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ABSTRACT

The aim of this work is to propose the fully automated pathological area extraction from multi-parametric 2D MR
images of brain. The proposed method is based on multi-resolution symmetry analysis and automatic thresholding.
The proposed algorithm first detects the presence of pathology and then starts its extraction. T2 images are used for
the presence detection and the multi-contrast MRI is used for the extraction, concretely T2 and FLAIR images. The
extraction is based on thresholding, where Otsu's algorithm is used for the automatic determination of the threshold.
Since the method is based on symmetry, it works for both axial and coronal planes. In both these planes of healthy
brain, the approximate left-right symmetry exists and it is used as the prior knowledge for searching the approximate
pathology location. It is assumed that this area is not located symmetrically in both hemispheres, which is met in most
cases. The detection algorithm was tested on 203 T2-weighted images and reached the true positive rate of 87.52%
and true negative rate of 93.14%. The extraction algorithm was tested on 357 axial and 443 coronal real images from
publicly available BRATS databases containing 3D volumes brain tumor patients. The results were evaluated by Dice
Coefficient (axial: 0.85+0.11, coronal 0.82+0.18) and by Accuracy (axial: 0.96+0.05, coronal 0.94+0.09).

Keywords: Brain Pathology, Brain Tumor, MRI, Multi-contrast MRI, Symmetry Analysis.

1. Introduction

Nowadays, the issue of automatic analysis of brain
tumors is of great interest. It is the first step in
surgical and therapy planning. The very first step
of the automatic analysis of brain tumor is its
detection and subsequent segmentation. The
detection of brain tumors is generally a more
complex task than the detection of any other image
object. Pattern recognition usually relies on the
shape of the required objects [1] or on the object
movements in video sequences [2]. Since the
tumor shape varies in each case, other properties
have to be used.

The aim of the proposed method is the presence
detection of the brain tumor in 2D MR image and

subsequent extraction of the whole pathological
area including active tumor and edema.

Several different and interesting methods have
been developed in recent years. The existing
algorithms can be classified into semi- and fully-
automatic methods from a user viewpoint and into
region- and contour-based methods from a
technical viewpoint.

The semi-automatic [3-4] require some user
interaction, e.g. to select the starting point lying inside
the tumor or to select several points of foreground
and several points of background. The automatic [5-
6] methods do not require any interaction and are
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usually based on prior knowledge of the human brain
structure, either tissue atlas or left-right symmetry, or
their combination.

The region-based methods [7-10] usually search
for pixels or regions with similar properties that
create connected regions. This includes e.g. region
growing, classification etc. The contour-based
methods [11] use image gradient in particular area
to boundary detection and region creation or for
subsequent boundary evolution. The most famous
method of this group is active contours [12]. Some
works [13-15] use combination of region-based
and contour-based methods and try to combine the
advantages of both of these groups.

At present, multi-parametric image analysis is
frequently discussed within the scientific
community [16]. This technique, even though it
can be based on traditional segmentation
methods (thresholding, active contours), exploits
information obtained from more images or
modalities at the same time.

Fully automatic exact segmentation of the tumor is
still an unsolved problem, as the accurate image
segmentation itself. The method proposed in this
paper analyzes 2D magnetic resonance images
and is fully automatic.

The tumor extraction methods usually rely on other
contrast images, such as T1-weighted contrast
enhanced images [17]. This is the image that we
are trying to avoid, since it requires contrast
enhanced agent (usually gadolinium) to be injected
into the patient blood.

The great advantage of the symmetry approach is
that the process does not need any intensity
normalization, human work etc.

2. Methodology

The purpose of the proposed method is a fully
automatic extraction of pathological areas from
stand-alone 2D MR image of brain, where no
neighbor slices are considered. Hence, for the
better performance, the usage of multi-contrast MR
is suitable. The reason for multi-contrast MRI is the
much better distinguishing of particular tissues
than in case of using only one contrast image. E.g.
the edema reaches similar intensities as CSF

(Cerebro-Spinal Fluid) in T2-weighted images,
while in FLAIR images, the intensities are
absolutely different. On the other hand, the
differentiation between necrosis and white matter
is much better in T2-weighted images. The
example of the described problem is shown in
Figure 1, where the normalized values in T2-FLAIR
intensity space are depicted.

In this work, FLAIR and T2-weighted images are
used. In both images, the pathological areas are
well visible.

The method consists of two main steps: the
detection and the extraction of the pathological
area. Both are based on multi resolution
symmetry analysis.
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Figure 1. Distinguishing of particular tissues
in multi-contrast T2-FLAIR MRI. Red: WM,
Yellow: GM, Green: CSF, Violet: Tumor, Blue:
Edema. (b) and (c) show the source T2 and FLAIR
images, respectively. The images were taken from
simulated images of BRATS database.
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The tumor detection process consists of several
steps. The flow chart can be seen in Figure 2.

The first step is the skull extraction followed by
image cutting. For this cut image, the probabilistic
map of anomalies is computed, and features are
extracted from this map. These features are used
for the decision, whether a pathological area is
present in the image. If so, this area is located
and then the decision, which half contains the
tumor, is made. If no pathological area is present,
the image shows a healthy brain and no other
computation is needed.

T2-weighted
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Figure 2. Brain tumor presence detection flow diagram.
2.1 Preprocessing

The preprocessing consists of brain extraction,
image registration and the symmetry axis
detection. None of these parts is the aim of this
work, but for this purpose, the existing algorithms
described in [18], [19] and [20] can be used for
brain extraction, image registration and symmetry

axis detection, respectively. Addition of such
methods as a preprocessing step is the aim of
future work to complete the whole system.

2.2 Symmetry Analysis

The most important part of the presence detection
process is the detection of symmetry anomalies,
which are usually caused by a brain tumor, whose
detection is the main purpose of this article. The
first step of this process is dividing the input
image into two approximately symmetric halves.

Assuming that the head is not rotated and the
skull is approximately symmetric, the symmetry
axis is parallel to the vertical axis and divides the
image of the detected brain into two parts of the
same size. Since the method is not pixel-based,
the precision of the determined symmetry axis
does not have significant influence.

Since the features are extracted from the computed
asymmetries, the size of the image has to be
normalized. Hence, every cropped image is resized
into the same size, concretely 256x256 pixels.

A squared block, with the side length computed as
one quarter of the cropped image side length, is
created. The algorithm goes through both halves
symmetrically by this block.

The step size is smaller than the block size to
ensure the overlapping of particular areas. These
areas are compared with their opposite symmetric
part. In this case, the step size of one eighth of the
block size was set.

A comparison is done by the Bhattacharya
Coefficient [21]. Normalized histograms with the
same range are computed from both parts and the
Bhattacharya Coefficient (BC) is computed from
these histograms as follows [21]:

BC- iq/l(z‘)'r(z‘) (1)

where N denotes the number of bins in the
histogram, / and r denote histograms of blocks in
the left and the right half, respectively. The range
of values of BC is <0;1>, where the smaller the
value, the bigger the difference between
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histograms. For the next
asymmetry is computed as:

computation, the

A=1-BC )

This asymmetry is computed for all blocks. Since
the step size is smaller than the block size, the
overlap exists and more values of asymmetry are
present for most pixels. To obtain the appropriate
asymmetry map, the mean of all values computed
for a particular pixel is computed. The computed
values of asymmetry create the asymmetry map,
which expresses the probability of tumor presence
in a particular location. The higher the asymmetry
is, the higher is the probability of the tumor
presence in a given location.

2.3 Multi-resolution map

The whole cycle of symmetry checking is
repeated four times but with different block size.
Height and width of the block are iteratively
reduced to the half of the previous value. So the
size of the block is 1/1, 1/4, 1/16, and 1/64 of the
initial size, respectively. The purpose of smaller
areas is more precise detection of asymmetry.
This approach corresponds to the multi resolution
image analysis described in [22]. A block size of
1/256 of the initial size was tested as well, but the
results were not improved and the maximum of
asymmetry coefficient for this block size was
equal to 1 for every image in database.

The output of each cycle is a probabilistic map of
anomalies. The product of values corresponding to
a particular pixel is computed. The output is the
new multi resolution probabilistic map. The
examples of particular probabilistic maps are
shown in Fig. 3.

2.4 Feature extraction

In the next step, features are extracted from
computed probabilistic maps. These features are
used for the decision whether the particular image
contains a pathological area. According to
experiments, the relative and absolute thresholding
can help in distinguishing between the images of
healthy brain and brain with tumor. The thresholding
creates a given number of regions with a given size,
and both of these values differ for healthy and brain
tumor patients. The extracted features are as follows:

* global maximum of the total probabilistic map,

* maximum of each probabilistic map for a
particular block size,

* number of regions created by absolute value
thresholding the multi-resolution probabilistic map
and the sum of their size,

* number of regions created by relative value
thresholding the multi-resolution probabilistic map
and the sum of their size.

Global maximum of the total probabilistic map:

Since the proposed method is based on
searching the pathological area by symmetry
checking, the maximum of asymmetry coefficient
is the main feature, which can be used for
classifying the image.

Maximum of each probabilistic map for a
particular block size:

Other usable features are maxima of each
probabilistic map computed in the previous step.
Functional dependency of the anomaly coefficient
on the block size is non-ascending; it means that
for a smaller block, the anomaly coefficient is
greater or equal to that of a larger block. For
images with large tumors, this value is high even
for a large block, while for small tumors, the
anomaly coefficient descends earlier and it
reaches small values for a large block. For healthy
brains, this function is even more shifted.

The maximum asymmetry for multi-resolution

asymmetry map and for particular block sizes is
shown in Figure 3.

(a) (b)
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(e) ()

Figure 3. Asymmetry probabilistic maps for block
side length equal to 1/4, 1/8, 1/16, and 1/32 of
shorter side of cut image are shown in (a), (b),

(c) and (d), respectively. In (e) and (f), input image
and total probabilistic map are shown, respectively.

Number of regions created by absolute value
thresholding of the total probabilistic map and
the sum of their size:

This feature assumes that the anomaly

probabilistic map of healthy brain contains a
smaller value compared to the brain with tumor.

(@)

When the thresholding is done, in case of healthy
brain, the result is a smaller number of regions and
also a smaller sum of their size. In most healthy
cases, both numbers are equal to zero.

Number of regions created by relative value
thresholding of the total probabilistic map
and the sum of their size:

For the extraction of this feature, the total probabilistic
map is thresholded by relative value computed from
the maximum of this map. Here, it is assumed that for
brain with tumor, there is a significant peak in the part
where a tumor is situated. So for thresholding by a
value computed from this maximum, healthy areas
are filtered out, because they are usually much more
symmetric. Moreover, the tumor is in most cases
concentrated in one location, therefore a small
number of regions is created by thresholding. In case
of a healthy brain, the situation is inverse.

The maximum is comparable to values in other
parts, so more regions are created by
thresholding; moreover, they are spread into the
whole brain. For large tumors, the sum of areas
is comparable to the one of healthy brain, but
the number of regions is smaller.

For both relative and absolute thresholding, 10
different levels of threshold are set, so 10 values
are extracted for each feature. Statistical graphs of
number of region and sum of their size for both
relative and absolute thresholding for different
threshold levels are shown in Figure 4 and Figure
5, respectively.

(b)

Figure 4. Number of regions and the sum of their sizes for different
absolute threshold levels. Blue: healthy brains, Red: brains with tumor.
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(a)

(b)

Figure 5. Number of regions and the sum of their sizes for different relative threshold
levels to maximum in a particular image. Blue: healthy brains, Red: brains with tumor.

2.5 Tumor presence detection

The part of the proposed method, which detects
the presence of a pathological area in a particular
brain, uses a supervised machine learning
algorithm Support Vector Machine (SVM), invented
by Cortes and Vapnik in 1995 [22], with linear
kernel function. The features described in the
previous section are used for image classification.

2.6 Pathological area extraction

After the detection of symmetric anomalies and the
image classification, the pathological area can be
extracted. The pathological area extraction is based
on the method described in [23], but multi-contrast
images, concretely T2 and FLAIR, are involved in this
task, now. In T2-weighted images, glioma and
potential edema produce much stronger signal than
the white matter, in which they are mostly located.
For this reason, the thresholding is employed here.
Since the intensities in image can differ from case to
case depending on the data acquisition, it has to be
computed from the particular image. Moreover, only
pixels in the most asymmetric parts have to be
involved in the threshold computation. Otherwise, the
threshold would be computed incorrectly in case of
small tumors. For this purpose, the asymmetry mask
is computed. This mask includes the regions, where
the asymmetry reached at least 10% of the maximum
asymmetry for particular image.

Since the result is both-sided mask, healthy and
pathological areas are included.

The threshold is determined automatically by
Otsu's algorithm [25], but any other automatic
method can be also used.

Even though, the threshold is determined only
from the image points in the most asymmetric
parts, the thresholding process is applied to the
whole image.

Since some incorrect areas could be extracted,
only the regions that have the intersection with the
asymmetry mask are labeled as pathological.
Regions with the size smaller than 10% of the
largest segment are eliminated as well.

Since CSF appears hyper-intense in T2-weighted
images as well, the FLAIR volume is employed. In
FLAIR the CSF produces much weaker signal than
the white matter and the tumor or edema itself.

Hence, the areas with the lower intensity than the
median intensity (which is most likely the intensity
of the white matter) in FLAIR image are eliminated.

3. Experiments and results
3.1 Datasets

Two different datasets were used for the algorithm
evaluation. The first dataset consists of 203 T2-
weighted images of brain with various image sizes.
The smallest image has the size of 256x256 px,
while the largest one has the size of 630x630 px.
Since the cropped images are resized into the
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same size of 256x256 px, the image size does not
matter. 131 of test images are the images of
healthy brain from 11 patients. 72 images from 13
patients are the images of brain containing a
tumor, a tumor with an edema or only an edema.
These images are of various resolutions and
contain pathological areas of various shape, size
and location. In the database, there are images of
12 small tumors, whose size is less than 2% of the
skull size, 30 medium tumors, whose size is
between 2 and 9% of the skull size, and 30 large
tumors, whose size is more than 10%.

The second dataset was obtained from the
MICCAI 2012 Challenge on Multimodal Brain
Tumor Segmentation organized by B. Menze, A.
Jakab, S. Bauer, M. Reyes, M. Prastawa, and K.
Van Leemput. The challenge database contains
fully anonymized images from the following
institutions: ETH Zurich, University of Bern,
University of Debrecen, and University of Utah.

For each patient, T1, T2, FLAIR, and post-
gadolinium T1 MR volumes are available. All
volumes are linearly co-registered to the T1
contrast image, skull stripped, and interpolated to
1mm isotropic resolution.

The data used in algorithm evaluation contains
real volumes of 15 high-grade and 7 low-grade
glioma subjects.

From each case, several slices with pathological
area in axial and coronal plane were taken. In total,
the extraction algorithm was tested on 357 images
with resolution 256x256 pixels in axial plane and
on 443 images with resolution 256x181 in coronal
plane. Since the proposed method is fully
automatic and independent on image intensities,
each image of the database can be considered as
unique and independent on others.

All the simulated images are in BrainWeb space
[27]. The information about the simulation method
can be found in [28].

3.2 Evaluation Criteria
For the evaluation of a pathological area

extraction, Dice Coefficient and Accuracy were
used. The Dice Coefficient (DC) [28], in some

works called Similarity
according to the equation:

Index, is computed

_2lanB|

DC=————+
J4|+[]

(©)

where A and B denotes the ground truth and the
extraction result masks, respectively. This criterion
compares the intersection of two sets with their
union. The range of values of DC is <0;1>, where
the value 1 expresses the perfect agreement.
According to [29], the DC>0.7 indicates an
excellent similarity.

Another  widely measure  employed for
segmentation evaluation is Accuracy (A) defined
as follows:

_ TP+IN
TP+ FP+TN + FN

(4)

where TP, FP, FN and TN stand for “True
Positive”, “False Positive”, “False Negative”, and
“True Negative”, respectively [30]. This measure is
in the same range as DC and the higher value
indicates the better performance as well.

3.3 Results

At first, the detection of a pathological area
presence in the particular image was tested by a
five-fold cross-validation process on 203 T2 axial
images. It means that the samples in the database
were randomly ordered and split into five groups.
In five cycles, each of these groups was once used
as the validation set, while the remaining four sets
as training data.

The confusion matrix of the classification is
summarized in Table 1. The algorithm achieved
87.52% of true positive rate and 93.14% of true
negative rate.

Tumor absent
6.86%
93.14%

Tumor present
87.52%
12.48%

Test positive

Test negative

Table 1. Tumor presence detection performance.
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To avoid dependency on the order of samples,
the cycle of random ordering and five-fold cross-
validation was repeated one hundred times.

After the decision whether the image contains a
tumor the tumor location is found. This method was
tested on 357 axial and 443 coronal images.

The summary of the extraction process results is in
Table 2. The results are separated according to
the tumor type and the slice plane. Slightly better

results were achieved for high grade gliomas (HG)
than for low grade gliomas (LG).

The worst results were achieved for LG in coronal
planes, while in other cases the results are
comparable and achieved the value 0.86 for DC
and 0.96 for Accuracy.

The several results for both planes, both types of
glioma and several intervals of resulting DC are
shown in Figures 6-9.

Axial Coronal
DC Accuracy DC Accuracy
HG 0.86+0.09 0.97+0.03 0.86+0.12 0.96+0.06
LG 0.85+0.12 0.96+0.05 0.79+0.22 0.92+0.12
Overall 0.85+0.11 0.96+0.04 0.82+0.18 0.94+0.10

Table 2. Segmentation evaluation by Dice Coefficient and Accuracy.

(a)

(b)

Figure 6. The average (a) and above-average (b) results for axial
slice of high grade glioma. Red: segmentation, Blue: ground truth.
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(a) (b)

Figure 7. The average (a) and above-average (b) results for axial
slice of low grade glioma. Red: segmentation, Blue: ground truth.

(a) (b)

Figure 8. The average (a) and above-average (b) results for coronal
slice of high grade glioma. Red: segmentation, Blue: ground truth.
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(a)

(b)

Figure 9. The average (a) and above-average (b) results for coronal
slice of high grade glioma. Red: segmentation, Blue: ground truth.

4. Conclusion

The aim of this work was a detection of images
containing an abnormality caused by tumor and
its subsequent location. Therefore the evaluation
was divided into 2 parts: detection of a tumor
presence and its subsequent extraction. The
tumor presence detection reaches the true
positive rate of 87.52% and the true negative rate
of 93.14%. The overall accuracy of this part of the
proposed system is 91.15%.

The second part includes the extraction of a
pathological area in both axial and coronal planes.
In axial and coronal plane, the DC coefficient
reached value 0.85+0.11 and 0.8210.18,
respectively. Considering the statement that the
DC>0.7 indicates an excellent similarity, the
achieved result can be evaluated as very good.
Moreover the algorithm considers only information
from 2D image and it is fully automated. It is
expected that the performance will be improved in
future using the neighbor slices information.

The extraction accuracy reached values 0.96+0.04
and 0.94+0.10 for axial and coronal plane,

respectively. This indicates that in average 95% of
pixels were correctly labeled either as pathological
or as healthy tissue.

The proposed method can be also used for
detection of tumor in 3D volume, but particular
axial and coronal slices would be evaluated
separately. Hence, the attention in the future
work will also be paid on the relations
between neighbor slices and after that, the
work will go on to extending the proposed
algorithm to 3D.

The future work will also consist of implementing
the automatic symmetry axis detection, based on
literature referred in section 2, and the
separation of the tumor and the edema.

In overall evaluation, the proposed system can
automatically detect the presence of a tumor in
2D MR image of brain with accuracy of 91.15%
and subsequently extract the whole pathological
area with the Dice Similarity Coefficient of
0.851£0.11 and 0.82+0.18 for axial and coronal
plane, respectively, compared to the manual
expert segmentation.
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