La lignina es un heteropolimero complejo en su estructura
y evolucién; la molécula se conforma por diversos
monémeros. Durante la biosintesis de la lignina participan
complejos enzimaticos y genéticos como el gen F5H que
determina la presencia del mondémero de siringilo. La
polimerizaciéon de la lignina en la pared celular se da por la
accion de dos grupos enziméticos principales, las
peroxidasas y las lacasas. El nimero de peroxidasas es
mayor que el de lacasas y su diversificacién se dio con el
surgimiento de las angiospermas. lLa lignificacién
cooperativa se da entre elementos conductores (traqueidas
y elementos de vaso) y parénquima-fibras, lo que refuerza
el tejido vascular durante el desarrollo de la planta.
Durante la evolucién surgieron cambios en el proceso de
lignificacion en las plantas, ya que permitieron la adaptacién
a diversas condiciones ambientales, principalmente
terrestres. La apariciéon de la ruta biosintética de los
monémeros de la lignina surgié inicialmente como método
de defensa contra patégenos y como proteccién contra
rayos UV, posteriormente se acumuld en los elementos
traqueales y permitié el desarrollo del xilema de las plantas.
Las enzimas promiscuas cataliticamente funcionales
(MPEs), permitieron el surgimiento de nuevos polimeros
estructurales, lo que dio origen a la lignina, la suberina y la
cutina. La apariciéon de mondémeros de siringilo a lo largo
de la historia evolutiva de las plantas, nos muestra la
convergencia evolutiva de los procesos biosintéticos; por lo
que la diversificacién anatémica y quimica de la pared

celular, fue una de las ventajas adaptativas de las



angiospermas para distribuirse y adaptarse exitosamente a

diferentes condiciones ambientales.
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