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Abstract. The recently introduced, non-stochastic and stochastic qua-
dratic indices (Marrero-Ponce et al. J. Comp. Aided Mol. Des. 2006,
20, 685-701) were applied to QSAR/QSPR studies of heteroatomic
molecules. These novel bond-based molecular descriptors (MDs) were
used for the prediction of the partition coefficient (log P), and the
antibacterial activity of 34 derivatives of 2-furylethylenes. Two sta-
tistically significant QSPR models using non-stochastic and stochastic
bond-based quadratic indices were obtained (R2=0.971, s = 0.137
and R2 = 0.986, s = 0.096). These models showed good stability to
data variation in leave-one-out (LOO) cross-validation experiment
(g% = 0.9975, scy = 0.164 and g2 = 0.947, sy = 0.114). The best two
discriminant models computed using the non-stochastic and stochastic
molecular descriptors had globally good classification of 94.12% in
the training set. The external prediction sets had accuracies of 100% in
both cases. The comparison with other approaches (edge- and vertex-
based connectivity indices, total and local spectral moments, quantum
chemical descriptors as well as with other TOMOCOMD-CARDD
MDs) revealed the good performance of our method in this QSPR
study. The obtained results suggest that it is possible to obtain a good
estimation of physical, chemical and physicochemical properties for
organic compounds with the present approach.

Key words: TOMOCOMD-CARDD Software, non-Stochastic and
Stochastic Bond-Based Quadratic Indices, Edge-Adjacency Matrix,
Stochastic Matrix, QSPR/QSAR Model, 2-furylethylene.
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Resumen. En el presente reporte, se aplican los indices cuadraticos
de relaciones de enlace introducidos recientemente (Marrero-Ponce et
al. J. Comp. Aided Mol. Des. 2006, 20, 685-701) en estudios QSAR/
QSPR de moléculas heteroatomicas. Estos descriptores moleculares de
tipo enlace son usados en la prediccion del coeficiente de particion (log
P) y la actividad antibacterial de 34 derivados de los 2-furiletilenos.
Dos modelos QSPR estadisticamente significativos fueron obtenidos
usando fndices no estocasticos y estocésticos (R? = 0.971, s = 0.137
y R2 =0.986, s = 0.096, respectivamente) en la modelacion del Log
P. Estos modelos mostraron una estabilidad adecuada en la validacion
interna LOO (¢? = 0.9975, scy = 0.164 and ¢*> = 0.947, scy = 0.114,
respectivamente). Por otro lado, los dos mejores modelos discriminan-
tes muestran un porcentaje de exactitud global de 94.12% en la serie de
entrenamiento y de 100% en la data de prediccion en la modelacion de
actividad bactericida. Finalmente, la comparacion con otros enfoques
computacionales (indices de conectividad de enlace y de atomo tanto
2D como 3D, momentos espectrales totales y locales, descriptores
quimicos cuanticos al igual que con otros indices implementados en
el programa TOMOCOMD-CARDD) evidencia un buen comporta-
miento de nuestros nuevos indices. Los resultados obtenidos sugieren
que el método propuesto permite obtener una adecuada estimacion de
propiedades fisicoquimicas y bioldgicas de moléculas organicas.
Palabras clave: Programa TOMOCOMD-CARDD, indices cuadra-
ticos de enlace, matriz de adyacencia de enlace, matriz estocastica,
modelo QSPR/QSAR, 2-furiletileno.

Background

During the past decade, a great explosion of molecular de-
scriptors (MDs) has been observed. For instance, topological
indices (TIs), surface areas, volume descriptors, charges, and
quantum-chemical measures have been extensively enhanced
and used as whole molecule MDs [1-3]. However, local MDs
have received very little attention [4]. One exception in this
sense is the electrotopological state (E-state) index [5]. Other
“global” MDs such as spectral moments of the edge-adjacency
matrix have been redefined to their local form [4]. In this
sense, in a manner similar to that for the atom- and atom-type
level E-State, an E-State index for bonds and bond-type has
been proposed. The bond-based E-State indices provided an
improvement of 25% with regard to the atom-based E-State

indices in the description of the boiling point of 372 alkanes,
alcohols, and chloroalkanes [5].

The edge (bond)-adjacency relationships have also been
used in the generation of new TIs [1-3]. Their matrix form has
been considered and explicitly defined in the chemical graph
theory literature, but has attracted little interest in both chemical
and mathematical literature. Nevertheless, in the last decade Es-
trada rediscovered this matrix as an important source of graph
theoretical invariants useful in the generation of new MDs
[1]. For instance, first the edge-connectivity descriptor € was
defined by this author using the Randi¢-type graph-theoretical
invariant [6]. That is to say, this new index is analogous to the
Randi¢ branching index but calculated by edge degrees instead
of vertex degrees. In a second work, Estrada also extended the
edge adjacency matrix E for a molecular graph to a 3D-E ma-
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trix in order to generate the so-called topographic edge-connec-
tivity index e(p) [7], also using the Randi¢-type graph-theoreti-
cal invariant. Later, this author used the same edge adjacency
relationships in the generation of a new family of TIs, spectral
moments of the E-matrix [7]. The analogous concept of spectral
moments of vertex-adjacency matrix had also been previously
discussed by different authors [8]. Afterward, Estrada et al. [9]
introduced an extended set of edge connectivity indices, "e¢(QG),
using the same way in which the Randi¢ branching index was
extended to the series of molecular connectivity indices. Fi-
nally, a novel graph theoretical polynomial, P.G,x), counting
the edge connectivity was introduced by the same researcher
[10]. Such edge-adjacency relationships will be applied in the
present report in order to generate a series of bond-based MDs
to be used in drug design and chemoinformatic studies.

Recently one of the present authors, Y.M-P, has introduced
a new set of atom-level molecular descriptors of relevance to
QSAR/QSPR studies and ‘rational” drug design, non-stochastic
and stochastic quadratic indices [¢,(X) and °¢,(X), respectively]
[11, 12]. These local (atom, group and atom-type) and total
chemical indices are based on the calculation of quadratic maps
in R" in canonical basis set. The description of the signifi-
cance-interpretation and the comparison with other molecular
descriptors was also performed [12]. This approach describes
changes in the electronic distribution with time throughout the
molecular backbone. Specifically, the features of the kth total
and local quadratic indices were illustrated by examples involv-
ing various molecular structural changes, such as chain length-
ening and branching as well as the inclusion of heteroatoms and
multiple bonds [12]. Additionally, the linear independence of
the atom-type quadratic fingerprints to other 0D-3D molecular
descriptors was demonstrated. In this sense, it was concluded
that local (atom-based) quadratic fingerprints are independent
indices, which contain important structural information to be
used in QSPR/QSAR and drug design studies [12].

These MDs are easily and quickly calculated, thus being
suitable for both QSAR/QSPR modeling and drug design stud-
ies of large chemical databases. This -in silico- method has been
successfully applied to the prediction of several physical, physi-
cochemical and chemical properties of organic compounds [11,
12]. These atom-level MDs, and their stochastic forms [13,
14], have also been useful for the selection of novel subsys-
tems of compounds having a desired property/activity. In this
sense, it was successfully applied to the virtual (computational)
screening of novel anthelmintic compounds, which were then
synthesized and evaluated in vivo on Fasciola hepatica [15].
Studies for the fast-track discovery of novel antibacterial [16],
paramphistomicide [13], antimalarial [14, 17], trichomonicidal
[16], and tripanocidals [18] lead-like chemicals were also con-
ducted with this theoretical approach. In addition, the atom-
based quadratic indices have been extended to consider three-
dimensional features of small/medium-sized molecules based
on the trigonometric-3D-chirality-correction factor approach
[19, 20]. This approach has also been successfully employed
in QSAR and in silico ADME studies of Caco-2 Permeability
of Drugs [21-23].
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The main aim of this paper is test the correlation ability
of the new MDs, calculated as quadratic maps similar to those
defined in linear algebra, in QSPR/QSAR studies to examine
the partition coefficient (log P), as well as the antibacterial
activity of 34 derivatives of 2-furylethylenes.

Material and Methods
Dataset Selection for QSPR/QSAR studies

The decisive criterion of quality for any MDs is its ability to
describe structure-related properties of molecules. The QSPR/
QSAR models were developed to examine the partition coef-
ficient (log P), as well as the antibacterial activity of 34 deriva-
tives of 2-furylethylenes [4, 24].

The heteromolecule-based database consisting of 34 2-
furylethylene derivatives (see Table 1), was recently studied
by using total and local spectral moments, 2D/3D (vertex- and
edge-) connectivity indices and two quantum-chemical descrip-
tors [4, 24]. These chemicals have different substituents at
position 5 of the furan ring, as well as at the 3 position of the
exocyclic double bond [25]. The values of the n-octanol/water
partition coefficient (log P) of these compounds have been
experimentally determined and reported in the literature [25].
The antibacterial activity of these compounds was determined
as the inverse of the concentration C that produces 50% of
growth inhibition in E. coli at six different times and reported
as log(1/C) [25]. This antibacterial activity was used to classify
furylethylenes into two groups by Estrada and Molina [24]. The
group of active compounds is composed of those substance
having values of log(1/C) < 3, while the rest form the group
of inactive molecules. In this study, we also took into account
a series of nine new 2-furylethylenes, used by Estrada and
Molina [24] as external prediction (test) set. These compounds
have an NO, group at position R; and a Br or I at positions R;
and/or R,. All these compounds showed antibacterial activity
in different assays [26].

Computational Strategies

The total and local (bond-type) bond-based quadratic indices
used to search for the best regression of the selected physico-
chemical property of 2-furylethylenes were calculated by the
TOMOCOMD-CARDD (acronym of TOpological MOlecular
COMputational Design-Computer Aided “Rational” Drug De-
sign) program [27]. This software is an interactive program for
molecular design and bioinformatic research. The software was
developed based on a user-friendly philosophy. That is to say,
this computational program offers an interactive environment
for the user and does not require prior programming skills.
Computer Aided “Rational” Drug Design) subprogram allows
drawing the structures (drawing mode) and calculating 2D (to-
pologic), 3D-chiral (2.5D) and 3D (geometric and topographic)
non-stochastic and stochastic MDs (calculation mode).

The bond-based TOMOCOMD-CARDD MDs computed
in this study were the following:
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Table 1. Chemical Structures and Numbering of Atoms in the 2-Furylethylene Compounds Used in This Study.
No. R, R, R, R, R, Rs
1 H NO, COOCH; 18 NO, H CONHCH(CH3;)C,Hj5
2 CH; NO, COOCH; 19 NO, H CONHC(CHj;)3
3 Br NO, COOCH; 20 NO, H CONHCH,C(CHj)3
4 I NO, COOCH; 21 NO, H COOCH;
5 COOCH; NO, COOCH; 22 NO, H COOC,H;
6 NO, NO, COOCH; 23 NO, H COO(CH,),CH;
7 NO, COOC,H; COOC,H;5 24 NO, H COOCH(CHz),
8 NO, H NO, 25 NO, H COO(CH,);CH;4
9 H H NO, 26 NO, H COOCH,CH(CHj),
10 NO, H CONH, 27 NO, H COOCH(CHj;)C,Hs
11 NO, H CONHCH; 28 NO, H COOC(CHj3);
12 NO, H CON(CHy), 29 NO, H COO(CH,)4CH;
13 NO, H CONHC,H; 30 NO, H Br
14 NO, H CONH(CH,),CH; 31 NO, H CN
15 NO, H CONHCH(CHj3;), 32 NO, H OCH;
16 NO, H CONH(CH,);CH; 33 NO, H H
17 NO, H CONHCH,CH(CH;), 34 NO, CN COOCH;

Novel R;,R,-Substituted 2-Furylethylenes (R; = NO,) used as external test set to assess the predictive power of the classification model for

antibacterial activity

1 Br Br NO,
2 I I NO,
3 Br H NO,
4 H Br NO,
5 I H NO,

O o0 9

H I NO,
H CH; NO,
Br CH, NO,
I CH; NO,

1) kth (k= 15) total non-stochastic bond-based quadratic indi-
ces not considering and considering H-atoms in the molecu-
lar graph (G) [¢«(W) and ¢, F(W), respectively].

2) kth (k = 15) total stochastic bond-based quadratic indices

not considering and considering H-atoms in the molecular

graph (G) [*q,(W) and %¢,f(W), correspondingly].

kth (k= 15) group (heteroatoms: O, N, S and halogens) non-

stochastic quadratic indices considering and non-considering

H-atoms in the molecular graph (G) [, (W) and g4 (W),

correspondingly]. These local MDs are putative molecular

charge, dipole moment, and H-bonding acceptors.

kth (k = 15) group (heteroatoms: O, N, S and halogens)

stochastic quadratic indices considering and non-consider-

ing H-atoms in the molecular graph (G) [*¢; F(Wg) and
¢ (Wg), respectively]. These local MDs are putative mo-
lecular charge, dipole moment, and H-bonding acceptors.

kth (k= 15) bond-type (C2-C6) non-stochastic and stochas-
tic quadratic indices considering H-atoms in the molecu-

3)

4)

5)

lar graph (G) [gs"(Wea.ce) and *qu"(Weo-co) respective-
ly].

6) kth (k= 15) bond-type (C2-C6) non-stochastic and stochas-
tic quadratic indices not considering H-atoms in the molecu-
lar graph (G) [gs.(Wca-cs) and *qg (Wea-co), Tespectively].

7) kth (k= 15) bond-type (C6-C7) non-stochastic and stochas-
tic quadratic indices considering H-atoms in the molecular
graph (G) [gx"(Wee.c7) and *qu " (Wee.c7), respectively].

8) kth (k= 15) bond-type (C6-C7) non-stochastic and stochas-
tic quadratic indices not considering H-atoms in the molecu-

lar graph (G) [gs1.(Wee.c7) and *qg (Wee.c7), respectively].

Chemometric Analysis

These kth total and local bond-based quadratic indices were
used as MDs for derived QSPRs. One of the difficulties with
the large number of MDs is deciding which ones will provide
the best regressions, considering both goodness of fit and the
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chemical meaning of the regression. In addition, as testing a
large number of all possible combinations of variables would
be a tedious task and time-consuming procedure, we have used
a genetic algorithm (GA) input selection [28-35]. The GAs
are a class of algorithms inspired by the process of biological
evolution in which species having a high fitness under some
conditions can prevail and survive to the next generation; the
best species can be adapted by crossover and/or mutation in the
search for better individuals.

The software BuildQSAR [36] was employed to perform
variable selection and QSAR modeling. The mutation prob-
ability was specified as 35%. The size of the equations was set
at three-four terms and a constant. The population size was es-
tablished as 300. The GA with an initial population size of 300
rapidly converged (2000 generations) and reached an optimal
QSAR model in a reasonable number of GA generations.

The search for the best model can be processed in terms of
the highest correlation coefficient (R) or F-test equations (Fish-
er-ratio’s p-level [p(F)]), and the lowest standard deviation
equations (s) [36]. The quality of models was also determined
by examining the Leave-One-Out (LOO) cross validation (CV)
(g% se) [73]. In recent years, the LOO press statistics (e.g.,
¢%) have been used as a means of indicating predictive ability.
Many authors consider high ¢? values (for instance, g> > 0.5) as
an indicator or even as the ultimate proof of the high predictive
power of a QSAR model. The Hasse diagram technique may
be used to rank the QSAR models in terms of their respective
statistics [37].

On the other hand, linear discriminant analysis (LDA) was
used in the classification of the 34 2-furylethylene derivatives
according to their antibacterial activity. This statistical analysis
was performed using STATISTICA software [38]. In order to
test the quality of the discriminant function derived, we used the
Wilk’s A (U-statistic) and the Mahalanobis distance (D?). The
Wilk’s A statistic is helpful to evaluate the group discrimination
and can take values between 0 (perfect discrimination) and 1
(no discrimination). The D? indicates the separation of the re-
spective groups. The statistical robustness and predictive power
of the obtained model was assessed using an external prediction
(test) set. In developing classification models the values of 1
and -1 were assigned to active and inactive compounds, respec-
tively. To classify the compounds in both groups we preferred
the use of the a posteriori probabilities instead of cutoff values.
This is the probability that the respective case belongs to a
particular group (active or inactive) and it is proportional to the
Mahalanobis distance from that group centroid. The posterior
probability is the probability, based on our knowledge of the
values of other variables, that the respective case belongs to a
particular group. An external test set of nine new compounds
was used in order to assess the predictive ability of the obtained
LDA model.

Applications in QSPR/QSAR Studies and Comparison
with other Computacional Approaches

Modeling partition coefficients (log P) of 34 2-furylethylenes
derivatives

Eugenio R. Martinez Albelo et al.

The partition coefficient n-octanol/water (log P) has an im-
portant role in the understanding of the biological behavior of
the 34 2-furylethylenes derivatives [25], specifically for the
development of their antibacterial activity [26]. The values
of the n-octanol/water log P of these compounds have been
experimentally determined and reported in the literature [25].
This experiment offers the possibility of comparing the present
results with those achieved by using some atom-based TO-
MOCOMD-CARDD MDs [12, 39]. The best obtained mod-
els together with their statistical parameters using bond-based
(non-stochastic and stochastic) quadratic indices respectively
are given below:

log P = 1.937(+0.285) + 5.40e-06(27.5¢-07) Mg H(7wp)
— 1.89¢-03(+5.3-04) Vo) + 2.18e-03(5.5¢-
04)Vgo 7g) + 0.182(20.022)Pq(7)
— 0.152(£0.012)Pgy; H(iwg) + 0.047(20.005)q,, H(iwp)
— 0.033(20.004)Kq . (W) (1)

N=34 R*=0971 ¢*=0947 s=0.137
F(7,26) = 12472 p < 0.0001

scy = 0.164

log P = 0.545(0.152) + 7.39¢-03(3.3e-04)Mg, H(wy)
+0.051(0.005)Y gaps(%)
— 0.048(+0.005)V¢5s"(w)
+ 6.82¢-04(+5.0e-05) Vg, ()
—0.011(x0.001)V gy H(wp)
— 2.267(+0.128)Pgs; (W)
+0.256(x0.013)%g B(w) (2)

N=34 R2=0986 ¢*=0975 s=0.096 Scy=0.114
F(7,26) = 257.58 p < 0.0001

where, N is the number of compounds, R? is the determination
coefficient, s is the standard deviation of the regression, g>
(scy) is the square regression coefficient (standard deviation)
obtained from the LOO cross validation procedure, and F' is
the Fisher ratio.

These models show significant superiority from a statistic
point of view with respect to other methods previously used for
the same data set. Our models (non-stochastic and stochastic)
explain 97.1% and 98.6% of the experimental variance of log
P while the previous approaches describe less than 97% of the
variance. In this sense, standard deviation between 0.142 and
0.319 were reported in previous studies while our models show
the lowest values of standard deviation (s = 0.137 and s = 0.096
for Egs. 1 and 2, correspondingly). In addition, the statistics
for the LOO CV procedure, achieved by our models were in
general better than those obtained by the other methods, for a
detailed comparison see Table 2.

The values of experimental and calculated values of the
Log P for the data set (both models) are given in Table 3. Plots
of the linear relationship between the observed and calculated
log P values for the data set of compounds are illustrated in
Figures 1 and 2.
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Table 2. Statistical Parameters for the Models Describing the log P of 34 2-furylethylene derivatives

by Using Different MDs.

Partition Coefficient n-Octanol/Water (log P) of 34 2-Furylethylenes

Index n R? s q* Sey F

Bond-based Non-stochastic QI (Eq. 1) 7 0.971 0.137 0.947  0.164 124.7
Bond-based stochastic QI (Eq. 2) 7 0.986 0.096 0.974 0.114  257.6
Atom-based Non-stochastic QI [12] 7 0.969 0.142 0.951 0.156  116.76
Atom-based Non-stochastic LI [39] 7 0.968 0.143 0.938 0.176  113.38
Vertex and edge conn. Indices [24] 7 0.939 0.199 * 0.247  56.90
Topographic descriptors [24] 7 0.964 0.155 * 0.176 84.60
Quantum chemical descriptors [24] R&C*  0.875 0.319 * 0.370 45.50

“used the Rogers and Cammarata approach. *values not reported. QI (Quadratic Indices) and LI

(Linear Indices)
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Fig. 1. Linear correlations of observed versus calculated log P of the
2-furylethylene derivatives according to the model obtained from non-
stochastic bond-level quadratic indices (Eq. 1).

Classifying 34 2-furylethylene derivatives as antibacterial
Finally, Linear Discriminant Analysis (LDA) is used to obtain
classification models for the 2-furylethylene compounds ac-
cording to their antibacterial activity. The classification models
obtained are given below together with their statistical param-
eters:

Class Act = —185.67 — 2.357%¢",; (Wg)
+ 2187 (wg) + 185.73 Xqy (Wea.co) (3)

N=34 A=0262 D>=10.92 F(3,30)=28.10
» <0.0001

torl = 94.12%  MCC =0.89 Sen =100 Spec = 87.5

Class Act = ~20.806 — 0.01917gH(w) + 0.0130V¢, ()
+0.3028 YgM )5, (Weg.c7) )
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Fig. 2. Linear correlations of observed versus calculated Log P of
the 2-furylethylene derivatives according to the model obtained from
stochastic bond-level quadratic indices (Eq.2).

N=34 A=0282 D?=991
p <0.0000
MCC=0.89 Sen=100 Spec=287.5

F(3,30) = 25.51

Qrorar = 94.12%

where, A is Wilk’s statistic, D? is the squares of Mahalanobis
distances, and F is the Fisher ratio, Q7 is the accuracy of the
model for the training set, MCC is the Matthews’ correlation
coefficient, Sen and Spec are the sensibility and specificity of
the model, respectively. The statistical analysis showed that
there exists appropriate discriminatory power for differentiating
between the two respective groups.

The non-stochastic model (Eq. 3), has an accuracy of
94.12% for the training set, misclassifying only 2 compounds
of a total of 34. This model showed a high MCC of 0.89;
MCC quantifies the strength of the linear relation between the
molecular descriptors and the classifications, and it may often
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Table 3. Experimental and calculated values of the partition coeffi-
cient n-octanol/water (log P) for the 2-Furylethylenes derivatives.

No. Obsd.? Pred? Resycioo® Predd  Resyepioo®
1 1.879 1.761 —0.209 1.755 —-0.209
2 2.439 2.240 0.351 2.548 0.351
3 2.739 2.721 0.651 2.760 0.651
4 2.999 2.994 0911 2.997 0911
5 1.869 1.751 -0.219 1.846 -0.219
6 1.599 1.667 —0.489 1.529 —0.489
7 2.504 2.687 0.416 2.666 0.416
8 1.303 1.386 —0.785 1.359 —0.785
9 1.583 1.483 —0.505 1.600 —-0.505
10 0.649 0.816 —-1.439 0.756 —-1.439
11 0.984 1.038 -1.104 1.022 —-1.104
12 0.819 0.900 -1.269 0.833 -1.269
13 1.386 1.358 -0.702 1.380 —-0.702
14 1.860 1.873 —0.228 1.790 —0.228
15 1.803 1.740 —0.285 1.812 —0.285
16 2.356 2.262 0.268 2.300 0.268
17 2.225 2311 0.137 2235 0.137
18 2.284 2.335 0.196 2.308 0.196
19 2.333 2.173 0.245 2257 0.245
20 2.605 2.741 0.517 2.685 0.517
21 1.652 1.572 —0.436 1.748 —0.436
22 2.098 2.030 0.010 2.138 0.010
23 2.673 2.587 0.585 2.489 0.585
24 2.641 2.535 0.553 2.585 0.553
25 2.827 2.996 0.739 2.986 0.739
26 3.135 3.067 1.047 2.927 1.047
27 3.091 3.176 1.003 3.077 1.003
28 3.060 3.106 0.972 3.014 0.972
29 3.404 3.346 1.316 3.505 1.316
30 2.447 2.482 0.359 2.429 0.359
31 1.050 1.332 —-1.038 1.105 —-1.038
32 1.591 1.780 —0.497 1.592 —-0.497
33 1.611 1.484 —0.477 1.554 -0.477
34 1.488 1.257 —0.600 1.398 —-0.600

aExperimental values of log P. "Predicted values using non-
stochastic (Eq. 1) and stochastic (Eq. 2) bond-based linear indices,
respectively. “°Residual values of LOO cross-validation process
using non-stochastic and stochastic bond-based linear indices,
respectively [Rescy.1oo = Bp(Obsd.) - Bp(Pred.cvy.100)]-
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provide a much more balanced evaluation of the prediction
than, for instance, the percentages (accuracy) [40]. Neverthe-
less, the most important criterion, for the acceptance or not of
a discriminant model, is based on the statistic for the external
prediction set. The non-stochastic model showed an accuracy of
100% (MCC = 1.00) for the compounds in the test set.

A rather similar behavior was obtained with the stochastic
quadratic indices (Eq. 4), but with a greater A and a shorter Ma-
halanobis distance (A = 0.282 D? = 9.91). Quite similar results
were shown by the model previously obtained with atom-based
(non-stochastic and stochastic) bilinear indices and atom-based
non stochastic linear indices, which as well as our model used
three parameters. The model developed with atom-based non
stochastic quadratic indices had similar statistical parameters,
but it was obtained with five descriptors, however our indices
showed better results than the models derived previously by
Estrada and Molina, using 2D and 3D connectivity and quan-
tum chemical descriptors; for a detailed comparison see Table
4. The overall accuracy of these models in both, training and
external prediction sets achieved with all these approaches is
shown in Table 5.

Concluding remarks

We have shown here that total and local bond-based quadratic
indices are useful MDs for modeling physicochemical proper-
ties of heteroatomic-organic chemicals. The obtained QSPR/
QSAR models for the description and prediction of log P of
34 2-furylethylene derivatives were statistically significant
and better than those obtained previously using recognized
methods, such as topological [total and local spectral moment
and 2D (edge- and vertex-) connectivity indices], topographic
and quantum chemical descriptors as well as some atom-level
TOMOCOMD-CARDD MDs. This point is important because
of the well-known broad applicability of these MDs in QSPR/
QSAR studies. As a consequence, the bond-based quadratic
indices represent a novel source for successful structure/activ-
ity-property models and drug design strategies.

Table 4. Statistical parameters for the classification of 34 2-furylethylene derivatives as antibacterial by Using Different MDs.

Classification of 34 2-Furylethylene Derivatives as Antibacterial

Index n A D? Accuracy (Training)  Accuracy (Test) F

Bond-based Non-stochastic QI (Eq. 3) 3 0.262 10.92 94.12% 100% 28.10
Bond-based stochastic QI (Eq. 4) 3 0.282 9.91 94.12% 100% 25.51
Atom-based Non-stochastic BI[41] 3 0.289 9.54 97.06% 100% 24.56
Atom-based Stochastic BI[41] 3 0.297 8.87 94.12% 100% 22.83
Atom-based Non-stochastic LI [39] 3 0.300 9.44 94.12% 100% 22.90
Atom-based Non-stochastic QI[12] 5 0.259 11.78 97.06% 100% 15.98
Vertex and edge conn. Indices [24] 5 0.43 5.7 91.2% 100% 7.70
Topographic descriptors[24] 5 0.38 6.7 94.1% 100% 9.10
Quantum chemical descriptors [24] 5 0.44 5.2 88.2% 100% 7.10

QI (Quadratic Indices), LI (Linear Indices), and BI (Bilinear Indices).
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Table 5. Classification of 2-furylethylene derivatives as antibacterial
according to the models obtained with non-stochastic and stochastic
bond-based quadratic indices.

(Eq.3) (Eq.4)
Class. Prob. % Class. Prob. %
Training set
1 + + 99.93 + 99.97
2 + + 100.00 + 99.60
3 + + 100.00 + 99.97
4 + + 100.00 + 99.96
5 + + 98.65 + 99.97
6 + + 99.86 + 99.82
7 + + 97.22 + 99.61
8 + + 99.90 + 86.90
9 + + 99.95 + 97.38
10 + + 99.11 + 50.74
11 + + 74.04 + 73.34
12 + + 98.61 + 99.78
13 + + 62.63 + 55.94
14 - - 2.89 - 0.75
15 - - 19.31 - 1.18
16 - - 1.86 - 0.21
17 - - 0.23 - 0.05
18 - - 0.59 - 0.08
19 - - 2.25 - 0.04
20 - - 0.03 - 0.01
21 - + 81.17 + 73.31
22 - + 50.43 - 44.90
23 - - 0.81 - 0.55
24 - - 5.22 - 0.71
25 - - 0.42 - 0.14
26 - - 0.03 - 0.04
27 - - 0.06 - 0.05
28 - - 0.17 - 0.02
29 - - 0.39 - 0.04
30 - - 0.01 - 40.67
31 - - 0.07 - 1.82
32 - - 16.21 + 61.58
33 - - 0.00 - 0.09
34 + + 95.90 + 87.14
Test set
1 + + 97.06 + 99.93
2 + + 98.76 + 99.93
3 + + 100.00 + 98.50
4 + + 58.24 + 99.94
5 + + 100.00 + 98.32
6 + + 79.00 + 99.97
7 + + 100.00 + 81.24
8 + + 100.00 + 80.33
9 + + 100.00 + 76.30

Outlook

The development of more powerful MDs carries sustained in-
terest in the drug discovery process. That is to say, although
there have been many discoveries in the recent years in the field
of theoretical drug-design it is necessary to continue developing
new MDs that can represent, by means of QSAR (or similar
theoretical works) studies, different physicochemical properties
and biological activities of chemical substances. Therefore, our
research group is working towards the definition of novel 2D/3D
MDs based on algebra and group theory, geometric properties,
discrete mathematics, etc. We are also interested in developing
new (standard) rules and doubly stochastic indices.

Applications of these new bond (edge)-level MDs in mo-
lecular property/activity modeling, similarity/diversity analysis
and biosilico drug discovery will be published in forthcoming
papers.
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