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Abstract. With rare exceptions, explicit particle number dependence 
(Ne-dependence) in approximate density functionals is viewed as a 
serious deficiency because of apparent size-consistency issues. In 
contrast, there are multiple manifestations of explicit Ne-dependence 
in density functional bounds (including the Gázquez-Robles kinetic 
energy bound), constraints, and approximations. We argue that these 
constitute inescapable motivation for exploring Ne-dependent approxi-
mate functionals. Doing so would be consistent with a mostly-ignored 
result of Lieb about properties of the universal functional.
Key words: Density functional theory, Hohenberg-Kohn theory, 
Kohn-Sham theory, particle number dependence, size-consistency.

Resumen. Con contadas excepciones, en la teoría de funcionales de 
la densidad aproximada la dependencia explícita en el número de 
partículas se visualiza como una seria deficiencia debido a proble-
mas aparentes asociados con la consistencia en tamaño. En contraste, 
existen múltiples manifestaciones de cotas (como la cota de Gázquez-
Robles de la energía cinética), restricciones y aproximaciones de los 
funcionales de la densidad las cuales tienen una dependencia explícita 
en el número de partículas. En este trabajo discutimos que lo anterior 
es una motivación ineludible para explorar la búsqueda y construcción 
de funcionales aproximados con dependencia explícita en el número 
de partículas. Hacerlo será consistente con un resultado debido a Lieb, 
y muy frecuentemente ignorado, respecto a la estructura del funcional 
universal.
Palabras Clave: Teoría de funcionales de la densidad, teoría de Ho-
henberg-Kohn, teoría de Kohn-Sham, dependencia en el número de 
partículas, consistencia en tamaño.

Dedication and Apology

We have had the privilege and pleasure of professional discus-
sion, research collaboration, and personal friendship with José 
Luis Gázquez for many years. Broadminded and concerned as 
always for the growth of his students, Prof. Gázquez sent AVA, 
as a graduate student, to Gainesville to attend one of the last 
QTP Winter Institutes. Thus the co-authors of this paper met. 
Sometime earlier than that, SBT had met Gázquez, but now 
many years later, the actual year is vague. In the odd random-
ness that seems to characterize many career paths, the three of 
us did not publish together until 2012! In fact, the co-authors 
of this paper first published together in 2009, more than 20 
years after our first meeting. Both of us, however, have been 
witnesses to the many key roles played by Prof. Gázquez in 
the development of density functional theory as a major topic 
in Mexican theoretical chemistry and materials physics and 
in physical science research and education in Mexico more 
generally. And, in the last year, our long relationship suddenly 
has flowered in four papers [1-4], with more expected. It is 
therefore with admiration and affection that we present this 
exploratory paper on a possible new direction for development 
of approximate density functionals.

This paper was intended for the issue honoring Prof. 
Gázquez. An unfortunate misunderstanding on the part of the 
first author led to missing the deadline. We apologize.

Size-extensivity

In both many-body physics and quantum chemistry, there is a 
deep aversion to methods which have an explicit dependence 
on electron number Ne, because of possible violation of both 
size-extensivity and size-consistency. Size-consistency is the 
requirement that the energy of a system consisting of two non-
interacting subsystems equals the sum of the energies of the 
isolated subsystems, i. e., E(AB) = E(A) + E(B). The related 
concept, size-extensivity, refers to the fact that a quantity scales 
proportionally to the particle number: the total energy is an ex-
ample. The aversion to number dependence is both reasonable 
and understandable. Consider, for example, the understanding 
of configuration interaction methods. There have been years 
of emphasis in quantum chemistry on the importance of both 
size-consistency and extensivity [the literature is too large to 
cite in detail with fairness, but see, for example, Nooijen et al. 
[5], Bartlett and Musial [6] and the many references in both]. 
That emphasis has led, for example, to a clear understanding 
of the relationship between formal properties of a full-CI and 
of various approximations. Part of the basic appeal of coupled-
cluster theory lies in its correctness in this regard at each cluster 
order: systematic approximations without number-dependent 
difficulties are assured.

That aversion to number-dependence is not so commonly 
discussed in density functional theory (DFT) [7-12] but it is 
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there. Because the constrained-search formulation [13, 14] of 
DFT follows from the ordinary variation principle, the assump-
tion is that the ground-state energy functional E[n] is size-ex-
tensive. (We denote the electron density as n(r).) Indeed, the 
very language of a “universal functional” fits with that assump-
tion. Savin has discussed exceptions related to degeneracies 
[15]. In our experience, such exceptions generally are viewed 
as failures or dismissed as inconsequential oddities. Certainly, 
the dependences on the number of electrons and the degeneracy 
of the ground states are fundamental and related issues [16]. 
However, for the sake of simplicity, it may be helpful and 
useful to approach the former problem first, hoping that from 
its study we will find out more formal and rigorous ways to 
tackle the latter. Some steps in this direction have already been 
explored [17-19].

Here we propose that it is time to explore a different line 
altogether. In essence, our argument is that the long history 
of developing approximate exchange-correlation functionals 
Exc[n] and approximate Kohn-Sham (KS) kinetic density func-
tionals Ts[n] includes multiple indications that it is appropriate 
to build approximate functionals which are explicitly Ne-depen-
dent. The argument is strengthened by recognition that those 
practical indications are consistent with a known but generally 
ignored basic exact DFT result. We hasten to add that this is not 
a call to violate, somehow, thermodynamic limits. We include 
a brief discussion of that issue.

Number-dependence in Density-functional 
Theory

Approximate Functionals and Bounds

To set notation and units, we display non-spin-polarized Kohn-
Sham [KS] DFT in its usual form. In hartree atomic units, the 
total energy functional is
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with n(r) the electron number density, nj the occupation num-
bers, and vext(r) the external potential (ordinarily, the nuclear-
electron Coulomb interaction). In order, Eee is the Hartree or 
classical electron-electron Coulomb repulsion energy, Exc is the 
DFT exchange-correlation energy (which comprises both Cou-
lombic and kinetic energy contributions), and Eext is the external 

interaction energy. The orbitals ji are eigenstates of the KS 
Hamiltonian, details of which are of no consequence here.

One of the earliest manifestations, perhaps the first, of 
explicit number dependence in a many-electron energy was the 
Fermi-Amaldi correction [20] to the Thomas-Fermi energy
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The explicit form of the TF kinetic energy is of no concern 
here. What is relevant is the prefactor to Eee. It is designed to 
remove, at least in an average sense, the spurious self-interac-
tion error in the Hartree energy. Interestingly, one of José Luis 
Gázquez’ earlier papers is “An exchange energy functional 
based on the Dirac and the Fermi-Amaldi approximations” 
[21]. That paper presents a simple, orbital-independent but Ne-
dependent modification of the Dirac-Slater exchange functional 
which, by virtue of the Fermi-Amaldi correction, is one-elec-
tron self-interaction free, to wit:
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The constants (C1xFA = -0.7386, C2xFA = 1.000; subscript 
“xFA” for “exchange-Fermi-Amaldi”) were set by a combina-
tion of simple consistency arguments and least-squares fitting 
to the Hartree-Fock exchange energies of a large sample (1785) 
of atoms and ions. Those values are not critical to the pres-
ent discussion. What is critical (but not entirely surprising) 
is that the highest occupied KS eigenvalue from this simple 
Ne-dependent representation comes much closer to respecting 
the DFT IP theorem [22] than does the eigenvalue of simple 
Dirac-Slater-exchange. Usually such improvement is obtained 
by introducing exact exchange [12, 23] either as a global [24, 
25] or a range-separated hybrid functional [26, 27]. We remark, 
in passing, that in Ref. [28] Ayers et al. discuss size incon-
sistency of the Fermi-Amaldi model, the F-A correction due 
to Silver and Bartlett [29], and the Parr-Ghosh corrected F-A 
procedure [30].

An inequality which has been used (and debated) to con-
strain approximate exchange functionals, e.g. PW91 [31], PBE 
[32, 33] and our own VMT [34] and VT{8,4} [3], is the Lieb-
Oxford bound [35, 36]. The form commonly used in this con-
text is
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The conventional value of the LO constant is λLO = 2.273, 
or the slightly tighter Chan-Handy value [37], λCH = 2.215. 
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Again, the difference is not relevant to the present discus- 
sion.

With few exceptions, it generally is not noticed that the LO 
bound, in fact, depends on Ne [35-37] and the dimensionality 
of space [38-40]. As discussed by Odashima et al. [41], several 
facts are known about that Ne-dependence. For Ne = 1, λ (1) 
= 1.48, while for Ne = 2, λ (2) ≥ 1.67. Moreover, for all Ne , 
λ(Ne + 1) ≥ λ(Ne). Ref. [41] explored the effect of using these 
facts in the most obvious way to re-parameterize the PBE X 
functional. The device used was a simple smooth interpolation 
of the form

	 λ λ
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When enforced on PBE X, there was little, if any, improve-
ment in performance. In view of the derivative discontinuity in 
the universal functional at integer Ne [42], it may be that the 
smooth interpolation, Eq. (9), masks some important features. 
Or it may be simply that the PBE X functional form is insensi-
tive to details of the enforcement of the LO bound. Whatever 
the cause, that does not vitiate the underlying fact of the number 
dependence of the LO bound.

For several years, SBT has been quite involved in develop-
ing orbital-free kinetic energy functionals as approximations 
to the explicitly orbital-dependent form of Ts[n] defined in Eq. 
(2). More recently AVA has become involved in this quest. 
See Refs. [43-45] for example. For the construction of such 
approximate functionals, it is valuable to consider another func-
tional which bounds Ts[n], i.e. some Tbound[n] ≥ Ts[n]. Stated 
more generally, suppose an Ne fermion state Ψ, with associated 
number density nΨ. Then the desired functional is
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In 1982, Gázquez and Robles [46] gave the following 
bound on the KS KE for each spin (labeled s = a, b):
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Although Gázquez and Robles wrote this as a density func-
tional (i.e., an approximation for Ts), we write it as a bound 
because they omitted terms of higher order in Ne

-1/3. Again, 
the explicit number dependence is the central point for the 
present discussion.

Zumbach [47] has given a somewhat similar bound on the 
KS kinetic energy, to wit:

	 T n C N T
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(Subscript “Z” for Zumbach; beware that his paper is in 
Rydberg au.) Again, an explicit number dependence appears.

The bound given by Gázquez and Robles, Eq. (11), was 
motivated, at least in part, by a semi-empirical procedure of 
Acharya et al. [48] which yielded an approximate Ts[n] of the 
form
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(Subscript ABSP for the authors of that paper.) For singlets 
with Ne = 1, 2, this must reduce to Ts,ABSP = TW, so the Acha-
rya et al. expression is valid for Ne ≥ 3. Many other bounds of 
similar character, with references to the original literature, are 
collected in the review by Ludeña and Karasiev [49].

From the perspective of developing approximate KS KE 
functionals, Eqs. (11), (14a), and (15) all are examples of the 
theorem on the positivity of the so-called Pauli term Tθ [50-
53]

	 T n T n T n T ns W[ ] [ ] [ ], [ ]= + ≥θ θ 0	 (16)

in the exact decomposition of the KS KE. But the same argu-
ment applies to this exact decomposition as to the Acharya et 
al. [48] approximation. For Ne = 1 and a singlet with Ne = 2, 
Tθ must vanish, yet for an Ne = 2 triplet that is not true. This is 
an extremely subtle and difficult Ne-dependence to reproduce 
with an approximate functional which is not explicitly Ne-de-
pendent.

An informative discussion of this subtlety was given by 
Chan and Handy [54]. They pointed out that the Lieb-Thirring 
bound [55]
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is violated by TW[n] for sufficiently large n. That in itself is 
enough to establish Tθ[n] ≥ 0. Moreover, they in essence es-
tablished the Ne-dependence of Tθ[n] by using density scaling 
arguments, n(r) → λ n(r), to establish that Ts[n] is not homo-
geneous of degree 1. Density scaling is, by design, number-
changing and, as such, it reveals the derivative discontinuities 
at integer Ne.

Recently Alipour and Mohajeri [56] have given a new 
information-theoretic determination of the kinetic energy con-
tribution Tc to the DFT exchange-correlation energy. Both the 
information energy and Shannon entropy forms from which 
they obtain fitted expressions are explicitly Ne-dependent.

To conclude this survey, note the recent interest in tun-
ing [57] the separation parameter in range-separated hybrids 
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to enforce the exact behavior of the IP theorem, namely that 
for the exact ground-state functional, the IP is the negative of 
the HOMO KS eigenvalue, εHOMO = -IP. This tuning is done 
specifically for each system under study, hence is manifestly 
Ne-dependent.

Exact functionals

We have cataloged and discussed these examples of explicit 
and implicit Ne-dependence from the perspective of developers 
of approximate density functionals. But there is more to the 
issue than forms of approximate functionals and constraints on 
them. We note three examples and a general case.

Derivative discontinuities [42] play a key role in the defini-
tion and use of hardness and softness (another of JLG’s inter-
ests [58-60]). This is true both for the exact definitions and for 
approximate functionals which interpolate what should be lin-
ear relations, yet another of JLG’s interests. See discussions and 
references in Ayers [61] and in Cohen et al. [23] The obvious 
relevance to this discussion is that those discontinuities occur at 
integer Ne. Relative to a specified Ne, the slope on the electron-
deficient side of E[N] gives the IP (with the EA on the other 
side). One can infer from the IP theorem that the functional at 
Ne involves information about E[Ne-1] therefore.

Second, we note that exact exchange in DFT is intrinsically 
Ne-dependent. The functional itself sums over Ne orbitals. This 
number dependence is not as easy to hide as in the usual KS 
case, in which Ts is the only manifestly Ne-dependent contribu-
tion. One can see this from the simple fact that Ts and Ex scale 
differently under uniform density scaling; recall the discussion 
above about the Chan-Handy results.

The third exact result is the expression derived by Levy, 
Perdew and Sahni [22] for the exact effective potential in or-
bital-free DFT

- ∇ + +L
NM

O
QP =1

2
2 1 2 1 2v v n neff ext( ) ( ) ( ) ( )/ /r r r rµ .	 (18)

Here µ is the negative of the ionization potential. They 
obtain this result by factoring the exact, normalized, Ne-electron 
ground-state wave function into
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From that they obtain a positive-definite expression 
for veff explicitly in terms of the conditional distribution 
F(r1,r2,…,rNe-1), which itself is explicitly number dependent.

All of these examples illustrate the remark by Lieb [14] (at 
the outset of his section 4.A) that any mathematically satisfac-
tory definition of the functional (1) “… must depend explicitly 
on the particle number Ne. This fact is unavoidable and fre-
quently overlooked.” We add that the remark itself is almost 
completely overlooked. The only exception that comes to mind 
is the discussion by Ludeña and Karasiev in the volume in 
honor of R.G. Parr. [49] After surveying various approximate 

Ne-dependent forms for Ts (p. 624), they conclude on p. 659 
with “Finally, an important challenge arises from the fact that 
exact treatments such as those based on the solution of a dif-
ferential equation TS, or on local-scaling transformations lead 
to an Ne-dependent enhancement factor. This finding should 
be investigated as it might help us to understand the puzzling 
question regarding whether or not universal functionals really 
exist.”

A simplified version of the argument for mandatory ex-
plicit Ne-dependence of the exact DFT functional comes from 
the realization that the first Hohenberg-Kohn theorem implies 
that the ground-state energy is a function of Ne and a functional 
of the external potential vext(r)

	 E N v F n d n ve ext ext[ , ] [ ] ( ) ( ),= + z r r r 	 (20)

where the notation for the universal functional F[n] indicates 
that the only explicit dependence in this functional is on the 
electron density, whereas the total energy and the external en-
ergy depend, in general, on both the choice of external poten-
tial and Ne, If the external potential is changed by dvext(r), the 
resulting energy first-order energy change is

	 δ δE N v d n ve ext ext[ , ] ( ) ( ),= z r r r 	 (21)

and the electron density and the external potential thus are 
conjugate variables, like velocity and momentum, since they 
are related by
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In essence, this conjugation allows us to consider inverse 
Legendre transform DFT, in which the dependence on the ex-
ternal potential is replaced by its conjugate variable, the elec-
tron density. The corresponding transform is given by

~[ , ] [ , ] ( ) ( ) [ ]F N n E N v n v F ne e ext ext= - =z δ r r r 	 (23)

where the last equality is obtained after substituting Eq. (20) in 
the Legendre transform. Eq. (23) simply indicates that F~ and F 
are the same mathematical object but the new piece of informa-
tion that we have gained is that indeed, the universal functional 
has an explicit dependence on the number of electrons. The 
normalization condition can be used to eliminate the explicit 
dependence on Ne, i. e., F~[Ne,n] = F[Ne[n],n] = F[n], leaving a 
functional that only depends on the electron density.

Pursuing Explicitly Number-dependent 
Approximate Functionals

Except for the tuning of range-separated hybrids mentioned 
above, common practice is to ignore the “unavoidable fact” 
about Ne-dependence in the development of approximate func-

…

…



Explicit Particle-number Dependence in Density Functional Theory	 109

tionals. Another major exception, though it is not stated in 
such terms, is hybrid XC functionals used directly (without an 
optimized effective potential, i.e. a so-called generalized KS 
calculation). Such functionals have a contribution from ex-
plicit single-determinant exchange, which is Ne-dependent. Our 
emphasis is different. From the evidence summarized above, 
however, it seems clear that there are many imperatives for 
exploring the construction of Ne-dependent functionals. Before 
brief comment on the advantages of doing so, we must return 
to the size-consistency question.

Observe that total particle number in a system, indeed the 
definition of what constitutes the system, is a matter of quan-
tum-mechanical preparation. Hence a diatomic molecule with 
Ne electrons separates into two atoms A, B with NeA + NeB = 
Ne but the atoms still are part of the same system. Prepared as 
a molecule, it remains a molecule (albeit one with zero binding 
energy) even at arbitrarily large separation, not two isolated 
atoms. From this perspective, size consistency is a matter of 
QM preparation: a separated molecule with Ne electrons is not 
the same QM preparation as multiple isolated atoms with the 
same nuclei and same total electron number.

An example of the distinction and its invocation in actual 
computation with an approximate functional is in Ref. [41], 
in particular, the discussion associated with its Table 1. The 
specific case was the Li2 molecule treated with the PBE X func-
tional modified such that the LO bound is set by Eq. (9). The 
comparison was with PBE X using two standard estimates and 
one conjectured estimate of the Ne→∞ value of λ. Straightfor-
ward use of the Ne-dependent functional to calculate diatomic 
molecule atomization energies ΔE led to nonsense, in that the 
Ne-dependent versions gave 50% greater ΔE than the Ne→∞ 
versions. In contrast, the calculated equilibrium bond lengths 
Re varied quite sensibly among the models, by about 0.01 Å 
at most. The difficulty was naïve violation of size-consistency, 
namely an atomization energy calculated from

	 DE = ELi2[l(Ne = 6)] - 2ELi[l(Ne = 3)].	 (24)

Clearly this prescription is size-inconsistent. There is no 
corresponding inconsistency in the Re values because they are 
not a difference between a molecular property and an atomic 
one. The inconsistency is one of quantum mechanical prepara-
tion. The properly prepared system uses the molecular particle 
number throughout, hence replaces (24) with

	 DE = ELi2[l(Ne = 6)] - 2ELi[l(Ne = 6)].	 (25)

At the risk of pedantry, we emphasize that the atomic total 
energy in (25), ELi [λ(Ne = 6)], is not the isolated atom total 
energy ELi[λ(Ne = 3)]. Adoption of an Ne-dependent functional 
inevitably means that the separated atom limit of the energies of 
an aggregated system is not the same as the sum of the isolated 
atom energies.

For a single truly finite system (molecule, cluster), gen-
eralization of the procedure in (25) is fairly straightforward: 
aggregate quantities are to be compared with separated-atom 

quantities calculated with the Ne value of the aggregate. Along 
a reaction path, matters get more complicated. After the fact, 
one could pick the largest aggregate along the path to set Ne, 
but that runs the risk of being circular reasoning. The preferred 
intermediates depend upon energetics, hence upon the selected 
Ne. Generalization of the protocol also is not so obvious for 
periodically bounded systems. In basic DFT applied to periodic 
systems, the Ne value is set to the unit cell. But a unit cell, of 
course, can be larger than the primitive unit cell for a given 
crystal. At present, our thinking is that the primitive unit cell 
of a given crystal should be normative for setting Ne. Again, 
the difficulty is in systematic comparison of aggregates. An 
example is a pressure-induced transition from fcc to hcp (one 
atom per primitive cell to two) in an elemental solid with atomic 
number Z. Straightforward extension of the finite-aggregate 
rule would have one use Ne = 2Z, but we do not know at this 
point whether that is sensible or leads to some unpleasant, 
unphysical behavior.

Closing Remarks

Finally, we make a few remarks about advantages of explicitly 
electron-number-dependent approximate density functionals. 
From the perspective of orbital-free DFT, Eqs. (11) and (15) 
show one clear advantage. The designer of an approximate KS 
KE functional can achieve satisfaction of (16) for Ne = 1,2, as 
well as the Thomas-Fermi limit for arbitrarily large particle 
number, much more easily than with an approximate func-
tional without that explicit Ne-dependence. For the improved 
satisfaction of the DFT IP theorem, the tuned range-separated 
hybrid functionals already show the value of Ne-dependence. 
Perhaps the largest advantage, however, is that of opening a 
new route for progress. Though it may seem uncomfortably 
speculative, opting to exploit an unavoidable aspect of theory 
may eventually prove to be more productive than continuing the 
struggle to ignore that aspect in the construction of approximate 
functionals.
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