G UARANTEEING ASYMPTOTIC ZERO INTERSAMPLING TRACKING ERROR

VIA A DISCRETIZED REGULATOR AND EXPONENTIAL HOLDER FOR
NONLINEAR SYSTEMS

B. Castillo-Toledo & G. Obregdn-Pulido.

Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara A.P. 31-438, Plaza La Luna, 44550, Guadalajara, Jal.

Received May 5" 2001 and accepted October 10" 2002

ABSTRACT

In this paper we present the design of a robust discretized controller based in the theory of regulation for nonlinear
systems. In the general command tracking and disturbance rejection problem, it is known that a sample data
controller using zero order holder may only guarantee asymptotic tracking at the sampling instances. We show that
by means of a so-called exponential holder, we are able to guarantee asymptotic zero output tracking error, not
only in the sampling instant, but also between these instant. Some considerations on the design of exponential
holders are presented. The application in simulation to some typical nonlinear systems shows the good
performance of the proposed scheme.

KEYWORDS: Nonlinear Systems, Discrete time control, Regulation Theory.

1. INTRODUCTION

A central problem in the control theory is that of manipulating the inputs of a system in such a way that the outputs of
that system tracks, at least asymptotically, a defined reference signals, preserving at the same time some desired
stability property of the close-loop system. More precisely, consider the nonlinear system described by

x=f(x,u,w,0) (1)
w=s(w) 2)
e=h(x,w,80), 3)

where @ € R’ is a parameter vector, u € R™ is the input signal, x € R" is the state of the system, w e R?
represents the state of an external signal generator, described by (2), which provides the reference and/or
perturbation signals. Equation (3) describes the output tracking error e € R? defined as the difference between the
system output and the reference signal.

For this system, the mentioned problem has been treated under different approaches, among which is the regulator
theory. In general terms, this problem consists in finding a submanifold (the steady state submanifold) on which the
output tracking error is zeroed, as well as an input signal (the steady state input) which makes this submanifold
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invariant and attractive. The regulator problem has been studied intensively both in the linear case and recently in the
nonlinear setting [2-3, 10]. In [4-7, 9], for the linear case, a solution of the problem was given in terms of the solution
of certain algebraic matrix equations (Francis equations), which describe the existence of the invariant submanifold
aforementioned.

For the nonlinear case, Isidori [1] has extended the previous ideas by showing that the respective nonlinear regulator
problem is solved by means of the solution of partial differential equations, named Francis-Isidori-Byrnes (FIB)
equations. Moreover, along the same lines of [7], it has been shown that the inclusion of an internal model in the
controller structure is necessary and sufficient for the robust regulation [8]. In the same direction, Isidori, Byrnes and
Delli Priscolli [2-3,101, have presented a robust error feedback controller which relies also on the existence of an
internal model, representing the inclusion of the exosystem dynamics into an observable one, which allows to

generate, as in the linear case, all the possible steady state inputs for the admissible values of the system parameters.
Basically, the Robust Regulator Problem (RRP) consist in finding a dynamic controller

E=p(&e) 4)
u=9(&) (5)

such that, for all admissible parameter values in a suitable neighborhood P of the nominal parameter vector, the
following condition hold:

CS) 7he equilibrium point (x,&) = (0,0) of the system

x= f(x,9(£),0,0)
&= (£, h(x,0,0)) 6)

is asymptotically stable

CR) The solution of close-loop system (6) satisfies that

limle(z)] = 0

A complete solution to this problem has been presented in [1, 2 & 3]. Roughly speaking, this solution is based on the
existence of nonlinear mappings x,, = z(w,0) and &, = o(w,8) that satisfy the so-called Francis-Isidori-Byrmes

(FIB) equations
a7f(aWW’9) s(w) = £((w, ), 9(c(w,0)), w, 6)
97040 () = (o (1, 0).0 ™
ow

0 = h(zx(w,8),w,0)

for all values of @ in . To obtain a solution of RRP, we consider the linear approximation of the system (1)«(5).
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x=Ayx+Byu+ Fw

w=Sw
e=Cyx+Qyw (8)
E=F&+Ge
u=H¢
where
of (x,u,w,0 ) of (x,u,w,0 ) of (x,u,w,0 .
4, = f(ﬁx) |(0,0,0,0)’ B, = f(ﬁu) |(0,0,o,0)’ R= f(ﬁw) |(o,0,o,0)’
oh(x,w,6) ] oh(x,w,6) . os(x), . op(&,e) ]
CO = 48)6 |(0’010)1 QO = ow |(0,0,0)l S= ow |(0)’ F= aé |(0,0)’
0p(&,e _ 09 .
Go20EA Ly 29E),
Oe o0&

Proposition 1: [1, 2, 3 & 10] Assume the following assumptions hold:

H1) The pair (A,, B.) is stabilizable.
H2) The pair (A, C) is detectable.

Then, the robust output regulation problem can be solved by a linear controller, if for all @ € p, there exist mappings
x, =2(w,0),u, =y(w,0), with 7(0,0)=0,7(0,0)=0, defined in a neighborhood of the origin of
(x,w) =(0,0), satisfying the conditions

MS(W) = f(ﬂ'(W, 6)17(W’ 9)’W’ 6)
ow

©)
0 = h(z(w,0),w,0)
and for each i=1,2,.,m, there is a set of real numbers a,',a, ,a, ,., a, _, , such that the steady state
input 7, (w,8) satisfies
Ly, (w.0) =ay,(n.0)+..+a, L " y,(w6) (10)
and the matrix
A, -4 B
0 0 (11)
C, 0

is nonsingular for every A which is a root of any of the polynomial
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p(A)=a, +a/A+a, P +.a, /A=
Remark 1: The mapping x = z(w,8) is the steady state submanifold where the error is zeroed, and
u, = y(w,8)} is the steady state input which makes invariant the steady state submanifold. Condition (10) signifies

the fact that the steady state input can be generated independently from the values of the parameters, by the linear

dynamical system

T CD-Z~ (12)
u,=Hz
where
Z=[Zl 22 e Zm]T;
z = [%- (w.0) Ly,(w0) - L y,(w e)]r;
H 0 0
o H, --- 0
H: . :2 .. : ' le[l O O]lxri'
0O O H,
and
0 1 0 ]
0 1 0
& =diag(®,,D,,...P,); O, = :
0O O 0 1
_aol ali aZ[ arl—ll _

The dynamic controller may be viewed as a combination of two systems: one that stabilizes the system and another
one that provides the steady state input on the steady state submanifold. In fact the controller can be constructed
considering the linear approximation of the closed loop system. Let us take

X =x-n(w,0)
and derive with respect to the time, so that

=le

= (X +n(w,6),u,w,6) —aiS(W)
ow (13)

T = £(Z+7(w,0),u,w,8) - ((w,0),7(w,0), w,6)

Since the steady state y(w, @) is generated by the system (12), we substitute y(w, @) by H z so that equation (13)
together with (12) gives
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%= f(®+70n0),u,w,0) - f(x(w,0), F z,w,0)

;:®z
e=h(x+x(w,0),w0)

We may rewrite this equation considering its linear approximation as

T =A%~ By H 2+ Byu+t f,(¥ +7(w,0),u,w,0)— £, (x(w,0), f z, w,0) (14)
Py (15)
e=C, % +Cyr(w,0) +h (X + z(w,0),w,0) (16)

then, if #7and H2hold, we can construct the robust controller [2]
& {AO—GOCWBOK O}H{Gﬂe@
éfz _G1Co @ ‘fz Gl

u=K&+HE =HE

4,-G,C, -B,H

- G1Co

(7) are satisfied, we choose x =7z (w,0) and &, =o(w,0) = [0 o, (w, 49)]T where

where K and Go, G1, make (4p+ByK) and ( ] Hurwitz, respectively. To verify that equations

o,(w,0) = [7/1 W, 0)-+ LTy (w,0)- y,(w0)- Ly, (w, ‘9)]T (17)

An interesting point which arises here is if it is possible to construct a discrete controller in such a way that the
properties of stabilization and tracking for continuous system are maintaining. Several works have been done in this
direction [11 - 14]. In particular, in [11] a discrete regulator combined with a particular class of holder, named
exponential holder was presented for the case of linear systems. In this paper, we discuss how to solve the respective
discretized regulation problem for nonlinear systems. <2xml:namespace prefix = 0 ns = “urn: schemas-microsoft-
com:office:office” />

2. A DISCRETIZED REGULATOR

In order to implement a discretized controller we take the discretization of (14)-(16), which may be written as

=T ~ +T
Xy = erTxk —.ET eA°(kT+T*T)BOI-k(T) dr+JjT e+ T=0) Bu(r)dr+¢x,,w,,z,)

_ar
Zrn =€ Z;

e, =h(x +7(w,,6),w;,0)
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or in the matrix form
|:3Ek+1} _ {Ad - A} {xﬂ + {ﬁ} 4 |:¢("fk’wk’zk):|
Zp 0 @, |z 0 0
e, =h(x, +7(w,,0),w,,0) (19)
e, =Co(X, +7(w,,0)) + E(Sc'k +7(w,,0),w,,0)

where

T ~
A, =e™"; A= jo e TR H e ds; 0<5<T
T
O, =i = j e OB u(kT +5)ds.
0
A central issue in the implementation of the robust controller is the exponential term in (20). As far as this term is

continuous, we give in this section some guidelines for constructing such device. Let us consider the matrix @ given
by (12). This matrix is the composition of /77 similar subsystems, namely:

0 1 0
0 0 1 0
® =diag(D,,D,,..,.P,); @ = :
0 0 O 1
_aoi @ a a4 |

At this point, we may design a circuit that reproduces directly the equation ﬁeq’5§2k by means of integrators and

gains, where each integrator take the initial condition of the discrete controller, as is shown in Figure 1.

z,.(k) Zp (k) z,(k) z; (k)

Al;z-"f'ﬂ ._l_k /_L »
r_at)_.[ Vs .}__#LJL?}_"___'[L_—*{ 1/ J_—_EU

— o
(s —

W

J

figure 1. Implementation of the immersion by integrators.

This is possible since the solution to equation (12) for each subsystem is given by

z,(t) =™ z(t,) i=1.m
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that can be implemented by means of integrators with variable initial conditions, for which a realization may be
obtained as in Figure 2.

Initial condition R R2
. A

Pulse
[

i
=Y
Vi R3 S2
& AVAVLY HTf
L F)

Vo

Op Amp

Figure 2. Integrator with variable initial condition.

This circuit is governed by
t t
oty +8) =V, (t)e *€ +(e ke _1JVi(t1)

for pulse=1 and & =Instant in which pulse=7

1 ¢
Vo(t, +1) = Vo(tz)_Rsic IZV;(T)dT

for pulse=0and t. = Instant in which pulse=0.

where R=R.=R When pulse=7, the operational amplifier takes the Inversor Low Pass filter configuration and the output
takes the value -V/t,)after 5RCseconds. On the other hand, when puise=0, the operational amplifier changes to the
integrator configuration with initial condition Vi(t.) =-l/t,). ( See [18] for more details).

For example, for the sinusoidal generator

=1,
n, = —0(2771
209
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with o=2; a circuit realization is shown in Figure 3.

10002 10042

Imnal Condmon frinal andiﬁ.:fn . 10002 10002
Pulse = E}_; . Pulse < E} ;Iﬁ o
I—{ — 02 Y _ r}“f
" _:a"l -- _g_g Amp Op
= Amp Op 1k -

1 1k

figure 3. Exponential hold for a sinusoidal signal.

In this circuit the constant time is RC=0.0007 s, which implies that in 0.5 msthe desired initial condition is reached. The
response of this circuit for initial condition given by  n,=0 n.=2is given in Figure 4.

"

VARRV/ERVARRN

figure 4. Response of the exponential holder.

3. SOME ILUSTRATIVE EXAMPLES.

Example 1. Suppose we have a DC motor whose inductance is neglected, described by

L]

X1=X, +w +Ww,

X2 = agx; + by —w, —w,
y=x+w+w,
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where w.=5sin(5t), w=5cos(5t), wi=0.5sin(t), w:=0.5cos(t), y=w;, a.=-0.5, b= 0.25.

If we construct the robust discretized regulator considering only a zero order holder the output tracking error in
continuous time is not zeroed, even when the discrete error is, as can be seen in Figures 5 and 6. The discretized
controller with exponential holder overcomes this situation, as shown in Figures 7 and 8, where some parameters
variations has been introduced. We see that this controller is effective to compensate such variations.

Figure 5. Error signal in continuous time Figure 6. Output and reference signals in discrete time.

Figure 7. Error signals for a,+25%. Figure 8. Error signals for b, 12%.

Example 2. Consider the Vander der Pol oscillator given by

X1 =X,
L]

3
X2==x,+0x,—-x, +u
with the exosystem

w1 =Ww,
w2 =—w,

The output tracking error is defined as e=x-w; for which the steady state submanifold 711,60/ and the steady state
input y(, 8)are
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7 (w,0) =w,
7,(w,0) =w,

y(w,0) = w23 -0w,
The system satisfies condition (10), since

3
z=y(w,0)=w, —0w,

: 2
z1=z,==3ww, +0w,

: 2
z2 =23 =-3z — 20w, + 6w, W,
: 3
z3=2z,=—12,+ 60w, — 6w

z4 =-9z, —10z,

so the steady state input can be generated by the system

01 0 O
. 0 0 1 0O
z= z
0 0 0 1
-9 0 -10 O

which is linear. The performance of the robust discretized regulator with exponential holder, are shown in Figure 9,
where the output tracking error is displayed for several values of the parameter 6.

0.1
0.08+
(.06
0.04-

0.02+4

-0.02-

Figure 9. Error signal for -0.2<0 <0.2.
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4. CONCLUSIONS

In this work, we propose a method for constructing a robust discretized controller for nonlinear systems, by means of
a so-called exponential holder. This device allows one to construct a controller, which combines a discrete subsystem,
and a continuous one, to guarantee zero output tracking error not only at the sampling instant, but also in the
intersampling period. We discuss briefly how it is possible to construct such exponential holder, and show, by
examples, the performances of the proposed control scheme. It is shown that the scheme proposed provides a
combination of a digital controller with continuous devices allowing the improvement of the closed-loop response of
a control system.
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