

**[RETRACTED ARTICLE]Buyer-Supplier Transport Access
Measures for Industry Clusters**

Sharada Vadali and Shailesh Chandra

This article was withdrawn by decision of the Editorial Board

Vadali, Sharada, & Chandra, Shailesh. (2014). Buyer-Supplier Transport Access Measures for Industry Clusters. *Journal of applied research and technology*, 12(5), 839-849.

Buyer-Supplier Transport Access Measures for Industry Clusters

Sharada Vadali* and Shailesh Chandra

Texas A&M Transportation Institute,
The Texas A&M University System
College Station, TX, USA
*s-vadali@ttimail.tamu.edu

ABSTRACT

Business networks (comprised of buyer-supplier connections) are integral to specialization and clustering and are local or regional manifestations of manufacturing supply chains. For many economic sectors, enhancement of business network effects and positive externalities through transportation investments is vital to their competitive advantage. In essence, the directness of linkages between buyers and suppliers in any production network is important to ensuring that economies of localization accrue to the entire cluster in any region. Physical transport networks have a vital role to play in ensuring that directness in many sectors. In this paper, the contribution of transportation infrastructure to enhance business networks is analyzed by presenting directness measures explicitly linked to transport infrastructure. Two such measures are developed with general applicability to both developing and developed countries and the utility of the measures is motivated within the context of transportation investments. Such a directness measure has been broached in the literature but this is, to our knowledge, the first attempt at developing a measure of this type. The transportation planning utility of such measures is also discussed. Next, we illustrate how the measure may be analyzed using a case example in the context of the automobile manufacturing cluster chain in Alabama, United States.

Keywords: buyer-supplier networks, transport networks, upstream and downstream linkages, supply chains, market access, cluster industry.

1. Introduction

Timely access to raw materials, subsequent processing, and dispatch of the finished products to reach final destinations on time can only be possible with an adequate and efficient multimodal transportation infrastructure. In a time-based competitive environment, physical transport networks play an important role in efforts to reduce delivery times, increase reliability in deliveries, and customer responsiveness. Furthermore, the opportunities for creation of agglomeration economies via improved linkages can manifest in many ways like enabling firms to reconfigure their activities and networks on the production, distribution and consumption side. In other words, transportation investments do have the potential to influence business networks in an industry cluster and a firm's upstream and downstream linkages (backward and forward linkages). On one hand, transport cost reductions can enable firms to increase their competitiveness and expand their markets (forward-downstream connectivity), by lowering prices or cost reductions in serving markets at greater distances where they were

formerly excluded on cost grounds. In this regard, transportation investments are similar to reductions in trade barriers in that they enlarge the potential market area. Dynamic and specialized firms and those with a potential to exploit economies of scale may be the most likely ones to benefit from transport improvements by increasing their ability to sell over a larger market area [1]. On the production side (upstream-backward linkages), transport cost reductions can directly affect the production decisions of firms as reductions in input costs (like specialized labor inputs as an example or access other inputs and raw materials) which can provide opportunities for firms for a substitution effects (input substitutions like substitution of transport as a factor of production to another input or taking advantage of differences in input costs), scale effects or both. The scale effect results from the overall reduction in costs, which has the potential to lead to an expansion of the market area, greater output, and in turn to increased economies of scale. An improvement in transport access and connectivity between supplier

and buyer firms, or locations facilitates the movements of freight flows and may be able to create opportunities for agglomeration through location decisions, input substitution or access to final product markets. In the context of this paper, an appropriate definition for an industry cluster is “a set of industries related through buyer-supplier and supplier-buyer relationships or by common technologies, common buyers or distribution channels or common labor pools” [2].

2. Trends in manufacturing supply chain clusters

The manufacturing sector is the backbone of any country's economy. Manufacturing supply chain clusters are a combination of supply chains and industrial clusters that extend downstream to channels and customers and upstream and laterally to manufacturers of related inputs/goods. The industry cluster becomes the spatial concentration representation of the supply chain [3]. Across the world, there have been significant trends in such sectors which focus on interconnected networks in all legs of the network (production, distribution and consumption). An example is the continued importance of just-in-time and just-in sequence practices. Yet another is build-to-order. In this context, transport costs are not extremely meaningful in a direct sense for businesses networks that are part of clustered sectors. What is becoming increasingly important are the attributes of the transport investment itself like speed, reliability and the directness of access between businesses and the markets they serve (business networks between buyers and suppliers) at any point that are more meaningful interpretations of transport costs. These factors assume import in the larger context of exchange between buyers and suppliers which generates a demand for transport with specific attributes. A manufacturing supply chain then is a continuum of buyers and suppliers with each supplier (buyer) acting as a buyer (supplier) either upstream or downstream. Directness in this context of access to buyer-supplier markets can be measured along any point of the business network either upstream or downstream. The input markets are industry specific and include a wide range of supplier markets as well raw materials and labor. Woxenius [4] introduced the concept of directness in chains, and provides a succinct discussion of the concept largely in relation to detours. However, an actual

index was not developed in his research. This research aims to address this gap and develops transport-centric directness measures in the context of access to markets (input and output) for such clusters.

2.1 Access measures – general and supply chain cluster context

In very general terms, the term accessibility denotes the ease with which activities may be reached from a given location by means of a particular transportation system [5]. From the economic perspective, accessibility measures, including the most popular one used in the literature (the market potential measure) typically involve two basic elements in their formulation, a transportation element characterized by travel distance, travel time or cost to reach a specific activity using a certain transportation mode, and an activity element characterized by the location and its attractiveness [6]. While there a variety of such measures, none of these measures can actually be used for accessibility measurements from a source unit to all other destination units as a closed form index. This is important for measuring for measuring accessibility of a supplier firm in any industry with respect to other supplier firms in the vicinity that are part of its' supply chain.

2.2 Access measures – normalized and non-normalized measures

From a performance measurement perspective, Wang et al. [7] proposed a multi-criteria transportation adaptability performance index highlighting the importance of transportation networks for sustainable development. Cedillo-Campos and Sánchez [8] propose a dynamic self-assessment of supply chain performance with a focus on the automotive industry in emerging markets. This research on the other hand, discusses the value of transport access and connectivity with an economic development focus. In a transportation context, directness within and between supplier firms and the buyer (demand point) either upstream or downstream via transportation networks may be established much like most access measures seen in the literature but are more meaningful when measured in reference to a baseline as an index measure. Such a baseline situation is interesting because a

range of possible planning scenarios can be conceived for benchmarking and for facilitating relative comparisons. A normalized index that is bound between 0 and 1 could conceivably be of importance for understanding the transport market access and connectivity opportunities for manufacturing cluster chains.

2.3 Transport – centric access measures in the context of manufacturing cluster chains

When regions are geographically specialized or clustered in specific industry sectors as a portion of a supply chain, the potential for transport investments to generate positive externalities to the host regions (in terms of measurable agglomeration economies like firm relocations, expansions, jobs) rests on the ability of these improvements to enhance directness between inter-connected firms whose interactions are characterized by commodity/freight flows. The specific form of the flow will depend on the specific upstream or downstream linkage in the supply-demand context. Upstream flows comprise of flows of raw materials, intermediate goods and part components, while downstream flows are movements of semi-finished or finished goods as they find their way to the end user. Either upstream or downstream, the commodity flows take place in a directed manner. The first set of flows consist of the commodity flows 'from' a set of the neighboring supplier industries 'to' a concerned industry buyer and the second, consists of flows 'from' the concerned industry 'to' another set of the neighboring buyer industries. Thus, each firm acts as a source and a destination point for some form of commodity flows with respect to its suppliers and buyers. An index could facilitate spatial comparisons of two different point sources at different locations with different neighboring industry types. Similarly, the index could also facilitate temporal comparisons. The latter is most useful in the context of transport project/policy evaluation, while the former is more useful to facilitate connectivity bottleneck comparisons within a supply chain for any product. Within this framework, an industry value chain could be mapped by all the stages an industry product goes through before it reaches its final destination.

3. Index development

We develop two transport-centric directness measures for a 2-stage supply chain, which can be extended to a multi-stage process additively. Both the measures are currently applicable mostly to truck freight flows and road networks and can be extended to accommodate intermodal facilities and other modal networks. The first measure is a count based measure that is behaviorally motivated in that there is typically an optimal radius from which firms source inputs and draw or attract specialized labor pools. This measure therefore draws from the cumulative opportunity access measure found in the accessibility literature linked to a travel threshold [10]. In the case of labor inputs, for instance, travel behavior based on commuter flows would suggest an average time-based radius of 26 minutes of work commute time; however, this parameter is variable across regions. Similarly, other factor inputs sourced from domestic markets may be accessed from supplier markets (local or regional) within an optimal distance threshold in order to keep inventory and production costs low. These threshold effects vary widely across industries. For instance, automobile manufacturing plants typically tend to locate within an immediate proximity within the context of just-in-sequence manufacturing of a 100-120 mile radius of suppliers and also a general proximity of a single-day drive (194-mile radius) [11]. Also, there are a few set of studies that suggest that shortened distance to the closest assembly plant is a major criteria for locating suppliers in a region, however the general evidence of this is both mixed and dated [12]. Just-in-time in the case of perishable goods manufacturing may mean very close proximity to retailers or points of final demand. In the context of other industries, there is little evidence on how these thresholds vary. The literature to date serves to point that access to markets for input or downstream connections may be motivated on behavioral grounds, and may create cost advantages to existing firms and potentially also for locating new firms. In forward connections, the behavioral justification of ease of access to forward linkages may be justified on the grounds of cost competition in delivering goods to the final product market as well as speed to market or lead time in final delivery.

The second measure is a departure from the count-based discrete measure to one that has a continuous basis and is derived from the market access newtonian gravity equation directly linked to transport impedance. The two measures may be considered access approximations in support of transportation planning with supply chains that may straddle regions with local cluster components.

The aggregated methodology of evaluating accessibility via a suitable impedance measure is inadequate for measuring access of firms in the context of a supply chain. This is because while an industry unit acts as a source for its buyers, the same industry unit becomes a buyer to its supplier and the dynamics of interaction between industry units with respect to its buyers or suppliers should be appropriately be taken into account into any accessibility formulation. This forms the basic motivation of the development of the indices as presented in the next sections.

3.1 A threshold-bound buyer-supplier index (TBI)

A very basic indicator for a firm's access to its interacting partners as part of industry cluster chain can be based on a threshold drive time around the given firm. A firm's access can be measured in reference to a specific set of related seller or buyer firms (by industry sector) in the industry cluster. For reference- this is denoted Level -1 access in order to distinguish it from a more general measure. Level- 1 access is the measurement of accessibility index at the level of a specific firm or industry unit while Level-2 measures the market access index for a particular industry unit collectively in a region. For reference, the index classifies S_i^k backward connections (supplier types) B_i^k forward connections (buyer type) along a connected chain.

Level-1: The firm- specific industry access indicator ($A_1^{i,k}$) for an firm unit $i = \{1, 2, \dots, U_k\}$ belonging to type industry sector $k = \{1, 2, \dots, K\}$, is defined as follows:

$$A_1^{i,k} = \frac{\sum_{s=1}^{S_i^k} \eta_{i,s}^k \alpha_{i,s}^k + \sum_{b=1}^{B_i^k} \eta_{i,b}^k \alpha_{i,b}^k}{\left(\sum_{s=1}^{S_i^k} \omega_{i,s}^k \alpha_{i,s}^k + \sum_{b=1}^{B_i^k} \omega_{i,b}^k \alpha_{i,b}^k \right)} \quad (1)$$

where, i = firm unit for which the index is to be calculated, s and b are the respective supplier and buyer industries with $s = \{1, 2, \dots, S_i^k\}$ and $b = \{1, 2, \dots, B_i^k\}$ S_i^k = number of direct suppliers to firm i belonging to type k ; B_i^k = number of buyers of firm i belonging to type k ; $\eta_{i,s}^k = 1$ if the supplier firm s of firm i belonging to type k is within the threshold drive time through the shortest path transportation network, otherwise 0; $\eta_{i,b}^k = 1$ if the buyer firm b of unit i belonging to type k is within the threshold drive time through the shortest transportation network, otherwise 0; $\omega_{i,s}^k = 1$ if the supplier firm s of firm i belonging to type k is within the threshold drive time based on Euclidean travel time; $\omega_{i,b}^k = 1$ if the buyer firm b of unit i belonging to type k is within the threshold drive time based on Euclidean travel time; $\alpha_{i,s}^k$ ($\text{or, } \alpha_{i,b}^k$) is the weight for interaction between industry s (or i of type k) to industry i (or b) of type k . While different weights can be considered in principle, and is beyond the scope of this paper, it is noted that weights could approximate buyer-supplier firm interaction. This weight can also be more precisely written in terms of actual flow between different two firms belonging to different sectoral classification categories as $\alpha_{i,s}^k = e_s \lambda_{i,s}$ (or, $\alpha_{i,b}^k = e_b \lambda_{i,b}$) with $\lambda_{i,s}$ (or, $\lambda_{i,b}$) being the interaction factor between firms i and s (or, b). However, for this paper, a unit weight is assumed, without any loss of generality. The implication of this is that all supplier firms and buyer firms or regions are assumed to interact equally or in other words that no single firm or set of firms is preferred to another. While this assumption would seem to defy the economics of competition and cost conscious firm decision making- it is retained only for illustrative purposes in this paper. In the language of a capital-energy-labor-material production function, when the supplier type (with location proxying for firm) is labor force, a unit weight could just represent a plant's access to different types of labor force as opposed to work flows. All other inputs, however, are associated with freight flows.

For a 'unit weight' of travel between supplier and buyer for the industry i , the Industry Access

Indicator amounts to the count in the number of firms that are suppliers and number of buyer firms. In data-poor environment, a quick response measure of this type would allow a rapid assessment of market accessibility of a particular industry firm in value chain with respect to its suppliers and buyers. However, better approximations of the weight may lead to greater insights on firm connectivity as part of a value chain. The Level-2 TBI (A_2^k) for the industry type or sector k is given by:

$$A_2^k = \sum_{i=1}^{U_k} A_1^{i,k} / U_k \quad (2)$$

where U_k is the total number of firms in the cluster chain sector.

3.2 A threshold-free buyer-supplier index (TFI)

The industry access indicator, TBI, (mentioned in section 3.1) does not directly consider the travel cost (proxied by travel time impedance) which is necessary for improved market access when transportation improvements are made in the regions served by clusters. Therefore, a second measure is proposed and also defined at two levels analogous to the threshold bound index. Level-1 Transport Accessibility Index ($L_1^{i,k}$) for an industry unit $i = \{1, 2, \dots, U_k\}$ belonging to type $k = \{1, 2, \dots, K\}$ with U_k as the number of industry units is defined as,

$$L_1^{i,k} = \left(\sum_{s=1}^{S_i^k} \left(\frac{\alpha_{i,s}^k}{\tau_{i,s}^k} \right) + \sum_{b=1}^{B_i^k} \left(\frac{\alpha_{i,b}^k}{\tau_{i,b}^k} \right) \right) / \left(\sum_{s=1}^{S_i^k} \left(\frac{\alpha_{i,s}^k}{\epsilon_{i,s}^k} \right) + \sum_{b=1}^{B_i^k} \left(\frac{\alpha_{i,b}^k}{\epsilon_{i,b}^k} \right) \right) \quad (3)$$

where, i = industry unit for which the index is to be calculated, s and b are the respective supplier and buyer firms with $s = \{1, 2, \dots, S_i^k\}$ and $b = \{1, 2, \dots, B_i^k\}$;

S_i^k = number of direct suppliers to firm i belonging to type k ; B_i^k = number of buyers of firm i belonging to type k ; $\tau_{i,s}^k$ = travel time via the shortest path network from supplier s to firm i of

type k ; $\tau_{i,b}^k$ = travel time via the shortest path network from firm i of type k to buyer b ; $\epsilon_{i,s}^k$ = travel time from supplier s to industry unit i of type k , using Euclidean distance; $\epsilon_{i,b}^k$ = travel time from firm i of type k , to buyer b using Euclidean distance; $\alpha_{i,s}^k$ (or, $\alpha_{i,b}^k$) is the weight for travel between firm s (or i of type k) to firm i (or b) of type k . Similar, to the threshold-bound index, this weight can be more precisely written in terms of actual flow between different two firms belonging to different NAICS category as, $\alpha_{i,s}^k = e_s \lambda_{i,s}$ (or, $\alpha_{i,b}^k = e_b \lambda_{i,b}$) with $\lambda_{i,s}$ (or, $\lambda_{i,b}$) being the interaction factor between industry sectors i and s (or, b). The Level-2 TFI (L_2^k) for the industry type k is given by:

$$L_2^k = \sum_{i=1}^{U_k} L_1^{i,k} / U_k \quad (4)$$

Just like level-1 index for a firm, the level-2 transport accessibility index for any industry sector k also varies between 0 and 1.

4. Utility of indices

Most researchers evaluate access based on weighted travel time impedances ([13], [14]). The transport access indices presented in this paper can be modified to evaluate market access based on any weighted travel time measure and within the context of a supply chain cluster context. Additionally, the access measures may be used to evaluate upstream only, downstream only or both upstream and downstream connections jointly as part of the supply chain. The weights ($\alpha_{i,s}^k$ or $\alpha_{i,b}^k$) present in the formulas shown in Eq.

1-4 can be substituted as utilities that can be derived while traveling from a source (such as a supplier) to destination (such as a buyer). For example, if the weights ($\alpha_{i,s}^k$ or $\alpha_{i,b}^k$) used are commodity flows, the direction of flow of trucks or goods is from the supplier firm to the industry buyer firm and from industry firm buyer to the next stage buyer or final buyer. Thus, every firm in a given cluster chain could have a unique transport access index value comprised of its individual

upstream or downstream connectivity (obtained by working with upstream or downstream firms individually) as well as composite upstream and downstream connectivity.

4.1 Transport Planning Applications

Firms that cater to regional and national markets and part of value chains in some sectors cluster to obtain advantages from inter-metropolitan highway networks. Firms that cater to international markets also look to locating in the proximity of multimodal inter-metropolitan networks. In that context, the index measures developed are very general measures for supply chain clusters where inter-firm linkages are vital for maximizing benefit from investments. A variety of transportation planning applications suggest themselves in the context of planned transportation investments in regions that aim to nurture existing clusters or develop emerging ones. The measures developed may be part of an overall economic intelligence that could be needed for maximizing regional, statewide or national benefit. A number of factors in the access indices can be directly linked to transportation since the measures are transport-centric. In particular, the network times relative to baseline Euclidean travel times reflect the ability of the current or an improved network for measuring a variety of transport attributes like speeds, time-demand for specific input or product types. Productivity improvements can however, only ensue when firm growth is accompanied by resourcing of inputs with overall cost reductions and in the amelioration of transportation bottlenecks to final buyer markets or retail markets downstream. The ability of indices to link economics/business networks associated with cluster chains with transport networks combined with external data sources via weighting mechanisms (employment, flows or other as the case may be) provides access indices the ability to address transportation related economic development questions so that planned transport improvements can enhance the benefit to the host regions. It is premised that such an analysis, data permitting, would be a useful exercise for planning corridor investments that impact cluster and supply chain connectivity of manufacturing chains that straddle many regions. The following planning applications suggest themselves from the transport agency perspective using this approach- 1). Evaluation of statewide,

corridor or regional improvements/investments that improve the connectivity between existing known freight movements and deliveries from supplier networks to prospective buyer networks for established or valuable manufacturing chains 2). Evaluation of connectivity changes between existing business O-D pairs in terms of reduced network distance or speeds based on commodity types and usage profiles. 3). Assessment of transportation linkages to upstream supplier markets to minimize competing input availability/access sheds including labor sheds. 4). Assessment of meaningful transportation linkages to downstream buyer markets to maximize market share. These include both non domestic retail markets and intermodal transfer points like ports/barge facilities/air to reach to other markets (both domestic and international). 5). Assessments of corridor potential for attracting new supplier plants based on new transportation investments [15]. 6). Assessments of supply chain risk and connectivity in the event of disruptions to transportation systems in the context just-in-time/sequence practices.

Essentially, the analysis is centered on the firm as a buyer or seller in the context of its supply chain, placing this analytical approach between macro and micro approaches to firms. In terms of geography of effects, manufacturing chains and their associated clusters (like the automotive chain) typically have at least a 194-mile or a 120-mile community related multiplier effect from a plant largely due to the cluster context. When this notion is linked to infrastructure it could allow researchers to assess firm and industry specific effects as well as external economies associated with infrastructure investments.

4.2 Illustration example: Automobile manufacturing cluster chain and transportation improvements in the Appalachian region along with Corridor X, Alabama

In the following section, we use the approach developed to evaluate whether network improvements in the Southern Automotive Corridor alter upstream/downstream connectivity of firms in automotive chain. To that end, this section first discusses the automobile chain in the United States and then in Alabama local cluster specifically. Most of the North American motor

vehicle industry is highly concentrated in a region known as auto alley (Fig. 1). Klier and Rubenstein [16] provide an excellent overview of the automobile cluster and its evolution in the United States. The Auto Alley refers to a narrow corridor, roughly 1,100 km long, in the interior of the US between the Great Lakes and the Gulf of Mexico, extending northeast along Highway 401 into southwestern Ontario, Canada. The U.S. portion of auto alley is framed by two parallel north south interstate highways, I65 and I75. East west highways, including I40, I64, and I70, connect the two north south routes. This industry typically relies on growth pole supplier networks within a days' drive time delivery access to final assembly plants in relation to parts as a key location criterion. The industries has also moved away from just-in-time to just-in-sequence where companies can strive to minimize inventories on hand, associated sunk costs, and streamline operations from a cost and delivery standpoint. Alabama lies at the southern tip of the auto alley (Fig. 1). It is home to three original equipment manufacturer (OEM) manufacturing plants- Mercedes Benz, Honda and Hyundai. The automotive industry concentrated around this corridor has been very critical for the overall economic growth of Alabama. Alabama is considered to be a strategically favorable state for nurturing automotive industries as it offers tax breaks, cheaper labor and other incentives needed for them to flourish in the region [17].

The application of transport access indices proposed in this paper is illustrated with respect to several highway improvements that took place from 2002 to 2010 in the Appalachian region (of which Alabama is part of) along with the expanded segments of Corridor X in Alabama as of 2007. The construction of Corridor X (also known as Interstate 22) as well as the new interchange at the southern tip of its final segment near I-65 (see Fig.1) is scheduled to be completed by 2014. The completed Corridor X will improve east-west access and connect Birmingham directly to Memphis (the top logistics and distribution hub in the country) and once completed, it is positioned to become the sixth major interstate in Alabama converging with five different interstates near Birmingham.

Two of the major automotive assembly plants – Mercedes- Benz USA LLC and Honda Manufacturing of Alabama are the focus of the

illustration. The Mercedes- Benz USA LLC first set-up its \$400 million plant in Tuscaloosa County in Alabama and began production of a single model M-Class SUV in 1997. It had doubled the plant size with an additional \$600 million investment in 2000 and further, two more models will begin production in 2014 [18]. Similarly, Honda Manufacturing of Alabama set-up its first plant in 1999 on the east Alabama town of Lincoln and invested \$1.5 billion for its expansion. In recent times, with an investment of \$191 million in 2011, the plant has started production of its new model luxury cars to be rolled out this year. Thus, these two plants - Mercedes- Benz and Honda Manufacturing are of importance for any assessment involving automobile clusters and chains in Alabama.

The transportation of finished goods to many different cities could directly take place via the Corridor X. The image in Fig. 1 shows the location of the Mercedes and Honda plants in relation to each of their suppliers and domestic final markets-major cities and towns in and around the state of Alabama. Quantifying the impact of improved transportation improvements on industrial growth is a non-trivial process and even more so in clustered chains due to the extensive interacting economic network. In this section, we will attempt to use the access index to address whether corridor X and other improvements have the potential to alter the business network space (supplier downstream markets). We also focus our efforts on just two automobile plants, Mercedes and Honda. Fig. 2 shows the automobile cluster supply chain from core supplying industries to final market.

Based on the years of establishment of Mercedes and Honda plants in Alabama and the completion of parts of the improvements in the region by 2007, it was decided to evaluate the proposed TBI and TFI for the years 2002 and 2010. We evaluate both TBI and TFI for the automotive cluster of Alabama at three separate hierarchical levels. Following Fig. 3, the first set of indices (Stage 2/3) are calculated for the two OEM assembly plants between Tier 1 and 2 suppliers. The second set of indices (Stage 1/2) are calculated for the Tier 1 and 2 suppliers of each of the two assembly plants. We consider main industry units within the automotive supply chain across which flow of auto related parts, goods and materials take place. Subsequent processing of these parts and their assembly at

respective plants, the final dispatch of the finished products to the dealers take place. Per Stage 1, the supplier flows of occur from general-purpose machineries, parts and equipment wholesalers to the 2 OEMs (buyers). The Stage 2 of the supply chain consists of the flow of different auto parts to be assembled at the Mercedes-Benz and Honda Manufacturing of Alabama plants from the different supplier cluster firms of the respective assembly plants. The final Stage 3 consists of the flow of the finished goods to different retail locations. In this paper, census tracts are used as representative of wholesale trade firms (Stage 1).

For illustration only tracts with employment size greater than 50 in year 2002 with a total of 341 such tracts are used to represent the wholesale trade industry sector assumed to service to the 2 OEM units [19]. This assumption is tantamount to weighting all supplier units within a tract equally. In reality, these suppliers could be geographically located anywhere. Per Stage 2, 40 Benz suppliers and 38 Honda suppliers are used based on (albeit not an exhaustive list) actual supplier data drawn from Economic Development Partnership of Alabama [20]. For Stage 3, the nearest 60 major neighbor cities in and around Alabama are selected as retail markets. The cities were selected based on their connectivity by the major interstates and highways to the two plants. Though this process of selection, we ensure all major cities including port cities (fifteen of the sixty cities as sea ports in Alabama and

Louisiana, see Fig. 1 in the geographic proximity of the two plants are included.

The map in Fig. 1 presents geographic locations for the visualization of different supply chain components of the automotive industry within and around Alabama. In this paper, the choice of Alabama is entirely driven by data availability of supplier lists for OEM Plants.

5. Results and discussions

This section shows the results for Stage 2/3 indices as proposed in Eqs. (1) - (4). The Level-1 TBI is calculated using Eq. (1) and the Level-2 TBI is calculated from Eq. (2). The employment of the geocoded supplier units (i.e. retail employment for cities, manufacturing employment for Automotive Suppliers and the employment number of the Mercedes and Honda plants) is used as a weight or flow proxy (i.e. substitute for α and β in Eq. (1) & (2)). The threshold value used for the calculation of the indices is fixed at 120 minutes of daily average one-way travel time from one or more industry units/plants via the highway network.

Similarly, Level-1 and Level-2 TFI are calculated using Eq. (3) and Eq. (4), respectively, however, the travel times (daily averages) used are to the cities and retail markets within the geographical extent of the study area (refer Fig. 1 for the extent of the study area consisting of Alabama and parts of other neighboring states).

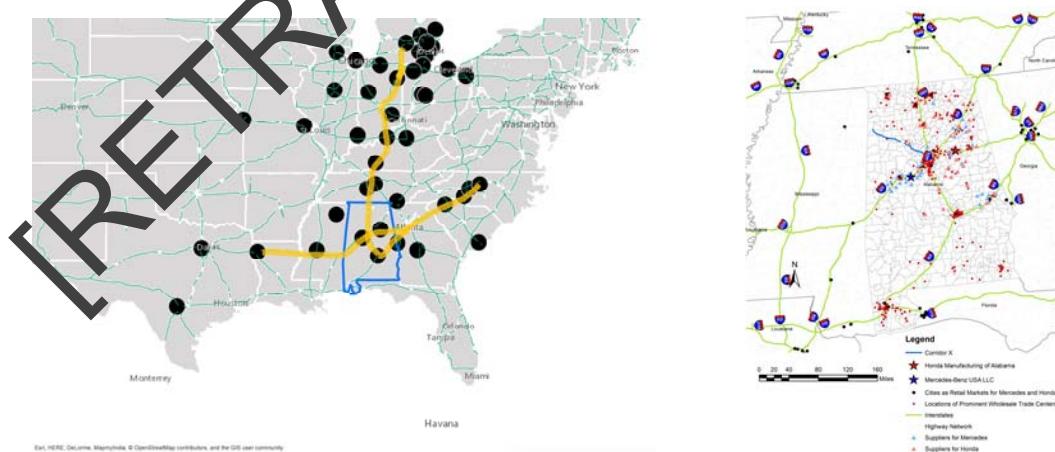


Figure 1. Map of the Alabama in relation to the automotive corridor (Source: Adapted from ESRI Auto Supplier Hotspots Map Contributed by Thomas Klier, Federal Reserve Bank of Chicago) and location of manufacturing units (Suppliers, Assembly Plants) (Source: Authors generated maps in ESRI).

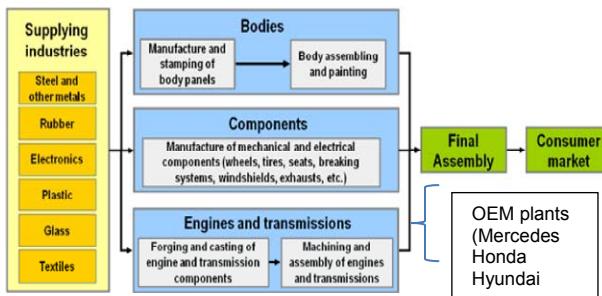


Figure 2. Automobile supply chain (supplying sectors to final demand markets).

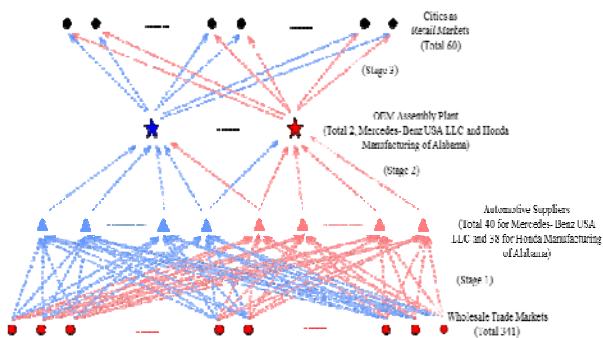


Figure 3. Different components and stages within the cluster supply chain illustrative example for Alabama.

Stage 2/3 Buyer- Supplier Access Indices	Mercedes-Benz USA LLC		Honda Manufacturing of Alabama	
	Year 2002	Year 2010	Year 2002	Year 2010
Level -1 TBI (TFI) percentage increase(+)	0.39 (0.52)	0.41 (0.59)	0.27 (0.48)	0.36 (0.62)
	(Supplier = +33% (+12%), Buyer = +0.9% (+11%))		(Supplier = +31% (+15%), Buyer = +39% (+40%))	
Level -2 TBI (TFI)- Industry	0.33 (0.50)		0.38 (0.60)	

Table 1. Level- 1 and 2 Threshold-bound Index (TBI) and Threshold-free Index (TFI). Values in parenthesis ('') are the respective TFI values.

The indices are evaluated for two years- 2002 and 2010. These indices are reflective of a firms' 'direct' suppliers/buyers connections through the highway network. The TBI (or, TFI) does not represent any influence of supplier's supplier or a buyer's buyer in the calculations as is also self-explanatory in Eq. (1) and (2). The Stage 2/3 the

Level -1 TBI (TFI) calculated for the manufacturing plant of Mercedes- Benz is 0.39 (0.52) for the year 2002 and 0.41 (0.59) for the year 2010. This means that the number of supplier- buyer markets accessible within 120 miles from the manufacturing plant of Mercedes-Benz remains almost unchanged between the years 2002 to 2010. The Level-1 TBI for Honda increased from 0.27 (0.48) in 2002 to 0.36 (0.62) in 2010. The increase in the index values, though marginal, shows that there is an increase in the number of suppliers and retail market accessible. In short, whereas different highway network improvements (including Corridor X) do not show significant change in market access for the Mercedes-Benz, there is a 33.3 % change in the TBI (TFI) for the Honda. The Level-1 TBI (TFI) index values are summarized in Table 1 (as are Level 2). Further analyzing the Level-1 TBI (TFI) for Mercedes-Benz for downstream and upstream markets separately, it is seen that Level -1 TBI for all the 40 suppliers combined increase 9.3% (12%) and the corresponding increase for the 60 downstream retail connections (with no supplier increased by just 0.9% (11%) over the 2002-2010 period. The corresponding percentage increase in the Level- 1 TBI (TFI) for 38 upstream suppliers of the Honda is found to be 31% (15%) and for the 60 downstream cities as buyers is found to be 39% (40%).

The value of Level-2 TBI (TFI) (using Eq. (2)) for combined 2 OEM plants is found to be 0.33 (0.50) for the year 2002 and 0.38 (0.60) for the year 2010 (Table 1). Using this more refined measure, the overall change in the index values over the years is observed to be only marginal. However, it could be inferred that the improvements contribute more to the downstream access to markets than upstream to suppliers.

6. Concluding remarks

By combining the literature on logistics performance and agglomeration theories, this research develops a directness metric of immediate buyer and supplier markets (transactional and/or proximate neighbors) that may be used for evaluating transport-economic-logistical linkages between firms that are part of manufacturing value chain cluster. The transport access measure indices developed in this paper are generic and allow the possibilities for extension

to multi-modal networks. Albeit data intensive, the measure has the potential to throw some new light on the economics of transport investments in regions where manufacturing chains have clustered by highlighting the microeconomics of agglomeration and how some firms may be differently or better served by regional corridor improvements. Clearly, there can be individual winners and losers in a pure directness context. It remains to be seen how some of this would translate to quantifiable economic benefits attributable to such investments. That and other extensions suggested remain a subject of future investigation.

References

- [1] R. W. Vickerman, "Other regions' infrastructure in a region's development", In R.W., VICKERMAN (Ed.) Infrastructure and Regional Development, pp. 61-74. London: Pion Limited, 1991.
- [2] M. J. Enright, "Regional clusters and economic development: A research agenda", In Business Networks: Prospects for Regional Development, edited by U. H. Staber et al., Berlin, Walter de Gruyter, 1996.
- [3] X. Han, "Research on relevance supply chain and industry cluster", International Journal of Marketing Studies. vol. 1, no. 2, pp. 127-130, 2009.
- [4] J. Woxenius, "Directness as a key performance indicator for freight transport chains", Research in Transportation Economics, vol. 36, pp. 63-72, 2012.
- [5] J. M. Morris, P. L. Dumble and M. R. Wigan, "Accessibility indicators for transport planning", Transportation Research Part A: General, vol. 13, no. 2, pp. 91-109, 1979.
- [6] S. C. Handy, and D. A. Niemeier, "Measuring accessibility: An exploration of issues and alternatives", Environment and Planning A, vol. 29, no. 7, pp. 1175-1194, 1997.
- [7] Y. G. Wang, C. B. Zhang, Y. Cao, and B.H. Liu, "Access for performance of transportation planning and operations: Case study in beijing metropolitan region", Journal of Applied Research & Technology, vol. 10, no. 4, pp. 491-504, 2012.
- [8] M. Cedillo-Campos, C. Sánchez, "Model for dynamic evaluation of logistics performance of supply chains operating in emerging markets", Journal of Applied Research & Technology, vol. 11, no. 3, pp. 338-347, 2013.
- [9] Chandra, S., Bari, M. E., Devarasetty, P. C., & Vadali, S. (2013). Accessibility evaluations of feeder transit services. Transportation Research Part A: Policy and Practice, 52, pp 47-63.
- [10] K. T. Geurs and B. VAn Wee, "Accessibility evaluation of land-use and transport strategies: Review and research directions", Journal of Transport Geography, vol 12, no.2, pp. 127-140, 2004.
- [11] T. Klier, Agglomeration in the US automobile supplier industry. Available from: <http://www.uwlax.edu/faculty/knowles/eco303/ecogeo2.pdf>.

[12] M. Andrew, R. Florida, and K. Martin, "The new geography of automobile production: Japanese transplants in North America", *Economic Geography*, pp. 352-373, 1988.

[13] S. Mavoa, K. Witten, T. McCreanor and D. O'Sullivan, "GIS based destination accessibility via public transit and walking in Auckland, New Zealand", *Journal of Transport Geography*, vol. 20, no. 1, pp. 15-22, 2012.

[14] J. Cao, X. C. Liu, Y. Wang and Q. Li, "Accessibility impacts of China's high-speed rail network", *Transportation Research Board 91st Annual Meeting*. No. 12-3420. 2012.

[15] Study of US 43 and US 80 Corridor Potential to Attract New Automotive Suppliers Based on Highway Improvements, Federal Highway Administration, Available from: http://www.fhwa.dot.gov/planning/economic_development/technical_and_analytical/alcor.cfm.

[16] T. Klier, and J. Rubenstein, "The changing geography of North American motor vehicle production", *Cambridge Journal of Regions, Economy and Society*, vol. 3, no. 3, pp. 335-347, 2010.

[17] C. J. Spindler, "Winners and losers in industrial recruitment: Mercedes-Benz and Alabama", *State & Local Government Review*, pp. 192-204. 1994.

[18] Amazing Alabama. Available from: <http://www.amazingalabama.com/>

[19] Local Employment Dynamics. Available from: <https://fortress.wa.gov/esd/employment/wa/reports-publications/regional-reports/local-employment-dynamics> Economic Development Partnership of Alabama Available from: <http://www.edpa.org/>.

[RETRACTED ARTICLE]