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ABSTRACT

In this work an array failure correction for Linear Antenna Array (LAA) is presented. This is carried out by means of
an Adaptive Artificial Neural Network (AANN) that adjusts the amplitude and phase at beamforming. The
appropriated corrections are given, when one, or two, or three elements have a failure in the antenna linear array.
The AANN corrects the corresponding parameters in the radiation pattern obtained due to the failure, when we
know the coefficients of the array factor (AF). This yields a reduction of side lobe level and some interferences
disappear.

RESUMEN

En este trabajo se realiza una correccion de fallas para un Arreglo Lineal de Antenas (ALA). Esto se lleva a cabo
mediante una Red Neuronal Artificial Adaptable (RNAA) que ajusta al generador del haz “beamforming” en
amplitud y fase. Las pertinentes correcciones se dan, cuando en el arreglo lineal de antenas fallan uno, dos y hasta
tres elementos. La RNAA corrige los debidos parametros en el patron de radiacion obtenido para la falla, dados los
coeficientes del Factor de Arreglo (AF).

KEYWORDS: Adaptive Artificial Neural Networks (AANN), Array Factor (AF), Side Lobe Level (SLL), Linear Antenna
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1. INTRODUCTION

For a Linear Antenna Array with its traditional beam generator, if one or more elements are damaged by an
unfortunate reason, the LAA would stop operating due to an unacceptable distortion on its radiation pattern, for
example a significant increment may exist in the side lobes level (SLL). By means of the AANN it is possible not to
replace the damaged element, but by recalculating the radiation pattern's parameters with the spare elements to
approximate the new pattern to the original one. This capacity to correct the failure in the radiation pattern of the
AANN produces a cost-effective alternative to hardware replacement which might be time-consuming, especially for
arrays performing critical operations. Other applications include satellite or extraterrestrial communications (earth-air-
earth) for example in spaceships, where a damaged antenna element could not be replaced easily by means of
substitution [1]. In the literature no analytic technique has been devised to vield a set of new beamforming weights
that effectively corrects the damaged pattern. Thus, a failure array LAA can be visualized as an non-uniformly spaced
array, the analytic approaches are unable to solve this type of problems. In past years, many algorithms have been
proposed to correct the damaged patterns, however, due to the outrage of the geometric distribution of the spare
elements in the array and the way of the wanted beamforming, the correction of the failure is still been solved by
numerical approaches [2].
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The adaptive arrays have been used mainly for the beamforming and to direct the null ones in several civil and military
systems, including the GPS, cellular and mobile communications. The main idea in each case is to determine the
angle of reception of arrival of the desired signals, as well as the directions of interfering or jamming signals. Once all
these signals have been determined, the elements of the adaptive array antenna are excited with the appropriate
inputs to place null in the direction of the interfering signals and beams in the desired direction. This is accomplished
by finding a cost function that allows maximum gain in the directions of the desired signal and the rejection of the
interference by minimizing the antenna power where it is necessary. After mathematical calculations, the cost
function can be reformulated so that the optimization can be made by means of Artificial Neuronal Networks with the
aim of estimating the appropriated array element weights [3].

The neural generators have the advantage of fast convergence rate that can easily allow the antenna to track the
mobile user. Other problems associated with generators with the conventional beamforming stem from the
requirements of highly calibrated antennas that assume identical element properties. The degradation often occurs
due to the fact that this algorithms have a poor adaptation to the element failure or other sources of errors like
interferences. An AANN can be trained with a number of observations of the antenna behavior under a specific set of
circumstances. The net can be generalized and then it can be used to predict the aperture behavior at all points.

The LAA can be designed to control its radiation characteristics by selecting the appropriate distribution of phase and
amplitude among the elements of the array. It has been proven that the phase control can significantly alter the
radiation pattern of a LAA. In fact, the principle of the antennas, where the maximum pattern of the array can be
aimed in different directions, is mainly based on the phase control of the elements excitement. Likewise, it has been
demonstrated that an appropriate decrease on the excitement of the amplitude among the elements can be used to
control the beam width and the side lobes level [4].

The Adaptive Neuronal System carries out the appropriate correction of the beamforming and generates the radiation
pattern of a linear array antenna when a failure is presented in one of the elements. This system estimates the proper
weights for the new amplitude and phase conditions of the beam generator. These adjustments or corrections can be
clearly visualized in figure 1 [5].
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Figure 1. The Beamforming of a linear array antenna
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2. PROBLEM FORMULATION

The beamforming of a LAA, can be used only for amplitude, for phase or amplitude-phase approach. In the case of
amplitude approach it cannot compensate for the degradation of a damaged array pattern, as the failing elements
introduce an asymmetrical aperture distribution. On the other hand, the case of the phase approach with constant
amplitude requires a large number of elements to yield low side lobes. Consequently, beamforming using, both
amplitude and phase is necessary for the redistribution of the weights, in order to correct the damaged pattern [6].

For an arbitrary arrangement, the Array Factor (AF) can generally be given by:
AF=W"S(6,6,) |, (1)
where
w={w,ws, Wy}, wheC” (2)

is the weighting vector, S the steering vector, 0 y 0, are the direction variables and main beam direction, respectively.
C" is the set or a subset of all complex numbers.

Take, for example, a linear array of N identical elements, its steering vector is given by:

N -1

S = exp{jkd(n - j.(cos@ —cosé, )} (3)

in such a way that the same set of optimum weights for the main beam at broadside can be used for other directions,
when the above S vector is recalculated for the new beam-pointing direction.

When the Mth-element fails in the array, its weight w, is supposed to be similar to zero. Thereafter, the AANN is

applied to correct the SLL and the main beam shape of the pattern taking in to account the previously specified
failures.

3. ADAPTATIVE ARTIFICIAL NEURAL NETWORK

The networks with adaptive linear neurons (ADALINE) are similar to the perceptron, but their activation function is
linear compared with the step or “hard limiter.” This allows their outputs to take any value, whereas the perceptron
output can only take values between 0 and 1. Both, the ADALINE and the perceptron can only solve linearly separable
problems. However, making use of the least mean square (LMS) learning rule, which is much more powerful than the
perceptron learning rule, it is possible to minimize the mean square error and thus to move the decisions boundaries
as far as it can from the training patterns [7].

In an adaptive neural network when a set of input vectors is presented, produces outputs of corresponding objective
or target vectors. For each input vector we can calculate the network output vector. The difference between an output
vector and its target vector is the error. We would like to find values for the networks weights and bias such that the
sum of the squares of the errors is minimized or below a specific value. This problem is manageable because linear
systems have a single error minimum. In most cases we can calculate a linear network directly, such that its error is
minimum for the given input vectors and target vectors. In other cases the numeric problems prohibit direct
calculation. Fortunately, we can always train the network to have a minimum error using the Widrow-Hoff learning
rule.
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With this we can design an adaptive linear system that responds to changes in its environment as it is operating. The
linear networks which are adjusted at each time step based on new input and target vectors can find weights and
appropriate bias which minimize the network and the sum squared error for recent input and target vectors. The
networks of this type are often used in problems of error cancellation, signal processing and control systems.

Adaptive filtering is just one of the many more applications areas where the ADALINE has been used. To carry out this
kind of application is necessary a new component to make complete use of the power of an adaptive network, this is
a delay line. In figure 2 is shown the neuron pattern like adaptive filter that was used in this paper. The pattern has
input signal from the left, and each one of them passes through N-1 delays. The output of the tapped delay line (TDL)
is an N-dimensional vector, made up of the input signal at the current time, the previous input signal, etc. These in
turn pass through a linear activation function to obtain their output.

Tapped Delay Line Linear layer
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Figure 2. Neuron model like an adaptive filter

4. PROCEDURE

When a failure occurs in a 16 elements linear adaptive array (LAA), the steering vector S is affected and therefore this
damages the radiation pattern in the coefficients of the array factor (A£). Then is supposed a zero in the fail element,
with this a new radiation pattern is obtained for the M-1 remaining array elements and the AANN adjusts the new
parameters to adapt them to the original radiation pattern. Each radiation pattern is formed by 901 points that
correspond to its amplitude and its phase for 1800, with a step of 0.2. For AANN to carry out its work, we made a
preprocess of the original data, improving its functionality, moving all the points to positive values and then
normalizing them in an interval of [-1,1]. To train the AANN we used the following code in MatLab:

First we read the data of a file, as much for the inputs as for the targets vectors:

'P = dlmread ("16e35db.dat","\t",0,0,[0,0,901,0]);',
'T = dlmread ("16e35db.dat","\t",0,1);',

Then the vectors are normalized in an interval of [-1,1]:
'[Pn,minp,maxp] = premnmx(P);',

'[Tn,mint,maxt] = premnmx(T);’,
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Thus they are linked and transpose (they make the data confortable for the AANN)

'P = con2seq(Pn.");'
'"T = con2seq(Tn.");'

The linear network must have tapped delay in order to learn the time-shifted correlation between P (input vector) and
T (target vector), NEWLIN creates a linear layer.',

'net = newlin([-1 1],1,[0 1],0.5);'

NEWLINE: has as parameters, ([-1 is the minimum value of input, 1 is the maximum value of the input (is the expected
input range)], The second argument 1 is the number of neurons in the layer, [0 1] specifies one input with no delay
and one input with a delay of 1, The last argument 0.5 is the learning rate);

'[net,Y,E,Pf]=adapt(net,P,T);'

ADAPT: simulates adaptive networks. It takes a network, an input signal, and a target signal, and filters the signal
adaptively. By t=2 the network has learned the relationship between the input and the target and the error drops to
near zero.

The process mentioned above repeats when there are two and three fails in the elements of LAA. The coefficients of
the AF are presented for the remaining n-elements to generate the patterns with damage. These radiation patterns
are shown in the figure 3, then the radiation patterns adjustment is presented together with the error for each array
(8].

5. SIMULATIONS RESULTS

A T6-elements Linear Antennas Array (LAA) is used with Dolph-Tschebyscheff configuration, and separation of 0.5[A]
(wavelength) with a non-uniform spacing, a Side Lobe Level (SLL) of -35 dB is used as a reference, and with the main
beam pointing directed toward 90°.

The damage radiation patterns are obtained when one or more elements of ALA stop working by unforeseen reason,
its correspond excitation coefficient in the array factor (AF) turns to zero. Then the adaptive artificial neural network
(AANN) adjusts the parameters from these radiation patterns to the original parameters of 16-elements array. In figure
3 the radiation pattern is shown for 16 elements of LAA. The excitation coefficients of the AF for 16-elements are:

Excitation Coefficients for 16-elements LAA

2.078 2.827 4.512 6.316 8.130 9.744 10.959 11.605
11.605 10.959 9.744 8.130 6.316 4.512 2.827 2.078
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Figure 3. Radiation pattern for 16-elements of [AA
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Characteristics of the output for 16-elements of the array:

DIRECTIVITY = 11.120 [dB]

DIRECTIVITY = 12.943 dimensionless
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 1

Half-Power Beam Width for maximum element = 8.5° for euax = 90.0°

Following, when there is a failure in the second, fourth and sixth element of the linear antennas array the radiation

patterns are shown.

Fallure of 1 - element

Excitation Coefficients for 16-elements LAA with 1 failure
2.359 0.000 6.232 8.974 11.703 14.033 15.603 8.078
8.078 15.603 14.033 11.703 8.974 6.232 3.812 2.359
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Figure 4. Radliation Pattern of 16-e (green) and radiation pattern with 1 failure (blue)

Characteristics of the output for 16-elements with 1 failure:

DIRECTIVITY = 10.730 [dB]

DIRECTIVITY= 11.830 dimensionless
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 1

Half-Power Beam Width for maximum element = 9.3° for Opmax = 90.0°
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Figure 5. Radiation pattern of 16-e (red). radiation pattern with aajustment (blue) and error (dreen)
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Failure of 2 - elements

Excitation Coefficients for 16-elements LAA with 2 failures
2.622 0.000 4.697 0.000 11.593 15.134 17.947 19.506
19.506 17.947 15.134 11.593 7.933 4.697 2.827 2.622
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Figure 6. Radiation Pattern of 16-e (green) and radiation pattern with 2 failures (blue)
Characteristics of the output for 16-elements with 2 failures:

DIRECTIVITY = 10.374 [dB]
DIRECTIVITY = 10.898 dimensionless
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 1

Half-Power Beam Width for maximum element = 10.1° for Opmax = 90.0°
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Figure 7. Radliation pattern of 16-e (red), radiation pattern with adjustment (blue) and error (green)
Failure of 3 - elements
Excitation Coelfficients for 16-elements LAA with 3 failures

2963 0.000 5.888 0.000 15.195 0.000 22.980 12.074
12.074 22980 19.750 15.195 10.275 5.888 4.512 2.963

195
Journal of Applied Research and Technology



Antennas array adjust with adaptive neuronal system, A. Padron, I. Garduio, A. A. Herrera & R. Prieto, 189-198

Radiation Pattern

08¢ /

0.6

0 20 40 B0 80 100 120 140 160 180
Azimuth

Figure 8. Radiation Pattern of 16-e (green) and radiation pattern with 3 failures (blue)
Characteristics of the output for 16-elements with 3 failures:

DIRECTIVITY = 9.997 [dB]
DIRECTIVITY = 9.994 dimensionless
NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 1

Half-Power Beam Width for maximum elements = 11° for Opmax = 90.0°
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Figure 9. Radiation pattern of 16-e (red), radiation pattern with adjustment (blue) and error (green)

6. CONCLUSIONS

The radiation patterns correction that carries out the AANN (Adaptive Artificial Neural Network), when failures are
presented in the linear array of antennas of 16-elements, are below 1% in the softest areas, and it is increased in the
abrupt changes of the original radiation patterns. In some cases variations are presented in the adjustment (figure 5),
but it is necessary to remember that during the training the learning rate of the AANN is very important in the
adaptation of both patterns, the original and failure one.
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The adjustment of the radiation patterns depends on excitation coefficients, because these coefficients support to
generate the radiation pattern. However in the AANN the weights are parameters of correction which takes the
damaged signal to the original, to reduce the level of the side lobes level (SLL). Thus the weights and biases of the
network are the ones that adapt and correct the failures of damaged radiation pattern. These obtained AANN
parameters are related with the excitation coefficients of the array and with the beamforming which yield the
amplitude and the phase of the array.

The success correcting a damaged pattern depends strongly on the original weighting of the failed elements and of
the number of failures in the array. In this instance, if in the linear antennas array (LAA) the eighth or ninth element
fails resulting in a blockage, it would be impossible to correct or yield improvement using AANN or using any
technique. We can observe that the failures occur on the same side with respect to the central element, but
nevertheless could happen in both sides of the array also.
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