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Abstract. With rare exceptions, explicit particle number dependence
(N,-dependence) in approximate density functionals is viewed as a
serious deficiency because of apparent size-consistency issues. In
contrast, there are multiple manifestations of explicit N,-dependence
in density functional bounds (including the Gézquez-Robles kinetic
energy bound), constraints, and approximations. We argue that these
constitute inescapable motivation for exploring N ,-dependent approxi-
mate functionals. Doing so would be consistent with a mostly-ignored
result of Lieb about properties of the universal functional.

Key words: Density functional theory, Hohenberg-Kohn theory,
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Resumen. Con contadas excepciones, en la teoria de funcionales de
la densidad aproximada la dependencia explicita en el numero de
particulas se visualiza como una seria deficiencia debido a proble-
mas aparentes asociados con la consistencia en tamafio. En contraste,
existen multiples manifestaciones de cotas (como la cota de Gazquez-
Robles de la energia cinética), restricciones y aproximaciones de los
funcionales de la densidad las cuales tienen una dependencia explicita
en el numero de particulas. En este trabajo discutimos que lo anterior
es una motivacion ineludible para explorar la busqueda y construccion
de funcionales aproximados con dependencia explicita en el nimero
de particulas. Hacerlo sera consistente con un resultado debido a Lieb,
y muy frecuentemente ignorado, respecto a la estructura del funcional
universal.

Palabras Clave: Teoria de funcionales de la densidad, teoria de Ho-
henberg-Kohn, teoria de Kohn-Sham, dependencia en el numero de
particulas, consistencia en tamafio.

Dedication and Apology

We have had the privilege and pleasure of professional discus-
sion, research collaboration, and personal friendship with José
Luis Gazquez for many years. Broadminded and concerned as
always for the growth of his students, Prof. Gazquez sent AVA,
as a graduate student, to Gainesville to attend one of the last
QTP Winter Institutes. Thus the co-authors of this paper met.
Sometime earlier than that, SBT had met Gazquez, but now
many years later, the actual year is vague. In the odd random-
ness that seems to characterize many career paths, the three of
us did not publish together until 2012! In fact, the co-authors
of this paper first published together in 2009, more than 20
years after our first meeting. Both of us, however, have been
witnesses to the many key roles played by Prof. Gazquez in
the development of density functional theory as a major topic
in Mexican theoretical chemistry and materials physics and
in physical science research and education in Mexico more
generally. And, in the last year, our long relationship suddenly
has flowered in four papers [1-4], with more expected. It is
therefore with admiration and affection that we present this
exploratory paper on a possible new direction for development
of approximate density functionals.

This paper was intended for the issue honoring Prof.
Gazquez. An unfortunate misunderstanding on the part of the
first author led to missing the deadline. We apologize.

Size-extensivity

In both many-body physics and quantum chemistry, there is a
deep aversion to methods which have an explicit dependence
on electron number N,, because of possible violation of both
size-extensivity and size-consistency. Size-consistency is the
requirement that the energy of a system consisting of two non-
interacting subsystems equals the sum of the energies of the
isolated subsystems, i. e., E(4B) = E(4) + E(B). The related
concept, size-extensivity, refers to the fact that a quantity scales
proportionally to the particle number: the total energy is an ex-
ample. The aversion to number dependence is both reasonable
and understandable. Consider, for example, the understanding
of configuration interaction methods. There have been years
of emphasis in quantum chemistry on the importance of both
size-consistency and extensivity [the literature is too large to
cite in detail with fairness, but see, for example, Nooijen et al.
[5], Bartlett and Musial [6] and the many references in both].
That emphasis has led, for example, to a clear understanding
of the relationship between formal properties of a full-CI and
of various approximations. Part of the basic appeal of coupled-
cluster theory lies in its correctness in this regard at each cluster
order: systematic approximations without number-dependent
difficulties are assured.

That aversion to number-dependence is not so commonly
discussed in density functional theory (DFT) [7-12] but it is
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there. Because the constrained-search formulation [13, 14] of
DFT follows from the ordinary variation principle, the assump-
tion is that the ground-state energy functional E[n] is size-ex-
tensive. (We denote the electron density as n(r).) Indeed, the
very language of a “universal functional” fits with that assump-
tion. Savin has discussed exceptions related to degeneracies
[15]. In our experience, such exceptions generally are viewed
as failures or dismissed as inconsequential oddities. Certainly,
the dependences on the number of electrons and the degeneracy
of the ground states are fundamental and related issues [16].
However, for the sake of simplicity, it may be helpful and
useful to approach the former problem first, hoping that from
its study we will find out more formal and rigorous ways to
tackle the latter. Some steps in this direction have already been
explored [17-19].

Here we propose that it is time to explore a different line
altogether. In essence, our argument is that the long history
of developing approximate exchange-correlation functionals
E.[n] and approximate Kohn-Sham (KS) kinetic density func-
tionals 7[n] includes multiple indications that it is appropriate
to build approximate functionals which are explicitly N, -depen-
dent. The argument is strengthened by recognition that those
practical indications are consistent with a known but generally
ignored basic exact DFT result. We hasten to add that this is not
a call to violate, somehow, thermodynamic limits. We include
a brief discussion of that issue.

Number-dependence in Density-functional
Theory

Approximate Functionals and Bounds
To set notation and units, we display non-spin-polarized Kohn-
Sham [KS] DFT in its usual form. In hartree atomic units, the

total energy functional is

Evey [n] = Ti[n]+ Ece[n] + Exc[n] + Eey [1] (1

Tsinl = Yy 2o, [ dr[ve, (o] :

e (g ) @
e ln] = EJ. 1'1J- r) W
Eeln] = [drn(x)ve, (r) G
Np 5
n(r)y = n;lo; (r) (4)

J=1

with n(r) the electron number density, ; the occupation num-
bers, and v,,(r) the external potential (ordinarily, the nuclear-
electron Coulomb interaction). In order, E,, is the Hartree or
classical electron-electron Coulomb repulsion energy, E,.. is the
DFT exchange-correlation energy (which comprises both Cou-
lombic and kinetic energy contributions), and £,,, is the external
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interaction energy. The orbitals ¢; are eigenstates of the KS
Hamiltonian, details of which are of no consequence here.
One of the earliest manifestations, perhaps the first, of
explicit number dependence in a many-electron energy was the
Fermi-Amaldi correction [20] to the Thomas-Fermi energy

N, -1

Eqp(n] = Trp[n] + Eeln] (%)

e

The explicit form of the TF kinetic energy is of no concern
here. What is relevant is the prefactor to E,,. It is designed to
remove, at least in an average sense, the spurious self-interac-
tion error in the Hartree energy. Interestingly, one of José Luis
Gazquez’ earlier papers is “An exchange energy functional
based on the Dirac and the Fermi-Amaldi approximations”
[21]. That paper presents a simple, orbital-independent but N,-
dependent modification of the Dirac-Slater exchange functional
which, by virtue of the Fermi-Amaldi correction, is one-elec-
tron self-interaction free, to wit:

Ealn] = Copa (N den® (r) -

. (6)
1 Idr]drz n(ry)n(ry)
ZNE |r1 — r2|
Cira (Ne) = Ciipy (1 — Coura N3 j (7

The constants (C;z4 = —0.7386, Cyry = 1.000; subscript
“xFA” for “exchange-Fermi-Amaldi”’) were set by a combina-
tion of simple consistency arguments and least-squares fitting
to the Hartree-Fock exchange energies of a large sample (1785)
of atoms and ions. Those values are not critical to the pres-
ent discussion. What is critical (but not entirely surprising)
is that the highest occupied KS eigenvalue from this simple
N,-dependent representation comes much closer to respecting
the DFT IP theorem [22] than does the eigenvalue of simple
Dirac-Slater-exchange. Usually such improvement is obtained
by introducing exact exchange [12, 23] either as a global [24,
25] or a range-separated hybrid functional [26, 27]. We remark,
in passing, that in Ref. [28] Ayers et al. discuss size incon-
sistency of the Fermi-Amaldi model, the F-A correction due
to Silver and Bartlett [29], and the Parr-Ghosh corrected F-A
procedure [30].

An inequality which has been used (and debated) to con-
strain approximate exchange functionals, e.g. PW91 [31], PBE
[32, 33] and our own VMT [34] and VT{8,4} [3], is the Lieb-
Oxford bound [35, 36]. The form commonly used in this con-
text is

E..[n]
FEA ] (&)

173

The conventional value of the LO constant is 1;5 = 2.273,
or the slightly tighter Chan-Handy value [37], Acy = 2.215.
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Again, the difference is not relevant to the present discus-
sion.

With few exceptions, it generally is not noticed that the LO
bound, in fact, depends on N, [35-37] and the dimensionality
of space [38-40]. As discussed by Odashima et al. [41], several
facts are known about that N,-dependence. For N, = 1, 4 (1)
= 1.48, while for N, =2, 2 (2) > 1.67. Moreover, for all N, ,
MN, + 1) = A(N,). Ref. [41] explored the effect of using these
facts in the most obvious way to re-parameterize the PBE X
functional. The device used was a simple smooth interpolation
of the form

X!
A(N,) = (I_NL)}LLO + z\(/)'

e

)

e

When enforced on PBE X, there was little, if any, improve-
ment in performance. In view of the derivative discontinuity in
the universal functional at integer N, [42], it may be that the
smooth interpolation, Eq. (9), masks some important features.
Or it may be simply that the PBE X functional form is insensi-
tive to details of the enforcement of the LO bound. Whatever
the cause, that does not vitiate the underlying fact of the number
dependence of the LO bound.

For several years, SBT has been quite involved in develop-
ing orbital-free kinetic energy functionals as approximations
to the explicitly orbital-dependent form of 7i[n] defined in Eq.
(2). More recently AVA has become involved in this quest.
See Refs. [43-45] for example. For the construction of such
approximate functionals, it is valuable to consider another func-
tional which bounds Ti[n], i.e. some T}, 1] > T,[n]. Stated
more generally, suppose an N, fermion state ‘¥, with associated
number density ng. Then the desired functional is

N
Toouna 1] 2 = [ dryoedry [V (o O
= Tlny]

(10)

In 1982, Gézquez and Robles [46] gave the following
bound on the KS KE for each spin (labeled ¢ = a, B):

TN [ng] < Ty [ng] + Trp o [nc](l - Nlj

y 1 2/3 1 2/3 by (11)
pe i)
6 6\12 4\6

7 1 gelVel 12

vimo) =g Jar = (12)

n(r)= Y ng(r); Ne= D No.  (13)
o=a,B 6 =a,fB

Although Gazquez and Robles wrote this as a density func-
tional (i.e., an approximation for 7), we write it as a bound
because they omitted terms of higher order in N,”/3. Again,
the explicit number dependence is the central point for the
present discussion.
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Zumbach [47] has given a somewhat similar bound on the
KS kinetic energy, to wit:

T [n]<(1+C,NP)Ty

c, = 9(411:)2(2/5)2/3.

(Subscript “Z” for Zumbach; beware that his paper is in
Rydberg au.) Again, an explicit number dependence appears.

The bound given by Gazquez and Robles, Eq. (11), was
motivated, at least in part, by a semi-empirical procedure of
Acharya et al. [48] which yielded an approximate 7i[n] of the
form

(14a)

(14b)

1.412
Ty agsp [n] = Ty + [1 T ]TTF[n]- (15)

e

(Subscript ABSP for the authors of that paper.) For singlets
with N, = 1, 2, this must reduce to T 4zsp = Ty, so the Acha-
rya et al. expression is valid for N, > 3. Many other bounds of
similar character, with references to the original literature, are
collected in the review by Ludena and Karasiev [49].

From the perspective of developing approximate KS KE
functionals, Egs. (11), (14a), and (15) all are examples of the
theorem on the positivity of the so-called Pauli term Tj [50-
53]

T [n] = Tylnl+Tolnl, Ty[n]=0  (16)
in the exact decomposition of the KS KE. But the same argu-
ment applies to this exact decomposition as to the Acharya et
al. [48] approximation. For N, = 1 and a singlet with N, = 2,
T, must vanish, yet for an N, = 2 triplet that is not true. This is
an extremely subtle and difficult N,-dependence to reproduce
with an approximate functional which is not explicitly N,-de-
pendent.

An informative discussion of this subtlety was given by
Chan and Handy [54]. They pointed out that the Lieb-Thirring
bound [55]

2/3
T.[n] = —(%n) Jdrn5/3(r) (17)

is violated by Ty{n] for sufficiently large n. That in itself is
enough to establish 7y[n] > 0. Moreover, they in essence es-
tablished the N,-dependence of Ty[n] by using density scaling
arguments, n(r) — A n(r), to establish that 7,[n] is not homo-
geneous of degree 1. Density scaling is, by design, number-
changing and, as such, it reveals the derivative discontinuities
at integer N,.

Recently Alipour and Mohajeri [56] have given a new
information-theoretic determination of the kinetic energy con-
tribution 7, to the DFT exchange-correlation energy. Both the
information energy and Shannon entropy forms from which
they obtain fitted expressions are explicitly N,-dependent.

To conclude this survey, note the recent interest in tun-
ing [57] the separation parameter in range-separated hybrids
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to enforce the exact behavior of the IP theorem, namely that
for the exact ground-state functional, the IP is the negative of
the HOMO KS eigenvalue, eyono = —IP. This tuning is done
specifically for each system under study, hence is manifestly
N,-dependent.

Exact functionals

We have cataloged and discussed these examples of explicit
and implicit N,-dependence from the perspective of developers
of approximate density functionals. But there is more to the
issue than forms of approximate functionals and constraints on
them. We note three examples and a general case.

Derivative discontinuities [42] play a key role in the defini-
tion and use of hardness and softness (another of JLG’s inter-
ests [58-60]). This is true both for the exact definitions and for
approximate functionals which interpolate what should be lin-
ear relations, yet another of JLG’s interests. See discussions and
references in Ayers [61] and in Cohen ef al. [23] The obvious
relevance to this discussion is that those discontinuities occur at
integer N,. Relative to a specified N,, the slope on the electron-
deficient side of E[N] gives the IP (with the EA on the other
side). One can infer from the IP theorem that the functional at
N, involves information about E[N,-1] therefore.

Second, we note that exact exchange in DFT is intrinsically
N,-dependent. The functional itself sums over N, orbitals. This
number dependence is not as easy to hide as in the usual KS
case, in which 7 is the only manifestly N, -dependent contribu-
tion. One can see this from the simple fact that 7 and E, scale
differently under uniform density scaling; recall the discussion
above about the Chan-Handy results.

The third exact result is the expression derived by Levy,
Perdew and Sahni [22] for the exact effective potential in or-
bital-free DFT

[—%vz F vy (F) + Ve (r)}nm (r) = wn'? (r). (18)

Here p is the negative of the ionization potential. They
obtain this result by factoring the exact, normalized, N,-electron
ground-state wave function into

VL, ry ,ry ) =
A (19)
N, n (l‘N@ YO (ry,r),L, Iy,-1 )

From that they obtain a positive-definite expression
for v, explicitly in terms of the conditional distribution
D(r,ry, -+, ry.1), which itself is explicitly number dependent.

All of these examples illustrate the remark by Lieb [14] (at
the outset of his section 4.A) that any mathematically satisfac-
tory definition of the functional (1) “... must depend explicitly
on the particle number N,. This fact is unavoidable and fre-
quently overlooked.” We add that the remark itself is almost
completely overlooked. The only exception that comes to mind
is the discussion by Ludefia and Karasiev in the volume in
honor of R.G. Parr. [49] After surveying various approximate
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N,-dependent forms for 7§ (p. 624), they conclude on p. 659
with “Finally, an important challenge arises from the fact that
exact treatments such as those based on the solution of a dif-
ferential equation 7§, or on local-scaling transformations lead
to an N,-dependent enhancement factor. This finding should
be investigated as it might help us to understand the puzzling
question regarding whether or not universal functionals really
exist.”

A simplified version of the argument for mandatory ex-
plicit N -dependence of the exact DFT functional comes from
the realization that the first Hohenberg-Kohn theorem implies
that the ground-state energy is a function of NV, and a functional
of the external potential v,,(r)

E[Nevey 1 = Flnl+ [drn()ve, (1), @0)

where the notation for the universal functional F[r] indicates
that the only explicit dependence in this functional is on the
electron density, whereas the total energy and the external en-
ergy depend, in general, on both the choice of external poten-
tial and N, If the external potential is changed by 6v,,(r), the
resulting energy first-order energy change is
SEINe, Vel = [ drn(r)8ve (v), @1
and the electron density and the external potential thus are
conjugate variables, like velocity and momentum, since they

are related by
) ( SE j
n(r) = | —— .
6vext (r) N,

In essence, this conjugation allows us to consider inverse
Legendre transform DFT, in which the dependence on the ex-
ternal potential is replaced by its conjugate variable, the elec-
tron density. The corresponding transform is given by

(22)

F[Ne’n] = E[Ne’vext ] - jsrn(r)vext(r) = F[n] (23)

where the last equality is obtained after substituting Eq. (20) in
the Legendre transform. Eq. (23) simply indicates that Fand F
are the same mathematical object but the new piece of informa-
tion that we have gained is that indeed, the universal functional
has an explicit dependence on the number of electrons. The
normalization condition can be used to eliminate the explicit
dependence on N, i. e., F[N,,n] = F[N,[n],n] = F[n], leaving a
functional that only depends on the electron density.

Pursuing Explicitly Number-dependent
Approximate Functionals

Except for the tuning of range-separated hybrids mentioned
above, common practice is to ignore the “unavoidable fact”
about N,-dependence in the development of approximate func-
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tionals. Another major exception, though it is not stated in
such terms, is hybrid XC functionals used directly (without an
optimized effective potential, i.e. a so-called generalized KS
calculation). Such functionals have a contribution from ex-
plicit single-determinant exchange, which is N ,-dependent. Our
emphasis is different. From the evidence summarized above,
however, it seems clear that there are many imperatives for
exploring the construction of N,-dependent functionals. Before
brief comment on the advantages of doing so, we must return
to the size-consistency question.

Observe that total particle number in a system, indeed the
definition of what constitutes the system, is a matter of quan-
tum-mechanical preparation. Hence a diatomic molecule with
N, electrons separates into two atoms A, B with N, + N3 =
N, but the atoms still are part of the same system. Prepared as
a molecule, it remains a molecule (albeit one with zero binding
energy) even at arbitrarily large separation, not two isolated
atoms. From this perspective, size consistency is a matter of
QM preparation: a separated molecule with N, electrons is not
the same QM preparation as multiple isolated atoms with the
same nuclei and same total electron number.

An example of the distinction and its invocation in actual
computation with an approximate functional is in Ref. [41],
in particular, the discussion associated with its Table 1. The
specific case was the Li, molecule treated with the PBE X func-
tional modified such that the LO bound is set by Eq. (9). The
comparison was with PBE X using two standard estimates and
one conjectured estimate of the N,—oo value of A. Straightfor-
ward use of the N,-dependent functional to calculate diatomic
molecule atomization energies 4E led to nonsense, in that the
N,-dependent versions gave 50% greater 4E than the N,—o0
versions. In contrast, the calculated equilibrium bond lengths
R, varied quite sensibly among the models, by about 0.01 A
at most. The difficulty was naive violation of size-consistency,
namely an atomization energy calculated from

AE = E;,[MN, = 6)] = 2E,[MN, = 3)]. (24)

Clearly this prescription is size-inconsistent. There is no
corresponding inconsistency in the R, values because they are
not a difference between a molecular property and an atomic
one. The inconsistency is one of quantum mechanical prepara-
tion. The properly prepared system uses the molecular particle
number throughout, hence replaces (24) with

AE = Ep;[MN, = 6)] = 2E,[MN, = 6)]. (25)

At the risk of pedantry, we emphasize that the atomic total
energy in (25), Er; [MN, = 6)], is not the isolated atom total
energy E;;[MN, = 3)]. Adoption of an N ,-dependent functional
inevitably means that the separated atom limit of the energies of
an aggregated system is not the same as the sum of the isolated
atom energies.

For a single truly finite system (molecule, cluster), gen-
eralization of the procedure in (25) is fairly straightforward:
aggregate quantities are to be compared with separated-atom
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quantities calculated with the N, value of the aggregate. Along
a reaction path, matters get more complicated. After the fact,
one could pick the largest aggregate along the path to set N,,
but that runs the risk of being circular reasoning. The preferred
intermediates depend upon energetics, hence upon the selected
N,. Generalization of the protocol also is not so obvious for
periodically bounded systems. In basic DFT applied to periodic
systems, the N, value is set to the unit cell. But a unit cell, of
course, can be larger than the primitive unit cell for a given
crystal. At present, our thinking is that the primitive unit cell
of a given crystal should be normative for setting N,. Again,
the difficulty is in systematic comparison of aggregates. An
example is a pressure-induced transition from fcc to hep (one
atom per primitive cell to two) in an elemental solid with atomic
number Z. Straightforward extension of the finite-aggregate
rule would have one use N, = 2Z, but we do not know at this
point whether that is sensible or leads to some unpleasant,
unphysical behavior.

Closing Remarks

Finally, we make a few remarks about advantages of explicitly
electron-number-dependent approximate density functionals.
From the perspective of orbital-free DFT, Egs. (11) and (15)
show one clear advantage. The designer of an approximate KS
KE functional can achieve satisfaction of (16) for N, = 1,2, as
well as the Thomas-Fermi limit for arbitrarily large particle
number, much more easily than with an approximate func-
tional without that explicit N,-dependence. For the improved
satisfaction of the DFT IP theorem, the tuned range-separated
hybrid functionals already show the value of N,-dependence.
Perhaps the largest advantage, however, is that of opening a
new route for progress. Though it may seem uncomfortably
speculative, opting to exploit an unavoidable aspect of theory
may eventually prove to be more productive than continuing the
struggle to ignore that aspect in the construction of approximate
functionals.
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