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ABSTRACT 
 
In this work an array failure correction for Linear Antenna Array (LAA) is presented. This is carried out by means of 
an Adaptive Artificial Neural Network (AANN) that adjusts the amplitude and phase at beamforming. The 
appropriated corrections are given, when one, or two, or three elements have a failure in the antenna linear array. 
The AANN corrects the corresponding parameters in the radiation pattern obtained due to the failure, when we 
know the coefficients of the array factor (AF). This yields a reduction of side lobe level and some interferences 
disappear. 
 
RESUMEN 
 
En este trabajo se realiza una corrección de fallas para un Arreglo Lineal de Antenas (ALA). Esto se lleva a cabo 
mediante una Red Neuronal Artificial Adaptable (RNAA) que ajusta al generador del haz “beamforming” en 
amplitud y fase. Las pertinentes correcciones se dan, cuando en el arreglo lineal de antenas fallan uno, dos y hasta 
tres elementos. La RNAA corrige los debidos parámetros en el patrón de radiación obtenido para la falla, dados los 
coeficientes del Factor de Arreglo (AF).  
 
KEYWORDS: Adaptive Artificial Neural Networks (AANN), Array Factor (AF), Side Lobe Level (SLL), Linear Antenna 
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1. INTRODUCTION 
 
For a Linear Antenna Array with its traditional beam generator, if one or more elements are damaged by an 
unfortunate reason, the LAA would stop operating due to an unacceptable distortion on its radiation pattern, for 
example a significant increment may exist in the side lobes level (SLL). By means of the AANN it is possible not to 
replace the damaged element, but by recalculating the radiation pattern's parameters with the spare elements to 
approximate the new pattern to the original one. This capacity to correct the failure in the radiation pattern of the 
AANN produces a cost-effective alternative to hardware replacement which might be time-consuming, especially for 
arrays performing critical operations. Other applications include satellite or extraterrestrial communications (earth-air-
earth) for example in spaceships, where a damaged antenna element could not be replaced easily by means of 
substitution [1]. In the literature no analytic technique has been devised to yield a set of new beamforming weights 
that effectively corrects the damaged pattern. Thus, a failure array LAA can be visualized as an non-uniformly spaced 
array, the analytic approaches are unable to solve this type of problems. In past years, many algorithms have been 
proposed to correct the damaged patterns, however, due to the outrage of the geometric distribution of the spare 
elements in the array and the way of the wanted beamforming, the correction of the failure is still been solved by 
numerical approaches [2]. 
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The adaptive arrays have been used mainly for the beamforming and to direct the null ones in several civil and military 
systems, including the GPS, cellular and mobile communications. The main idea in each case is to determine the 
angle of reception of arrival of the desired signals, as well as the directions of interfering or jamming signals. Once all 
these signals have been determined, the elements of the adaptive array antenna are excited with the appropriate 
inputs to place null in the direction of the interfering signals and beams in the desired direction. This is accomplished 
by finding a cost function that allows maximum gain in the directions of the desired signal and the rejection of the 
interference by minimizing the antenna power where it is necessary. After mathematical calculations, the cost 
function can be reformulated so that the optimization can be made by means of Artificial Neuronal Networks with the 
aim of estimating the appropriated array element weights [3]. 
 
The neural generators have the advantage of fast convergence rate that can easily allow  the antenna to track the 
mobile user. Other problems associated with generators with the conventional beamforming stem from the 
requirements of highly calibrated antennas that assume identical element properties. The degradation often occurs 
due to the fact that this algorithms have a poor  adaptation  to the element failure or other sources of errors like 
interferences. An AANN can be trained with a number of observations of the antenna behavior under a specific set of 
circumstances. The net can be generalized and then it can be used to predict the aperture behavior at all points.  
 
The LAA can be designed to control its radiation characteristics by selecting the appropriate distribution of phase and 
amplitude among the elements of the array. It has been proven that the phase control can significantly alter the 
radiation pattern of a LAA. In fact, the principle of the antennas, where the maximum pattern of the array can be 
aimed in different directions, is mainly based on the phase control of the elements excitement. Likewise, it has been 
demonstrated that an appropriate decrease on the excitement of the amplitude among the elements can be used to 
control the beam width and the side lobes level [4]. 
 
The Adaptive Neuronal System carries out the appropriate correction of the beamforming and generates the radiation 
pattern of a linear array antenna when a failure is presented in one of the elements. This system estimates the proper 
weights for the new amplitude and phase conditions of the beam generator. These adjustments or corrections can be 
clearly visualized in figure 1 [5].  
 

 
 

Figure 1. The Beamforming of a linear array antenna 
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2. PROBLEM FORMULATION 
 
The beamforming of a LAA, can be used only for amplitude, for phase or amplitude-phase approach. In the case of 
amplitude approach it cannot compensate for the degradation of a damaged array pattern, as the failing elements 
introduce an asymmetrical aperture distribution. On the other hand, the case of the phase approach with constant 
amplitude requires a large number of elements to yield low side lobes. Consequently, beamforming using, both 
amplitude and phase is necessary for the redistribution of the weights, in order to correct the damaged pattern [6]. 
 
For an arbitrary arrangement, the Array Factor (AF) can generally be given by:  
 

AF = WT S(T,Tm)    ,                 (1)  
 
where  
 

w = {w1,w2, ,wN }T, wn H�Cn               (2)  
 

is the weighting vector, S the steering vector, T y Tm are the direction variables and main beam direction, respectively. 
Cn is the set or a subset of all complex numbers.  
 
Take, for example, a linear array of N identical elements, its steering vector is given by:  
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in such a way that the same set of optimum weights for the main beam at broadside can be used for other directions, 
when the above S vector is recalculated for the new beam-pointing direction.  
 
When the Mth-element fails in the array, its weight w m  is supposed to be similar to zero. Thereafter, the AANN is 

applied to correct the SLL and the main beam shape of the pattern taking in to account the previously specified 
failures.  
 
3. ADAPTATIVE ARTIFICIAL NEURAL NETWORK 
 
The networks with adaptive linear neurons (ADALINE) are similar to the perceptron, but their activation function is 
linear compared with the step or “hard limiter.” This allows their outputs to take any value, whereas the perceptron 
output can only take values between 0 and 1. Both, the ADALINE and the perceptron can only solve linearly separable 
problems. However, making use of the least mean square (LMS) learning rule, which is much more powerful than the 
perceptron learning rule, it is possible to minimize the mean square error and thus to move the decisions boundaries 
as far as it can from the training patterns [7]. 
 
In an adaptive neural network when a set of input vectors is presented, produces outputs of corresponding objective 
or target vectors. For each input vector we can calculate the network output vector. The difference between an output 
vector and its target vector is the error. We would like to find values for the networks weights and bias such that the 
sum of the squares of the errors is minimized or below a specific value. This problem is manageable because linear 
systems have a single error minimum. In most cases we can calculate a linear network directly, such that its error is 
minimum for the given input vectors and target vectors. In other cases the numeric problems prohibit direct 
calculation. Fortunately, we can always train the network to have a minimum error using the Widrow-Hoff learning 
rule.  
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With this we can design an adaptive linear system that responds to changes in its environment as it is operating. The 
linear networks which are adjusted at each time step based on new input and  target vectors can find weights and 
appropriate bias which minimize the network and the sum squared error for recent input and target vectors. The 
networks of this type are often used in problems of error cancellation, signal processing and control systems.  
 
Adaptive filtering is just one of the many more applications areas where the ADALINE has been used. To carry out this 
kind of application is necessary a new component to make complete use of the power of an adaptive network, this is 
a delay line. In figure 2 is shown the neuron pattern like adaptive filter that was used in this paper. The pattern has 
input signal from the left, and each one of them passes through N-1 delays. The output of the tapped delay line (TDL) 
is an N-dimensional vector, made up of the input signal at the current time, the previous input signal, etc. These in 
turn pass through a linear activation function to obtain their output.  
 

 
Figure 2. Neuron model like an adaptive filter 

 
4. PROCEDURE 
 
When a failure occurs in a 16 elements linear adaptive array (LAA), the steering vector S is affected and therefore this 
damages the radiation pattern in the coefficients of the array factor (AF). Then is supposed a zero in the fail element, 
with this a new radiation pattern is obtained for the M-1 remaining array elements and the AANN adjusts the new 
parameters to adapt them to the original radiation pattern. Each radiation pattern is formed by 901 points that 
correspond to its amplitude and its phase for 180º, with a step of 0.2. For AANN to carry out its work, we made a 
preprocess of the original data, improving its functionality, moving all the points to positive values and then 
normalizing them in an interval of [-1,1]. To train the AANN we used the following code in MatLab:  
 
First we read the data of a file, as much for the inputs as for the targets vectors:  
 

'P = dlmread (''16e35db.dat'',''\t'',0,0,[0,0,901,0]);', 
'T = dlmread (''16e35db.dat'',''\t'',0,1);', 

 
Then the vectors are normalized in an interval of [-1,1]:  
 

'[Pn,minp,maxp] = premnmx(P);', 
'[Tn,mint,maxt] = premnmx(T);', 
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Thus they are linked and transpose (they make the data confortable for the AANN) 
 

'P = con2seq(Pn.'');' 
'T = con2seq(Tn.'');' 

 
The linear network must have tapped delay in order to learn the time-shifted correlation between P (input vector) and 
T (target vector), NEWLIN creates a linear layer.', 
 

'net = newlin([-1 1],1,[0 1],0.5);' 
 
NEWLINE: has as parameters, ([-1 is the minimum value of input, 1 is the maximum value of the input (is the expected 
input range)],  The second argument 1 is the number of neurons in the layer, [0 1] specifies one input with no delay 
and one input with a delay of 1, The last argument 0.5 is the learning rate);  
 

'[net,Y,E,Pf]=adapt(net,P,T);' 
 

ADAPT: simulates adaptive networks. It takes a network, an input signal, and a target signal, and filters the signal 
adaptively. By t=2 the network has learned the relationship between the input and the target  and the error drops to 
near zero. 
 

The process mentioned above repeats when there are two and three fails in the elements of LAA. The coefficients of 
the AF are presented for the remaining n-elements to generate the patterns with damage. These radiation patterns 
are shown in the figure 3, then the radiation patterns adjustment is presented together with the error for each array 
[8]. 
 

5. SIMULATIONS RESULTS 
 
A 16-elements Linear Antennas Array (LAA) is used with Dolph-Tschebyscheff configuration, and separation of 0.5[O] 
(wavelength) with a non-uniform spacing, a Side Lobe Level (SLL) of -35 dB is used as a reference, and with the main 
beam pointing directed toward 90º.  
 
The damage radiation patterns are obtained when one or more elements of ALA stop working by unforeseen reason, 
its correspond excitation coefficient in the array factor (AF) turns to zero. Then the adaptive artificial neural network 
(AANN) adjusts the parameters from these radiation patterns to the original parameters of 16-elements array. In figure 
3 the radiation pattern is shown for 16 elements of LAA. The excitation coefficients of the AF for 16-elements are:  
 

Excitation Coefficients  for 16-elements LAA 
 

2.078    2.827   4.512  6.316  8.130  9.744  10.959   11.605 
11.605  10.959   9.744   8.130  6.316  4.512    2.827     2.078 

 

 
 

Figure 3. Radiation pattern for 16-elements of LAA  
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Characteristics of the output for 16-elements of the array:  

 

DIRECTIVITY =  11.120  [dB] 
 DIRECTIVITY = 12.943 dimensionless 

NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES =  1 

Half-Power Beam Width for maximum element =  8.5o for TMAX = 90.0o 
 

Following, when there is a failure in the second, fourth and sixth element of the linear antennas array the radiation 
patterns are shown.  
 

Failure of 1 – element 
Excitation Coefficients  for 16-elements LAA with 1 failure   

2.359    0.000   6.232   8.974  11.703  14.033  15.603  8.078 
8.078  15.603  14.033  11.703   8.974   6.232    3.812    2.359 

 

 
Figure 4. Radiation Pattern of 16-e (green) and radiation pattern with 1 failure (blue) 

 
Characteristics of the output for 16-elements with 1 failure: 

 
DIRECTIVITY =  10.730  [dB] 

    DIRECTIVITY=  11.830  dimensionless 
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES =  1 

Half-Power Beam Width for maximum element =  9.3o for  TMAX = 90.0o 
 

 
Figure 5. Radiation pattern of 16-e (red), radiation pattern with adjustment (blue) and error (green)  
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Failure of 2 – elements 

Excitation Coefficients  for 16-elements LAA with 2 failures 
2.622     0.000    4.697    0.000  11.593  15.134  17.947  19.506 
19.506   17.947   15.134  11.593   7.933   4.697   2.827    2.622 

 

 
 

Figure 6. Radiation Pattern of 16-e (green) and radiation pattern with 2 failures (blue) 
 
Characteristics of the output for 16-elements with 2 failures: 

 
DIRECTIVITY = 10.374 [dB] 

    DIRECTIVITY = 10.898  dimensionless 
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES =  1 

Half-Power Beam Width for maximum element =  10.1o for  TMAX = 90.0o 

 

 
 

Figure 7. Radiation pattern of 16-e (red), radiation pattern with adjustment (blue) and error (green) 
 
Failure of 3 – elements 
 

Excitation Coefficients  for 16-elements LAA with 3 failures   
2.963      0.000     5.888    0.000   15.195   0.000  22.980   12.074 
12.074    22.980   19.750   15.195  10.275  5.888    4.512     2.963 
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Figure 8. Radiation Pattern of 16-e (green) and radiation pattern with 3 failures (blue) 
 
Characteristics of the output for 16-elements with 3 failures: 

 
DIRECTIVITY = 9.997 [dB] 

    DIRECTIVITY = 9.994  dimensionless 
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES =  1 

Half-Power Beam Width for maximum elements =  11o for  TMAX = 90.0o 
 

 
Figure 9. Radiation pattern of 16-e (red), radiation pattern with adjustment (blue) and error (green) 

 
6. CONCLUSIONS  
 
The radiation patterns correction that carries out the AANN (Adaptive Artificial Neural Network), when failures are 
presented in the linear array of antennas of 16-elements, are below 1% in the softest areas, and it is increased in the 
abrupt changes of the original radiation patterns. In some cases variations are presented in the adjustment (figure 5), 
but it is necessary to remember that during the training the learning rate of the AANN is very important in the 
adaptation of both patterns, the original and failure one.  
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The adjustment of the radiation patterns depends on excitation coefficients, because these coefficients support to 
generate the radiation pattern. However in the AANN the weights are parameters of correction which takes the 
damaged signal to the original, to reduce the level of the side lobes level (SLL). Thus the weights and biases of the 
network are the ones that adapt and correct the failures of damaged radiation pattern. These obtained AANN 
parameters are related with the excitation coefficients of the array and with the beamforming which yield the 
amplitude and the phase of the array.  
 
The success correcting a damaged pattern depends strongly on the original weighting of the failed elements and of 
the number of failures in the array. In this instance, if in the linear antennas array (LAA) the eighth or ninth element 
fails resulting in a blockage, it would be impossible to correct or yield improvement using AANN or using any 
technique. We can observe that the failures occur on the same side with respect to the central element, but 
nevertheless could happen in both sides of the array also.  
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