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ABSTRACT

This paper introduces the guidelines to synthesize 2D chaotic systems by means of high-level descriptions. The aim of this
investigation is to synthesize 2D-n-scrolls chaotic systems based on saturated functions with multisegments. The new
methodology of circuit synthesis is performed by three hierarchical levels. First, the 2D chaotic oscillator is numerically
simulated at the electronic system level by applying state variables and piecewise-linear approximation. Second, the excursion
levels of the chaotic signals are scaled to control the breaking points and slopes of the saturated functions within practical
values. Additionally, the frequency scaling of 2D-n-scrolls chaotic attractors is performed. Finally, current and voltage saturated
functions are synthesized using Verilog-A models for the operational amplifiers and in this manner a 2D chaotic system is
synthesized using operational amplifiers to generate 2D-n-scrolls attractors. Numerical results are confirmed by H-SPICE
simulations to show the usefulness of the proposed synthesis approach.

RESUMEN

El presente articulo introduce una guia para sintetizar sistemas cadticos en 2D a través de descripciones de alto nivel. El objetivo
de esta investigacidn es sintetizar sistemas cadticos de 2D-n-enrollamientos basados en funciones saturadas con
multisegmentos. La nueva metodologia para sintesis de circuitos se desarrolla en tres niveles jerarquicos. Primero, el oscilador
cadtico en 2D se simula numéricamente a nivel de sistema electrénico aplicando variables de estado y aproximacion lineal a
tramos. Segundo, los niveles de excursién de las sefiales cadticas se escalan para controlar los puntos de rompimiento y las
pendientes de las funciones saturadas dentro de valores practicos. Adicionalmente, se desarrolla un escalamiento en frecuencia
de los atractores caodticos de 2D-n-enrollamientos. Finalmente, las funciones saturadas de corriente y voltaje se sintetizan
usando modelos en Verilog-A de amplificadores operacionales para que de esta manera se sintetice un sistema cadtico en 2D
usando amplificadores operacionales para generar atractores de 2D-n-enrollamientos. Los resultados numéricos se confirman
con simulaciones en H-SPICE para mostrar la utilidad del enfoque de sintesis propuesta.
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1. Introduction

Nonlinear science has had quite a triumph in all
conceivable applications in  science and
technology [1]. For instance, chaotic systems have
been an attractive field for research in various
areas, among them physics, communications and
electronics [1]-[25]. Every new chaotic system [2],
[9], [21] is a candidate to improve applications in
engineering [11], [13], [14], [15]. The circuit
implementation of reliable nonlinear circuits [7],
[15], [18], [22], [23], for generating various
complex chaotic signals is a key issue for future
applications of chaos-based information systems

[3]1, [11], [13], [14], [25], [17], [19], [20]. For
instance, in [25] it is introduced an automatic
system to design multiscroll chaotic attractors [3],
[4], [5], [6], [8], [14], which are good candidates in
communication applications because they present
more complex behaviors than the ones based in
Chua’s circuit [7], [18], [22], [23]. In particular,
creating various complex  multidirectional
multiscroll chaotic attractors by using some simple
electronic devices is a topic of both theoretical
and practical interests [10], [11], [26], [30].
Research on generation of multiscroll chaotic
attractors has been developing for more than a
decade and there are many approaches reported
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in [3]. All these multiscrolls have been verified by
numerical simulations and theoretical proofs [1],
[4], [12], [30]. However, it has been identified that
it is quite difficult to synthesize multidirectional
multiscrolls by analog electronic circuits [5], [6],
[7], [8], [10]. To cope with this problem, the
electronic design automation (EDA) industry is
developing design tools with a high degree of
abstraction (behavioral modeling) [26], [27], [28].
Nevertheless, automated synthesis of analog
systems from a description of its desired behavior,
such as continuous chaotic systems, has not
progressed as it is done for the digital domain
[16]. Furthermore, behavioral modeling can be
exploited to give a solution on the synthesis of
chaotic systems as shown in [32] because it offers
one possible way to abstract the features of
interest in a circuit block or a system [26], [27],
[28], [29].

In this manner, this work introduces an extended
version of the synthesis approach presented in
[25] and [32]. This new version is focused on the
design of 2D-n-scrolls chaotic attractors [10], [30],
beginning with Electronic System Level (ESL)
simulations [7], [27], [28], [30], [31], and ending
with the synthesis of each individual block using
operational amplifiers (opamps) [33]. To speed-up
time simulation, the chaotic oscillator is modeled
by applying state variables and piecewise-linear
(PWL) approximation [25]. Two saturated
functions (SFs) of voltage and current are needed
to generate a 2D-mesh of n-scrolls, in contrast to
those in [25] and [32]. Besides, the position of the
scrolls on a 2D-mesh is evaluated by matrix
representations and it depends on the value of
the saturated plateaus in SFs. When SFs have been
computed, they can be synthesized using high-
level Verilog or SPICE opamp models [26], [27],
[29], [33]. Therefore, our proposed approach is
oriented to synthesize 2D chaotic oscillators based
on current and voltage SFs using opamps. In
section Il, the high-level synthesis methodology to
design 2D chaotic systems is shown. In section lll,

the numerical simulations and the synthesis of 2D-
n-scrolls chaotic systems using opamps are shown.
In section IV, the SPICE results for 2D-3-scrolls and
2D-4-scrolls chaotic attractors are shown. Finally,
the conclusions are given in section V.

2. Synthesis Methodology

The proposed synthesis methodology for 2D
chaotic systems is performed by three hierarchical
levels in a similar fashion as shown in [32, Fig. 1].
The high-level descriptions capture the behavior
of the 2D chaotic attractor and include the
number of scrolls on the 2D-mesh, position of the
scrolls on X-axis and Y-axis, voltage or current
level of the chaotic signals and frequency of the
attractor. As is well known, it is much more
difficult to physically realize a nonlinear resistor
that has an appropriate characteristic with many
segments [3], [8]. However, the realization of a
nonlinear characteristic with multisegments is the
basis for implementing chaotic attractors with
multidirectional orientation and a large number of
scrolls.

A. Behavioral modeling

The chaotic system in [25] is modified here to
generate chaotic behavior on a 2D-mesh. The 2D
chaotic system is modeled by applying state
variables approach as shown in (1), where x, vy, z
are state variables, and a,b,c,d,,d,are positive
real constants. Two saturated function series f(x)
and f(y) in (1) are needed to generate 2D-n-
scrolls attractors and are defined by (2), where
k>0is the slope and plateau of the saturated
function series, h> 2 is the saturated delay time of
the saturated function series, p,, p,, q and q,
are positive integers [8]. Therefore, the chaotic
system has the potential to create a 2D
(p, +a, +2)x(p, +, +2)-even-scrolls mesh and a
2D (p, +q,+1)x(p, +q, +1)-odd-scrolls
the saturated plateau in

mesh.

Besides, saturated
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function series is as follows: plateau=+nk for 2D-
even-scrolls and plateau =+mk for 2D-odd-scrolls.

The saturated delays for the slopes centers are
defined by h =+mk for 2D-even-scrolls and

h =+nk for 2D-odd-scrolls as shown in Fig. 1. The

multiplier factors for the above-mentioned
expressions are defined by n=1,3...(p, +q, +1) for

2D-even-scrolls and n=13...(p, +q, —-1) for 2D-
odd-scrolls; and m=24...(p, +q,) for both types

of scrolls.
. d,
y=2z

z=-ax—-by—cz+d, f(xk.h,p.q)
+d2f(y;k2’hZ’ p29q2)

f(xk,h,p,q) =

(2q+1)k x>gh+1 (2)
k(x—ih)+2ik |[x-ih/<l-p<i<q

(2i+ Dk ih+1<x<(i+)h-1-p<i<qg-1
-2p+Dk  x<-ph-1

Additionally, the centers of scrolls and connections
among neighbors-scrolls in a 2D-scrolls mesh
depend on the value of k and they are evaluated
by the matrix representations shown in (3) to (7).
The matrixes are filled in a (x, y) form, where x

plateau=mk

_A

h-o h=nk h+a

and y are the values on the X-axis and Y-axis,

respectively. All scrolls have a radius of k. In (4)
and (7), the operation (*) means an interchange in

the axis as shown here, (X, y)—>(*)=(y,x). Also,
one needs to evaluate all quadrants in (3) to (7),
this is  (+x+Y),(=X+Y),(-%-Y),(+x-y), for
simplicity they are only given in the first quadrant
(+x,+Yy). Consequently, centers of the 2D even-
scrolls are defined by C matrix in (3); the
connections are defined by U,, U, U, and U’

matrixes in (4) and (7). For 2D odd-scrolls, centers
of scrolls are defined by C' matrix in (5) and the
connections are defined by U/, U’y, U, and U’
matrixes in (6) and (7). Similarly, one can design
2D-n-scrolls attractors in (x,2) or (y,z) directions.

B. Scaling of excursion levels and frequency

Equation (2) cannot be synthesized because it
cannot have small excursion levels (ELs) as shown
in [30, section 3]. Therefore, to implement 2D-n-
scrolls attractors using practical opamps one needs
to redefine (2) by (8), where « allows that ELs of
the attractors be within the ELs of real opamps
[32]. The frequency scaling consists in multiplying
the state variables system in (1) by a required
factor of scaling as described in [25, section 4].

f(x)
A
plateau=nkK [----=-------- -0

Figure 1. PWL description of an SF to generate 2D-odd and 2D- even-scrolls
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(K, k) (nk, k)
c=| + (3)
(k,nk) ... (nk,nk)
(k,2k) (nk,2k) 2k, k) (mk, k)
Ueo=| . : U,=U,(¥= DU (4)
(k,mk) ... (nk,mk) (2k,nk) ... (mk,nk)
(0,0) (mk,0)
C'=l g : (5)
0,mk) ... (mk,mk)
2k, k) (2k,nk) (k,2K) (k,mk)
u,=u= S uy=u,= i (6)
(mk,k) ... (mk,nk) (nk,2k) ... (nk,mk)
u=lko .. mkol  u=u=lok ... 0.kl (7)
f(xa,kh p,g)= of real opamps are considered using the Verilog—A
(2q+Dk x>0h+a (8) model given in [32, section IV-B].
k/a(x=ih)+2ik [x-ih<a,-p<i<q
(2i+Dk ih+a <x<(i+Dh-a,—p<i<qg-1 . _
—@2p+ Dk X< —ph-a k=Rixlsat lsat=Vsat/Rc o = Rilvsat|/Rf o
s=k/a h=Ei/(1+(Ri/Rf))
C. Synthesis of voltage and current saturated
functions
. . . = BC
A voltage SF can be described by the opamp finite- S,
gain model, so that if a shift-voltage (xE) is added, R P —
one gets the shifted-voltage SFs for positive and v(u) '; =,
negative shifts [25]. The basic cell (BC) shown in W e B P B input
[25, Fig. 4(b)] is used herein to synthesize voltage T I,
and current SFs. In the following, the general | o
connection of BCs to implement f(x) and f(y) in (1) I,
is shown in Fig. 2. E takes different values in (9) to le N -Basc |—!
synthesize the required plateaus and slopes. The cel ¢,

value of plateaus k in voltage and current,
breakpoints «, slope s and h are evaluated by
(9). The gain, bandwidth, slew rate and saturation

Figure 2. Synthesis of voltage and current
saturated functions
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[(£0.2540.25) (+0.75,40.25)
1(£0.25,40.75) (+0.75,40.75)

U=[(x0250) (£0.75,0)]

- :[( (0.0 (x0.5,0) ]

0,40.5) (+0.5,40.5)

3. Synthesis of 2D-n-Scroll Attractors

The ESL speeds up time simulation since it allows
the use of behavioral models for nonlinear systems
[27],[28]. A 2D-3-scrolls chaotic attractor s
generated by setting a=b=c=d1=d2=0.7, k=250e-3,
a=2.5e-3, h=250e-3, pl=ql=p2=g2=1 to evaluate
(1) and (8) as shown in Fig. 3, and a 2D-4-scrolls
attractor is generated with a=b=c=d1=d2=0.7,
k=250e-3, a=2.5e-3, h=500e-3, pl=ql=p2=g2=1, as
shown in a scaled version in [30, Fig. 7]. The
position of scrolls on a 2D-mesh, the centers of
scrolls and the connections among neighbors
scrolls are given by evaluating (3) to (7). For 2D-
even-scrolls, it results in 16 scrolls with a radius of
250e-3 and 24 connections as shown in (10).
Similarly, the evaluation for 2D-odd-scrolls is given
in (11) and it results in 9 scrolls with a radius of
250e-3 and 12 connections.

} U, =[(#025205) (£0.7520.5)] Uy =[(£0.5£0.25) (£0.5+0.75)]

Uy =[(#0.52025)] U}, =[x025205)] U=[x0250)]

(10)

U’ =[(0,40.25) (0,+0.75)]

U =[(0.02s)] (11)

Figure 3. Numerical simulation of a 2D-3-scrolls mesh

On the other hand, the 2D chaotic system in (1)
can be synthesized with opamps as shown in Fig. 4
and 5. From Fig. 5 one obtains the system given in
(12), and its parameters are determined by (13). By
selecting Rix=10KQ), one obtains C=143uF, R=7KQ,
Rx=Ry=Rz=10KQ, Rfs=10KQ and Ris=10KQ.

ol

wnl—
+
v =

Figure 4. Block diagram of the 2D chaotic system in (1)
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v(y)

) (5760

i(y)| SF(y)

Rx

Y.

i

Figure 5. Opamp-based implementation of (1)

&_y vy
d RC RC
dy z
dt RC

daz__ x y z [ioRx] [fiyRix]
dt RxC RyC RzC RixC RixC

C=1/0.7Rix Rx=Ry=Rz=1/0.7C

(12)

R=1/C

(13)

SF(x)

b
i)

(b)

The general connection shown in Fig. 2 can
synthesize the current saturated function SF(x) and
voltage and current saturated function SF(y) in Fig.
5. Therefore, the circuit level synthesis of the
saturated functions is shown in Fig. 6 for 2D-3-
scrolls and 2D-4-scrolls, respectively.

SF(y)

+Ele— +

V()

)

Figure 6. Opamp-based synthesis of SF(x) and SF(y) in Fig. 5 for: a) 2D-3-scrolls
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4. H-SPICE Simulation results

By selecting Vsat=t2.5V, Rix=R=10KQ, Rc=100KQ,
Ri=1KQ and Rf=1MQ, in (9) one gets k=250mV,
Isat=25pA, a=2.5mV, s=100 and h=E;=250mV for 2D-3-
scrolls and h=E;=500mV for 2D-4-scrolls. Furthermore,
the H-SPICE simulations for 2D-3-scrolls attractors and
2D-4-scrolls attractors are shown in Fig. 7.

Figure7. H-SPICE simulation results for 2D chaotic
attractors.

5. Conclusion

The synthesis of 2D-3-scrolls attractors and 2D-4-
scrolls attractors by behavioral modeling has
been shown. The 2D-n-scrolls chaotic oscillator
was modeled by state variables and PWL
approximations, and the synthesis process was
focused on the implementation of PWL
approximations by scaling ELs of the chaotic
signals to implement those using practical
opamps. In this manner, it was shown that voltage
and current saturated functions can be
synthesized with opamps by controlling the
breaking points and slopes. Finally, since SPICE
simulations are in good agreement with the ESL
numerical simulations, one can conclude on the
usefulness of high-level behavioral modeling to
synthesize 2D-n-scrolls attractors.
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