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ABSTRACT

The production of soft drinks involves two main stages: syrup preparation and bottling. To obtain the lots sequence in
the bottling stage, three approaches are studied. They are based on the sub-tour elimination constraints used in
mathematical models for the Asymmetric Traveling Salesman Problem. Two of the mathematical models are from the
literature and use classical constraints. The third model includes multi-commodity flow constraints to eliminate
disconnected subsequences. The computational behavior of the three models is studied using instances generated
with data from the literature. The numerical results show that there are considerable differences among the three
models and indicates that the multi-commodity formulation provides good results but it requires far more
computational effort when the instances are solved by a commercial software.

Keywords: Production planning, integrated lot sizing and scheduling models, asymmetric travelling salesman problem,

multi-commodity flow.

1. Introduction

Supply chains management has received a lot of
attention by practitioners as well as by the
research community. The speedup of the
computational technology has allowed the
incorporation of several aspects of a supply chain
into a single model. Chiu et al. [1] studies
Economic Production Quantity problem
considering multiple or periodic deliveries of
finished items. Vanzela et al. [2] address the
integration of the lot sizing and the cutting stock
problem in the context of furniture production.
Another recent trend has been on mathematical
models that capture the relationship between the
lot sizing and scheduling problems [3]. The so
named lot-scheduling models have been proposed
for several industrial contexts. For example, the
glass container industry [4] and the animal feed
supplements industry [5]. It is also considered in
the design of virtual cellular manufacturing systems

(e.g. [6]).

Two main approaches have been used to model
the scheduling decisions. The first one is a small

bucket approach in which each period of the
planning horizon is divided into sub-periods. For
each sub-period only one item can be produced.
This approach is based on the GLSP model [7].
The second approach is a big bucket one that
allows the production of several items in a given
period. Sub-tour Elimination Constraints (SEC)
from the Asymmetric Travelling Salesman Problem
(ATSP) are added to the lot sizing formulation to
obtain the production sequence.

The small and big bucket approaches have been
used to model the lot-scheduling problem in the
context the soft drink production ([8], [9], [10],
[11]). The objective of this work is present a multi-
commodity formulation to model the scheduling
decisions considering a big bucket strategy. The
computational behavior of the proposed model
using data from the literature is compared with
two other big bucket models presented in the
literature, one that uses the SEC proposed by
Miller, Tucker and ZEMLIN [10] denominated here
by MTZ, and another that uses the SEC proposed
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by Dantzig, Fulkerson and Johnson

denominated here by DFJ.

(1]

The paper is organized as follows. In Section 2 the
soft drink process and a mathematical model
according to literature review are presented. In
Section 3 the alternative formulation to model the
sequences of lots and an adapted strategy from
the literature are presented. Section 4 describes
the computational studies and in Section 5 the final
remarks are discussed.

2. Brief description of previous work for
planning the soft drink production process

The production process of soft drinks in different
sizes and flavors is carried out in two stages: liquid
flavor preparation (Stage |) and bottling (Stage II).
The model considers that there are J soft drinks
(items) to be produced from L liquid flavors (syrup)
on one production line (machine). To model the
decisions associated with Stage |, it is supposed
that there are several tanks to store the syrup and
that it is ready when needed. Therefore, it is not
necessary to consider the scheduling of syrups in
the tanks, nor the changeover times since it is
possible to prepare a new lot of syrup in a given
tank, while the machine is bottling the syrup from
another tank. However, the syrup lot size needs to
satisfy upper and lower bound constraints in order
to not overload the tank and to guarantee syrup
homogeneity. In Stage Il, the machine is initially
adjusted to produce a given item. To produce
another one, it is necessary to stop the machine
and make all the necessary adjustments (another
bottle size and/or syrup flavor). Therefore, in this
stage, changeover times from one product to
another may affect the machine capacity and thus
have to be taken into account. In Section 2.1, we
review the single stage, single machine model
proposed in [10] to define the lot size and lot
schedule taking into account the demand for items
and the capacity of the machine and syrup tanks,
minimizing the overall production costs. It assumes
that there is an unlimited quantity of other supplies
(e.g. bottles, labels, water).

2.1 The lot-scheduling model from literature

In the model proposed in [10] the decisions
associated with lot sizing are based on the
Capacitated Lot Sizing Problem (CLSP) (e.g. [12]).

The scheduling decisions use the ATSP approach
with the MTZ [13] constraints to eliminate
subsequences.

To present the model, let the following parameters
define the problem size:

J number of soft drinks (items).
L number of syrup flavors.
T number of periods in the planning horizon;

and the following index:
L,k e{1,.,dh1e{t, .., Lhte{1,.., Th

Also consider that the following data are known,
superscript | relates to stage | (syrup preparation)
and superscript |l relates to stage Il (bottling).

Data:

a' production time for one unit of the item j.
b changeover time from item i to j.
demand for item j in period t.

g, backorder cost for one unit of the item j.
h, inventory cost for one unit of the item j.
I}, initial inventory for item j.

I, initial backorder for item j.

K;’ total time capacity of the machine in t.
#I.’ changeover cost from itemi to .

S maximum number of tank setups in t.

K' total capacity of the tank.

g, minimum quantity of | necessary.
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rl'

;  quantity of | for the production of one lot of j.

7, set of items that need syrup |.
Define the following set of variables:

/;t inventory for item j at end of period t.

I, backorders for item j at end of period t.

jt
X;; production quantity of item j in t.

!

+ changeover fromitemitojint.

u, might be used to indicated the production
order of jin t.

w, number of tanks prepared with | in t.

n, fraction of tank capacity used to produce | in t.

y,’, is equal to 1 if the tank is setup for | in t.

The optimization criterion, Eq. 1, is to minimize the
overall costs taking into account inventory,
backorder and machine changeover costs.

J T T J J
Min Z=22(hl+g10+2Y. 2 57, (1)

=t =1 Q= =l

The lot sizing decisions in Stage |, as defined by
constraints Eq. 2 — Eqg. 5 control the syrup
production. Constraints Eq. 2 guarantee that if the
tank is ready to produce syrup I, then there will be
production of item j and the lot produced uses all
the syrup prepared in that period. The variables n;;
allow partial use of the tank and controls the
minimum amount needed to ensure syrup
homogeneity, as specified by constraints Eq. 3.
Constraints Eq. 4 ensure that there is syrup
production only if the tank is prepared. According
to constraints Eq. 5, the total quantity of syrup (in
number of full tanks) produced in period t is limited
by the maximum number of tank setups.

Stage | - Syrup preparation:

ZI‘,,XII-:ZKI(W,,—H,,) VIVt )
f€7/

n<1_(q:j vivt (3)
It = K/

Ve < W, < Y, VIVt (4)
2w, <§ vt (5)

leL

The lot sizing decisions in Stage Il are defined by
constraints Eq. 6 — Eqg. 9. Constraints Eq. 6
represent the balance among production, inventory
and backorders of each item in each time period.
Constraints Eq. 7 represent the machine capacity
in each time period. Constraints Eq. 8 guarantee
that there is production of item j only if the machine
is prepared. Note that the setup variable is
considered implicitly in terms of the changeover
variables and that production may not occur
although the machine might be prepared.
Constraints Eq. 9 control the maximum number of
setups in each period.

Stage Il (bottling) - lot sizing:

_ | _ .
Bien+ Lt X = =T = dy vj vt (6)
J J J
SeneY 3 ek vt )
=1 =1 j=l,jei
J .
ax <K'y 7 Vi vt (@8)
i=1i%j
J J

ZZ /< vt (9)

Constraints Eq. 10 — Eq. 14 model the order in
which the items will be produced in a given period
t. They are based on the ATSP model. Constraints
Eqg. 10 considers that in each period the machine
is initially setup for a ghost item i,. The changeover

costs associated with the ghost item are zero and
do not interfere in total solution cost. Constraints
Eq. 11 guarantee that each item j is produced at
maximum once in each period t. Constraints Eq.
12 ensure that if there is a changeover from an
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item i to any item k then there is a changeover
from that item k to an item j.

Constraints Egq. 10 and Eq. 12 alone might
generate  sub-tours, that is disconnected
subsequences, and thus do not guarantee a
proper sequence of the items. The MTZ type SEC,
constraints Eq. 13, avoid this situation. With the

inclusion of constraints Eq. 15 the variable u,

gives the order position in which item j is produced
in period t. Finally constraints Eq. 15 define the
variables' domain.

Stage Il (bottling) - scheduling:

J J

2 2z 2 2 vk, vt (10)
j=1,j#iy i=1,izk

J .
Mzlh<1 ViVt (11)
J=1

J J

> %= 2 % vk, vt (12)
i=1izk Jj=1,jzk

Uy 2 Uy +1-(J-1)(1-Z)) Vi, jii# vt (13)
I<u,<J-1 vj vt (14)
Lol X1, 20,23, Y, =0/1,w, € Z, (15)

V), Vi, VIVt

The complete description of the model, named
here as LSMTZ, is given by expressions Eq. 1 —
Eq. 15. More details about this model can be
obtained in [10].

3. Other strategies to solve the one machine
soft drink lot scheduling model

In the model LSMTZ the constraints associated
with the scheduling decisions are formulated
based on the MTZ SEC, constraints Eq. 13 and
Eq. 14. These constraints are of polynomial order,
thus allowing their inclusion a priori. However, the
MTZ constraints produce a weak linear relaxation
of the associated formulation. Motivated by this
fact, several authors have proposed different
approaches to strengthen the ATSP mathematical
formulation. In the review presented in [14],

several mathematical formulations for the ATSP
are presented and compared. The focus is on
how these formulations compare to one another
as regard to the strengthen of the associated
linear relaxation.

The multi-commaodity-flow formulation proposed by
[15] as SEC is equivalent to the classical DFJ ones
in terms of the linear relaxation value, and both are
better than the MTZ. However, the former, as the
MTZ, has polynomial size, while the latter has an
exponential size. Next, we explore these two types
of constraints to model the ILSP in the soft drink
context described in Section 2.

3.1 The multi commodity flow based model

The Multi-Commodity Flow (MCF) formulation is
used in [16] to model the scheduling decisions in the
presence of non-triangular setups times and costs,
and in situations in which the same product can be
produced more than once in the same time period.

In this work the MCF formulation is also used to
eliminate subsequences in presence of non-
triangular setup times, however, as described in
Section 2.1 each item can be produced at most
once in each time period. The main idea of using
the multi-commodity SEC is to obtain a formulation
that is stronger than others from the literature, and
thus it is expected to have a better computational
behavior when solved by general purpose
software. A preliminary study of this approach in
the soft drink context was presented in [17].

To define the multi-commodity flow formulation, it
is necessary to define a new index r € {1, ..., J} to
represent the commodities and a new set of
continuous variables, m' . to represent the flow of

rijt 7
the commodity r. The idea behind this formulation
is that there are J commodities (items) available at
node i,, and a demand of one unit of commodity j

at node j. Setting n7;, =1 implies that if product r is
included in the production sequence, then product j
follows product i in such sequence. That is, the
flow of commodity r flows from node i, to node r

through arc (J, j).

The constraints Eq. 16 — Eg. 19 eliminates
disconnected subsequence of items. Since only

Vol. 12, August 2014




A Study of Different Subsequence Elimination Strategies for the Soft Drink Production Planning, M. Maldonado et al. / 631-641

the items that can be produced should be
sequenced, constraints Eq. 16 and Eq. 17 take
place when the machine is prepared for item r.
These constraints guarantee that if product r is
included in the sequence at least one other item
should be also included.

Z rigjt Z Tjigt Z jrt

/l]?tl'

vryt  (16)

J

J
Sty -Srty= 3 2,
J=1 j=1

J=1,j=r

vrvt (17)

Constraints Eq. 18 are the flow conservation
constraints, for all but product r in node r. And
constraints Eq. 19 states that item j should follow
item Jj in the sequence that includes item r only if
there is a changeover from product j to product j.

z rijt z rjit vr’j’jir’Vt (18)

ml, < Vi, j,r,vt

(19)
The multi-commodity-flow model for the single
stage single machine lot-scheduling problem
(LSMCF) is defined by the objective function Eq. 1,
the Stage | constraints Eq. 2 — Eq. 5, the Stage Il
constraints Eq. 6 — Eq. 12, the sub tour elimination
constraints Eq. 16 — Eq. 19 and the domain
constraints Eq. 20.
+ !
I jt° I/t’th’ranI/t’

Yi, j,rlt

n,= m% 0/lLw, e Z
(20)

3.2 The DFJ strategy

Besides the MTZ inequalities, the DFJ inequalities
[18] were successfully applied to solve a multi
machine soft drink process problem. Here, the
approach used in [11] is adapted to the single
stage, single machine case presented in Section 2.
Let C be a set of items that forms a disconnected
subsequence. The DFJ type constraints, Eq. 21,
eliminate them.

22 4‘/:*‘240/1 Zzzkf

ieCjelC jeC ied

Vike CCcd (21)

Constraints Eq. 11 ensures that each item is
produced at most once per period (i.e., the flow in
and flow out of each node (item) is equal to zero or
one). For all disconnected subsequences, the
following holds:

Z Z zj; =0 and Z zl, =0 Vt so that 0>>2,

ieC jeJ\C jeC ied
but Z,=1ie C and ke C. Hence, a solution with a

disconnected subsequence does not satisfy
constraint Eq. 21.

The LSDFJ model for the single stage single
machine lot scheduling problem is defined by the
objective function Eq. 1, the Stage | constraints Eq.
2 — Eq. 5, the Stage Il constraints Eq. 6 — Eq. 12, the
disconnected subsequence elimination constraints
Eq. 21 and the domain constraints Eq. 15.

In [4] it is shown that a formulation with this type of
constraints is at least as strong as a formulation
with the MTZ-type constraints. However, there are
an exponential number of constraints Eq. 21. In the
computational study presented in Section 4, the
DFJ constraints are generated and introduced in
the model in a dynamic way (Strategy 2). At first a
relaxation of the LSDFJ built by removing
constraints Eq. 21 is solved. If the best solution
obtained has disconnect subsequences, the
constraints Eq. 21 that are violated by this solution
are included in the relaxation and it is solved
again. Otherwise, the optimal solution has been
found and the algorithm halts. The algorithm might
also halt if the maximum cpu time allowed is
achieved, in this case only a lower bound to the
optimal solution is obtained. A feasible solution can
be built using heuristics, for example the patching
heuristic described in [11].

4. Computational Study

The three models presented in Sections 2.1, 3.1
and 3.2, and the cutting plane algorithm to solve
the LSDFJ model have been codified in the AMPL
syntax [19]. Two strategies were used to solve the
instances of the three models. In Strategy 1 the
LSMTZ and LSMCF model’s instances are solved
by the branch and cut algorithm of Cplex 12.5 [20].
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In the Strategy 2 the LSDFJ model’s instances
are solved by the cutting plane method described
in Section 3.2. The mixed integer relaxations in
each iteration of the Strategy 2 were also solved
by the Cplex 12.5. All the runs were executed on
a computer Intel Core i7-2600 CPU, 3,4 GHz, 16
GB RAM.

4.1 Instances

Twenty instances (S1-S20) of each one of the
three models were used in the computational tests.
The data is related to one machine that can
produce 27 items of different flavors and bottle
sizes. Ten different flavors are necessary to
produce this set of items. A planning horizon of five
weeks (periods) was considered.

The Table 1 presents the main characteristics of
the instances. The instances S1-S10 are from [6].
They have the changeover costs higher than the
inventory and backorder costs, even when they are
reduced in 25%. To analyze scenarios in which
the sequencing decisions are less important than
the lot sizing decisions, ten new instances were

generated. The changeover costs of instances
S1-S10 were reduced, while the inventory and
backorder costs were left unchanged.

4.2 Results

Two tests were conducted by changing the Cplex
stopping criterion, Test 1 and Test 2. The goal of the
Test 1 is to analyze if the use of the multi-commodity
SEC constraints (Section 3.1) in a Lot-Scheduling
model is better than the MTZ SEC constraints
(Section 2.1) to obtain good linear relaxation values
and to find good feasible solutions when solved using
Strategy 1. So, the runs in Test 1 were interrupted
after examining 500 nodes of the Branch and Cut
tree. The LSDFJ model was not included in the Test
1 because, as mentioned in Section 3.2, it is has an
exponential number of constraints and could be
solved only by a cutting plane algorithm.

In the Test 2, the goal is to study the performance
of the three models when used as tool to solve the
ILSP problem in the soft drink context, and so a
maximum of 3 hours of CPU time was allowed in
each run.

Instance Modifications
S1(S6) Plant data.
S2 (S7) Machine capacity of S1 (S6) reduced by 25%.
S3 (S8) Inventory costs of S1 (S6) doubled.
S4 (S9) Machine capacity of S1 (S6) reduced by 25%.
Changeover costs of S1 (S6) reduced by 1/3.
S5 (S10) Machine capacity of S1 (S6) reduced by 25%.Inventory costs of S1 (S6) doubled.
Changeover costs of S1 (S6) reduced by 1/3.
S11 (S14) Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000.
$12 (S15) Machine capacity of S1 (S6) reduced by 25%. _
Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000.
S13 (S16) Machine capacity of S1 (S6) reduced by 25%. Inve_ntory costs of S1 (S6) doubled.
Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000.
S17 (S19) Changeover costs of S1 (S6) are the changeover times reduced by 1/100.
$18 (S20) Machine capacity of S1 (S6) reduced by 25%. .
Changeover costs of S1 (S6) are the changeover times reduced by 1/100.

Table 1. Main characteristics of the instances.
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4.2.1 Test 1: maximum 500 nodes

The value of the linear relaxation associated to all
the 20 instances of the LSMTZ and LSMCF
models were the same. However, the time spent to
solve them is longer for the LSMCF instances (0.2
seconds) than for the LSMTZ ones (0.02 second).

After examining 500 nodes of the branch and cut
tree, the Cplex returned solutions for the S1-S10
instances of the LSMTZ model with average gap of
82.55% and for 90% of the instances the
confidence interval of the gap is [68.65% -
96.46%)]. Cplex returned better solutions for all the
ten instances of the LSMCF model. The average
gap is 14.38% and for 90% of the instances the
confidence interval is [7.99% — 20.77%)], which
represent an important reduction in the gap value.
However, in relation of the cpu time, Cplex spent
more time with the LSMCF instances (1,530.50
seconds in average) than with the LSMTZ
instances (an average of 2.82 seconds).

As for the instances S11-S20, the average gap of
the solutions obtained with the LSMTZ model is
99.53% and with the LSMCF model is 0.34%. The
computational time of Cplex for the instances of
both models is smaller than the computational time
of the first set of 10 instances solved, but the time
for the instances of LSMTZ model is smaller, 1.32
seconds in average, while the average for the
LSMCF instances is 499 seconds. This results
shows that the LSMCF model is better than the
LSMTZ model in terms of solution quality and
worse in terms of computational effort.

4.2.2 Test 2: maximum cpu time of three hours

In the Test 2, cpu time limit of a maximum of 3
hours, the Cplex Branch and Cut algorithm
examined an average of 3 million nodes to solve
the LSMTZ instances against 7 thousand nodes for
the LSMCF instances. As a result, more cuts were
generated and applied when solving the LSMTZ
instances (an average of 15,043 cuts) than when
solving the LSMCF instances (an average of
4,392). This performance of the models was
expected because of the Test 1 results in which for
the instances of the LSMTZ models, Cplex

examined 500 nodes in 2.82 seconds on average
while for the LSMCF instances it took much longer.
The fact that the LSMTZ instances can be solved
easily using the Cplex’s branch and cut algorithm
might be connected to the fact that the linear
relaxations involved are solved 10 times quicker
than the ones associated to the LSMCF instances.
The same maximum cpu time was imposed for
solving the LSDFJ instances using Strategy 2.

Given that the Strategy 2 provided the optimal
solution for 19 of the 20 instances of the LSDFJ
model, it is possible to compare the models in
terms of best solution quality as well as the gap
and cpu times. The solution quality is computed as
((Best solution value) — (optimal solution value))/
optimal solution value) * 100), in which the best
solution value accounts the best feasible integer
solution value found with Strategy 1 for the LSMTZ
and for the LSMCF instances. These results were
compiled in Table 2. The first column shows the
name of each instance, the next two columns show
the gap associated to the LSMTZ and LSMCF
solutions respectively. The following two columns
show the quality of the solutions obtained using
Strategy 1 to solve the LSMTZ and the LSMCF
instances respectively. The last three columns
show the cpu times in seconds to obtain the best
solution for all the three model instances. Given
that for all but one instance (instance S18), the
Strategy 2 provided the optimal solution, the gap is
not show for the LSDFJ solutions.

The results shown in Table 2 suggest a superiority
of the LSDFJ model when compared to the
LSMTZ and LSMCF models. The Strategy 2
proved the optimality for 19 instances of the LSDFJ
model while the Strategy 1 proved the optimality
for 13 instances of the LSMTZ model and 6
instances of the LSMCF model. However, the gap
for the instances S18 and S20 of the LSMTZ
model are smaller than 0.3% and the solution
quality smaller than 0.27% suggesting that these
solutions can be considered optimal. The same
happens with the instances S14, S15, S16, S18
and S19 of the LSMCF model. The Strategy 2
used to solved the instance S18 of the LSDFJ
model halted after three hours without a feasible
solution, although the lower bound is 2,371.33.
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Instance Gap Solution Quality (%) Time (Seconds)
LSMTZ | LSMCF | LSMTZ | LSMCF | LSMTZ | LSMCF | LSDFJ
S1 0.00 13.99 0.00 6.71 2,014.04 * 112.42
S2 1.86 10.14 0.00 3.33 * * 2,368.66
S3 2.54 8.30 0.00 3.47 * * 6,734.79
S4 1.67 9.30 0.00 3.79 * * 2,168.05
S5 2.32 6.55 0.27 2.34 * * 2,488.37
S6 0.00 0.00 0.00 0.00 193.71 948.64 28.16
S7 0.00 7.78 0.00 0.30 4,306.11 * 2,976.92
S8 0.00 0.00 0.00 0.00 231.13 * 26.13
S9 0.00 4.40 0.00 0.37 7,999.69 * 2,747.70
S10 1.49 5.14 0.00 0.64 * * 3,167.58
S11 0.00 0.00 0.00 0.00 6.35 722.24 10.67
S12 0.00 0.00 0.00 0.00 6.22 722.30 10.83
S13 0.00 0.00 0.00 0.00 7.77 679.12 11.78
S14 0.00 0.15 0.00 0.00 298.17 * 40.33
S15 0.00 0.15 0.00 0.00 299.08 * 40.03
S16 0.00 0.17 0.00 0.00 143.01 * 31.61
S17 0.00 0.00 0.00 0.00 140.18 | 311.53 8.97
S18 0.04 0.45 0.07 0.08 * * *
S19 0.00 0.15 0.00 0.00 763.20 * 19.36
S20 0.02 0.00 0.00 0.00 * 472181 | 3522
Average 0.50 3.33 0.02 1.05 4,600.43 | 7,965.1 | 1,686.38

Table 2. Results for the LSMTZ, LSMCF and LSDFJ models — gap, solution quality and cpu time.

If we consider the convergence of the solution
process used to solve the models instances, the
LSMTZ model is better. The Figure 1 shows the
solution values for the S3 instance obtained halting
the strategies applied to solve it after 10, 20, 30,
40, 50 and 60 minutes of cpu time. The vertical
axis shows the solution value, and the horizontal
axis shows the cpu time. The LSMTZ solution, for
example, provided the optimal solution in 40
minutes but the associated gap is still 4.82%. The
LSMCF solution values are far from the optimal
value and the gap is still 17.58% after 1 hour. The
LSDFJ solution values are close to the optimal
value. However, it is important to remember that
these solutions are not necessarily feasible or
provided a dual bound. For example, when the run

was interrupted after 30 minutes, the current
relaxation was not solved to optimality. A guaranty
of feasibility can obtained at the end of the
Strategy 2, when no more subsequences
elimination constraints are violated.

To analyze the effect of the changeover costs on
the solution process of the three models, it is
shown in Table 3 the solution values in terms of
the changeover costs (columns 2 to 4) and the
inventory costs (columns 5 to 7). There are
backorder costs only for the instances S6-S10. As
they are very similar to each other they were not
presented in the table. Because of the high
changeover costs in the instances S6 to S10 there
are backorder costs, even in the optimal solutions.
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Figure 1. Convergence of the solution strategies for the S3 instance.
Instance Changeover costs Inventory costs
LSMTZ LSMCF LSDFJ LSMTZ LSMCF LSDFJ

S1 45,937.00 | 51,291.00 | 45,937.00 | 7,077.02 | 5,280.11 7,077.02
S2 50,367.00 | 52,938.00 | 50,367.00 | 6,785.87 | 6,117.00 | 6,785.87
S3 50,366.99 | 55,525.00 | 50,367.00 | 13,571.75 | 10,629.94 | 13,571.70
S4 17,646.02 | 18,881.69 | 17,646.00 | 5,502.53 | 5,145.29 | 5,502.53
S5 18,661.02 | 20,346.03 | 18,515.70 | 9,951.10 | 8,855.77 | 10,018.80
S6 45,937.00 | 45,937.00 | 45,937.00 | 7,090.70 | 7,090.70 | 7,090.70
S7 52,801.00 | 52,938.00 | 52,801.00 | 5,558.22 | 5,612.98 | 5,558.22
S8 45,937.00 | 45,937.00 | 45,937.00 | 14,181.41 | 14,181.41 | 14,181.40
S9 20,549.69 | 20,346.03 | 20,549.70 | 10,107.35 | 10,628.65 | 10,107.40
S10 20,300.36 | 20,595.36 | 20,300.30 | 5,355.98 | 5,228.34 | 5,355.98
S11 0.03 0.02 0.03 1,851.25 | 1,851.25 | 1,851.25
S12 0.03 0.02 0.03 1,851.25 | 1,851.25 | 1,851.25
S13 0.02 0.02 0.03 3,702.49 | 3,702.49 | 3,702.49
S14 0.03 0.03 0.03 1,319.23 | 1,319.23 | 1,319.23
S15 0.03 0.03 0.03 1,319.23 | 1,319.23 | 1,319.23
S16 0.03 0.03 0.03 2,638.47 | 2,638.47 | 2,638.46
S17 25.10 25.10 25.10 1,851.25 | 1,851.25 | 1,851.25
S19 30.78 30.78 30.78 1,319.33 | 1,319.33 | 1,319.33
S20 28.38 28.38 28.38 1,509.03 | 1,509.03 | 1,509.03

Table 3. Solution value in terms of changeover and inventory costs.

The decrease in changeover times and absence of
backorder costs in the optimal solution shows that
there is capacity available to attend the demand.
Moreover, from the results compiled in tables 2 and
3, we note that when changeover costs are smaller
(instances S11 to S20) the strategies used to solve
the models instances are more efficient and the
computational times are significantly reduced.

5. Conclusions

In this paper we studied three formulations for the
single stage, single machine lot scheduling
problem in the context of soft drink production. The
models differ by the set of constraints used to
eliminate disconnected subsequences. The
models LSMTZ and LSDFJ are from the literature
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and are based on the classical subtour elimination
constraints used in the ATSP models. The LSMCF
model is a new contribution and uses the multi-
commodity flow constraints to model the lots
sequence. The LSMCF model has a higher
number of constraints to eliminate subtours than
the LSMTZ model, but both have a polynomial
number of constraints while the LSDFJ model has
an exponential number of constraints.

The computational results obtained when the
branch and cut tree of the Cplex was limited to
500 nodes shows that the LSMCF model is better
than the LSMTZ model in terms of solution quality
and worse in terms of cpu time. The difficulty of
the LSMCF model is that the time spent to solve
the associated linear relaxation is 10 times longer
than the time necessary to solve the LSMTZ
linear relaxation.

The results obtained allowing 3 hours of cpu time
to solve the models instances show that the
LSMTZ model provides better solutions than the
LSMCF model. This is explained considering that
with this time limit it is possible to examine a higher
number of nodes in the branch and cut tree of the
LSMTZ instances. The results obtained using the
LSDFJ model are even better. It was possible to
prove optimality to all but one of the 20 instances
tested when solving the LSDFJ model instances by
the cutting plane method. A disadvantage of this
strategy is that there is guarantee of feasibility only
at the end of the procedure. Considering these
results, the LSMTZ model can be considered the
best one. It provided competitive solutions in a
reasonable computational time. For scenarios in
which the changeover costs are small the
strategies used to solve the three models
instances are efficient and the computational times
are significantly reduced when compared to
scenarios with high changeover costs.
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