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ABSTRACT

Today the increased world population and therefore the growth demand has forced the researchers to investigate
better water canal networks distributing much more water while at least keeping its quality. Canal design formulas are
explicitly obtained for different cross-sections considering minimum area but optimal design of canal sections
considering seepage and evaporation losses are still an open area to study. In this study, two different algorithms are
applied to this problem and results are compared with the one in literature. Genetic algorithm and sequential quadratic
programming technique are used in optimization. Triangular, rectangular and trapezoidal cross-sections are
optimized. It is seen that both algorithms are giving more accurate results than in literature.
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1. Introduction

Water is the key element of life and its importance
for life beings has not changed over the centuries.
Even though today there are many investigations
and consequently inventions on new kind of
materials, a simple solution on using water
effectively is still concerned as much important as
them [1]. Saving water used in irrigation, cleaning,
cooking and even transferring energy is necessary
for a sustainable life [2].

Much of the water used by mankind is used in
irrigation. Many different irrigation ways are
applied over the years but water has been always
conveyed and distributed by using canals. Today
the increased world population and therefore the
growth demand has forced the researchers to
investigate  better water canal networks
distributing much more water while at least
keeping its quality. The uncertainty of canal’s
nature may cause the failure of the canals to
convey water during periods of high flow which
may lead to the overall failure of many surface
water resource systems. Therefore the loss of
water from irrigation canals has to be minimized.

Swamee et al. has shown that more than half of
the water supplied at the head of the canal is lost
in seepage and evaporation by the time water

reaches the field [3]. Seepage loss is the
important part of the total water loss. In fact,
significant part of loss comes from the
evaporation however seepage takes place on a
canal even respectively at small amount. The
correct lining could stop this seepage loss but the
change over the time in lining makes the finding
correct lining a difficult problem to solve. Even
though evaporation loss changes with time
whether it is winter or summer and also concrete
lining conditions (cracks etc.) affect the seepage
loss, they can be estimated under certain
conditions. Therefore, design of a canal cross
section should be optimized considering
minimization of the seepage loss and evaporation
loss over the time. In this study, a previously
defined canal cross section problem is solved
with different techniques.

Minimizing cross section area has already been
studied by a few researchers [4]. Different cross
section types are concerned: Triangular [5-6],
Rectangular [5-6], Trapezoidal [5-9], Parabolic [10-
12], Curvilinear Bottomed Channel [13] and
Circular [15,21,26,27]. In this study only triangular,
rectangular and trapezoidal cross-sections are
concerned due they are much widely used as
benchmark problems.
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Different set of conditions are considered. Guo and
Hughes accounted freeboard as input parameter
[14]. Aksoy and Altan-Sakarya used Mannig’s
formula in calculating flow velocity [15].
Bhattacharjya combined the critical flow condition
with other conditions [16]. Jain et al. followed
Lotter's approach in defining composite canal
section [17]. Easa et al. considered the criterion for
the side slope stability (soil conditions) [18].

Different optimization methodologies are applied
(Direct algebraic technique [19], Complex variables
and series expansions [20], Lagrange’s method
[21-22], Nonlinear optimization techniques [3,23],
Sequential quadratic programming [16],
Lagrange’s undetermined multiplier approach [13],
a hybrid model of genetic algorithm and sequential
quadratic programming hybrid model [9], genetic
algorithm [17], ant colony optimization [24] to
design open channels. Adarsh modelled
uncertainty [25].

Also different topics are taken as objectives. Trout
considered lining material cost [19]. Das
minimized the flooding probabilities [8]. However
studies concerning the minimum seepage loss
are limited in literature. Kacimov merged seepage
losses and channel lining [20]. Swamee et al. [26-
27] merged earth work and lining cost. Chahar
also considered seepage loss [13]. Swamee et al.
[3, 23] considered the seepage loss in the
objective functions.

This study aimed to simplify the current canal
section problem concerning water losses.
Equations for seepage loss [5], the evaporation
in flowing channels [28], and the resistance in
open channel flow [29] are taken from literature.
Two different algorithms (Genetic Algorithm and
Sequential Quadratic Program) are applied to
compare the results with existing literature to
evaluate their effectiveness. Minimum water loss
sections have been obtained for three different
canal sections (triangular, rectangular, and
trapezoidal). Following section briefly overviews
water loses. Section 3 presents the problem
formulation and Section 4 gives brief explanation
on the methodology used in the study. Section 5
provides the results and last section presents
the research conclusions and future work plans.

2. Water losses

Water moves continuously on earth by changing
its phase gas to liquid or to solid and vice versa. It
flows as rivers and streams, moves in air as
clouds and is stored in lakes, in oceans, and
sometimes as icebergs. We use dams to store it
and canals to distribute to where it is needed.
Water continues its movement while distributing
to the target place. It evaporates and goes up
according to the weather conditions and infiltrates
and goes down according to condition of soil
where canal is built. So, particular amount of
water will be lost in distribution. This section
explains how to calculate seepage [5] and
evaporation [28] losses and how much resistance
[29] occurs in channel.

2.1 Water losses due to seepage

Continuous seepage from canal may results in
local water-logging problem with salt
accumulation. There should be regular checking
in lining to maintain its proper work but many
unavoidable factors will cause the performance of
canal gradually decrease even if extreme care is
taken [30].

The seepage loss from a canal in a homogeneous
and isotropic porous medium when the water
table is at very large depth was written as [3]

as = kyF (1)

where qs = seepage discharge per unit length of
canal (m2/s); k = hydraulic conductivity of the
porous medium (m/s); y = depth of water in the
canal (m); F = function of channel geometry
(dimensionless); and yF = width of seepage flow
at the infinity. Hereafter, F will be referred to as
the seepage function.

2.2 Water losses due to evaporation

Loss due to evaporation depends on the many
factors. Increase in  temperature  boosts
evaporation. Increase in wind velocity also raises
the amount of evaporation. Evaporation is related
with the specific humidity gradient in the air and
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the supplied energy to water. There are many
equations in the literature to estimate evaporative
rate. These equations can be classified into three
categories; (1) energy balance equations; (2)
mass transfer equations; and (3) combinations of
the two. It is seen that the mass transfer
equations are the most appropriate ones for
determining evaporation for our problem [28].

The mass transport type equations are
expressed as
E= (es - ed) fw (2)

where E = evaporation discharge per unit free
surface area (m/s); es = saturation vapor pressure
of the air at the temperature of the water surface
(Pa); eq = saturation vapor pressure of the air at
the dew point (Pa); and f,, = wind function (m/s/Pa).
The difference between the saturation vapor
pressure of the air at the temperature of water
surface and at the dew point (es — e4) in Pa was

given by [31].
17.276,,
exp| ———%— |-
2373486,

2 x| 17276
P 2704,

e, —e; =610.78 (3)

where 6,, = water surface temperature in °C; 6, =
mean air temperature in °C; and R; = relative
humidity expressed as fraction. The wind
function for a flowing channel in m/s per Pa was
given as [28]:

fy = 3.704x107"" (1+ 0.25u,) 4)

where u, = wind velocity in m/s at 2 m above the
free surface. Combining Egs. 2-4, E in m/s is
obtained as [5]

E =2.262x10"%(1+0.25u,)
17276, 17.276, (5)
exp| —————— |—.R;, exp|
237.3+6, 272+6,

Once E is known the evaporation loss from a canal
can be expressed as

Qe =ET (6)

where ge = evaporation discharge per unit length
of canal (m2/s); and T = width of free surface (m).

2.3 Total water loss

Adding Egs. 1 and 6, the total water loss qw (m2/s)
was expressed as:

Qqw = ky,Fs + ET (7)

Using the equations [3] for Fs, Eq. 7 for triangular
channel section becomes [5]

0.77
qyw Zkyn[(4ﬂ—ﬂ'2)‘.3 +(2m)1'3} (8)
+2my, E

where m=side slope shown in Fig. 1a. Similarly for
rectangular section Eq. 7 was changed to [5]

0.77

Gy = kyn[(47f ~22 T b1, )0'77} )
+bE

where b = bed width of the section shown in Fig.
1b. On the other hand, for trapezoidal section
shown in Fig. 1c, Eq. 7 was reduced to [5]

1.3+0.6m
0.77+0.462m | 110.6m
3 T 1310.6m
ar— 21 s Oom 1.3} 1.3+0.6m
9y =ky, li( )l ( )
140.6m
+ (b/yn )1.3+0.6m
+(b+2my, E
(10)

2.4 Resistance equation

Resistance of flow in canal is used in design of
uniform open canal. Manning’s equation is the
mostly used formula in design [32], which turbulent
flow and relative roughness are taken into account
[33]. The equation will be used in this study [29] is:

& 0.221v J (11)

0 =-2.4574,/gRS, h{

4+ —
12R  R\[gRS,
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Figure 1. Canal Sections: (a) Triangular, (b) Rectangular, (c) Trapezoidal.

where Q = canal discharge (m3/s); A = flow area
(m?); g = gravitational acceleration (m/s’); R =
hydraulic radius (m) defined as the ratio of the flow
area to the flow perimeter (A/P) (m); € = average
roughness height of the canal lining (m); and v =
kinematic viscosity of water (m?/s); So = Bed slope.

3. Design problem

Determination of optimal canal section shape was
reduced to;

Minimize : q,, = ky,Fs + ET

which is the general Eq. 7 of total water loss. Egs.
8-10 is going to be used for triangular, rectangular
and trapezoidal channel sections.

Subject to: Eg. 11 and V=Q/A

where A = flow area (m2); and V = average velocity
(m/s). This average velocity has to be less than the
limiting velocity. Limiting velocities for the different
lining materials are shown in the table below in
Table 1 [5].

Lining Material Limiting Velocity (m/s)
Boulder 1.0-1.5
Brunt Clay Tile 1.5-2.0
Concrete Tile 2.0-2.5
Concrete 2.5-3.0

Table 1. Limiting Velocities.

In this optimization,
designed for carrying a discharge of 10 m/s on a

concrete

lined canal

longitudinal slope of 0.001. The canal lining has € =
1mm. Assume canal lining as cracked; and having
k = 10° m/s. The maximum evaporation loss E was
estimated as 2.5x10° m/s. The water temperature
is 20°C at which v = 1.1x10° m?s. Limiting
velocity, VL, is taken 2.5 m/s.

4. Methodology

Genetic algorithm and sequential quadratic
programming method are applied to solve the
problem in this study. Matlab Optimization
Toolbox is used as a solver (Fig.2). Standard
settings of the toolbox are used except that
number of generations is defined as 1000000
instead of 100. This section will only explain the
basic of the algorithm. The detailed explanation
can be found in literature.

/ Optimization Tool

Fie Help

Problem Setup and Results

Solver: | ga - Genetic Algorithm 2l

Prablem

Fitness function; | @abjecfun |

Number of wariables: |2 |

A | b

J
fen; | | beq: | |
Lower: [[1 1] " upper: [ ]
J

traink Function: |@nonlconstr

| [ clearrests |

Figure 2. Matlab Optimization Tool.
4.1 Genetic algorithm

Genetic Algorithm is a kind of evolutionary
algorithm which becomes popular by the
publication of John Holland’s book in 1970’s [34].
GA is a method for solving optimization problems
based on natural selection. It changes the
population of solutions in a sequence. At each
step, it chooses individuals as parents randomly
from the current population. Then, next generation
is produced by parents. Over successive
generations, the population "evolves" toward an
optimal solution. The main advantage of genetic
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algorithm is the applicability to optimization problems
in which the objective function is discontinuous,
nondifferentiable, stochastic, or highly nonlinear.
Three main steps of GA generate the solutions [35].
Fig. 3(a) shows these following steps:

1) Select the individuals as parents considering the
best objective value.

2) Crossover to form the next

generation.

the parents

3) Add some random changes to the population
(Mutation).

4.2 Sequential quadratic programming

Sequential quadratic programming (SQP) is one of
the most effective methods for nonlinearly
constrained optimization. It generates steps by
solving quadratic subproblems. It uses the
derivative of objective and constraint functions so it
reaches the global optimum faster. The steps of
SQP are shown in Fig.3(b). This approach can be
used both in line search and trust-region
frameworks, and is appropriate for small or large
problems. SQP methods show their strength in
solving problems having nonlinear constraints [36].

These two algorithms differ mainly in two points:
GA generates population randomly and the best

[TIOMIOMTT] (TIOIKIO0I]

[ITITI00I]
Population

Initial
Population

Selection of
parents

1[o[[o]2]1] [2]a]z]ofo1])

l ' Parents

| 1

Save the best

X Crossover
population

|

Mutation

[[EITIOI0IT]
(O IOMTITITI

IOIOITITTT]

[OITIOON]

Get the solution

(@)

reaches the optimum while SQP generates
single point in a deterministic computation and
last single point reaches the optimum. To
compare the results of the different algorithms
will help to understand when to use which
algorithm.

5. Results

Minimum seepage losses of the rectangular,
triangular and trapezoidal canal sections are
calculated by using both algorithms and results
are given in the tables 2, 3 and 4 respectively for
GA and in the table 5 for SQP algorithm. Results
of GA are given as three best results because it
finds different results at each time. Optimum
sizes of the channels found in literature are
given in table 6 to compare.

As a result, it is seen that rectangular sections
have more efficient results where trapezoidal
sections have less in comparison to triangular
sections as proven before. From GA and SQP
algorithms are much faster than previous
algorithms. They generally have given better
results than previous studies. SQP seems
superior when compared with GA since the
results are more robust and reliable. Results of
GA can change at each run even though it gives
reasonable correct results.

Initializing
Variables

Define Search
Direction

Define and solve
QP subproblem

Change
search size

Get the solution

(b)

Figure 3. Flow Chart of (a) Genetic Algorithm and (b) Sequential Quadratic Programming.
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T(b) Vo Area Velocity different cross sections by using two different
217 2414 5.238 1.909 algorithms. It is shown that an evolutionary
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are also giving reliable results in a quicker time.
Table 2. Rectangular Section
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1_|1.699E-05 |8.49E-08 175 considering cost as objective). Also new algorithms
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3 |1.707E-05 |3.30E-07 70 . etc.) in future.
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