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ABSTRACT

This paper treats the estimation of the state of a nonlinear system with unknown input. The nonlinear system is
described by a multimodel with unknown function of activation but depending only on the state. The method of design
of the multiobserver is described by using the second method of Lyapunov and their candidate functions. The
sufficient obtained stability conditions are expressed in terms of Linear Matrix Inequalities (LMI) and are obtained first
using the Lyapunov quadratic functions and secondly by using Lyapunov polyquadratic functions. This latter technique
seems to be less conservative and less constraining than the first. lllustrative examples are presented in this paper.

Keywords: Discrete multimodel; multiobserver with unknown inputs; non measurable variables of decision; quadratic
stabilization; polyquadratic stabilization; unknown input estimation; Linear Matrix Inequalities (LMI).

RESUMEN

Este articulo trata la estimacion de estado de un sistema no lineal con una entrada desconocida.

El sistema no lineal se describe por un multi-modelo con una funcién desconocida de activacion, pero dependiendo
sélo en su estado. El método de disefio del multi-observador se detalla mediante el segundo método de Lyapunov y
sus funciones candidatos. Las condiciones de estabilidad obtenidos se expresan en términos de desigualdades
matriciales lineales (LMI) y se obtienen de la utilizacion de las funciones cuadraticas de Lyapunov en un primer
estudio y de las funciones poli cuadraticas de Lyapunov en un segundo estudio que aparece menos conservador y
menos restrictivo que el primero. Multiples ejemplos ilustrativos se presentan en este documento.

1. Introduction

A system is often controlled simultaneously by
known and unknown inputs. The measurements
taken at output of the system do not give complete
information about the internal states, because a part
of these states is not directly measurable. Moreover,
not for purely technological reasons, but also for
cost reasons, the number of sensors is limited.

So the idea, for several years, has been the
replacement of the material sensors by software or
state observers, which make possible the rebuild
of internal information (states, unknown inputs,
unknown parameters) using, only, the known
inputs and the measured outputs [18,19,20,21].

The need of internal information can be used for:
identification, command by feedback control,
monitoring and diagnosis of the system. The

problem of the design of observers is in the heart
of the general control problem [15,16].

Among the solutions brought to the problem of the
state and output estimation of in the presence of
unknown inputs, two approaches of developing
multiobserver emerged. The first one supposes an
a priori knowledge of information about these not
measurable inputs; in particular, the filter of
Kalman who allows to rebuild the state of the
system in the presence of measurement noises
which are defined like unknown inputs, by using a
priori statistical knowledge on these noises. The
second approach proceeds either by estimation of
the unknown inputs or by their complete
elimination from the equations of the system [1, 2,
3, 5, 8, 23, 24, 28]. The observers with unknown
inputs have attracted the attention of many
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researchers like Abdelkader Akhenak [1, 2] who
used unknown input observers to detect and
isolate sensor faults in a turbofan engine.

The crucial problem in the synthesis of the
observers with unknown inputs is the
convergence of the estimation error towards zero.
Several works used the second method of
Lyapunov and their quadratic functions for the
stabilization of the estimation error in the case of
linear systems [4, 6, 7, 9, 10, and 11] and in the
case of nonlinear systems.

However, this method generates very conservative
conditions of stability of the observer in particular
for certain classes of nonlinear systems such as
the hybrid dynamic systems [27], the saturated
systems and linear piecewise systems, where
there is no information about space state partition’s
[25]. Whereas, the use of the non quadratic
Lyapunov functions like the polyquadratic
functions and the continuous piecewise functions,
allows the reduction of the conservatism of the
quadratic method and results are often less
pessimistic for the stabilization and the control of
the systems [9].

For this reason, it is interesting to use the
polyquadratic  Lyapunov  functions for the
stabilization of the error estimation in the case of a
nonlinear multiobserver with unknown inputs which
is used for the diagnosis and the supervision of a
nonlinear systems described by a multimodels [1].

This paper is divided into five parts:

After the introduction, the second part presents the
multimodel approach and describes the conditions
for stabilizing a nonlinear system described using
this approach.

The third part explains how to build a
multiobservers and ensure its convergence.

The fourth part deals with the assessment and
determination of the unknown input of the system.

Three examples are described in this paper to
illustrate the power of the proposed method.

Notation: Throughout the study,
useful notations are used:

the following

(X)T = the transpose of the matrix X

(Y)'1 = the inverse of the matrix Y

(Z) = the pseudo inverse of the matrix Z
I= the nx n identity matrix

[A (*)T] = B-(")

B C

2. Multimodel Approach

The multimodel approach makes possible the
modeling of nonlinear system behavior by using
several local linear models. Each local model
contributes to this total representation according to
its weight function pi(¢(k)) with values in the
interval [0, 1]. The multimodel structure is
described as follows [1]:

M
x(k+1)= 3 p; (g‘(k))(AI.x(k) +Bu(k)+ RI.U(k))
i=1

y(k) = Cx(k)+ Fu(k) (1)

with:

M
2 p (6K =1

0<p; (§(k))<1

Vie{l,...M} 2)

Where x(k) Rn is the state vector, u(k) Rm is the
vector of the known inputs, Rq is the vector of
unknown inputs and y(k) Rp represents the vector
of measurable outputs.

For the ith local model, Aie R™ is the state
matrix, Bie R™ is the matrix of input, Rie R™is
the matrix of influence of the unknown inputs on
the state x(k), Fe R is the matrix of influence of
the unknown inputs on the output y(k) with
rank(F)=q and CeR’" is the matrix of output.
Finally, é(k) represents the vector of decision
depending on the input and/or the measurable
state variables. At every moment, p(¢(k)) indicates
the degree of activation of each local model in the
global model. Choosing the number M of local
models of this multimodel can be intuitively
achieved with taking into account the number of
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functioning modes observed [10]. However,
determining the matrices A, B;, R; and D;needs the
use of adapted estimation parametric techniques
[10] or techniques of linearization [12,13].

The analysis and the synthesis of such systems
can be made by adopting some tools of the linear
field. One finds for example in [26 and 27] which is
inspired directly from the use of linear systems
stability tools for the analysis of the stability and
stabilization of nonlinear systems. In [17, 18 and
20], the author deals with the problem of the
estimation of state of nonlinear systems described
by multimodels, and made it possible by designing
observers, for the generation of defects. However,
in all this work, the authors suppose that the
variable of decision (k) is measurable depending
on u(k) or/and y(k) [1, 2 and 3]. In the problem of
the diagnosis, this assumption obliges to design
banks of observers containing multimodel in which
the functions of activation depends on the input
u(k), for the detection and the localization of the
defected sensors, or on the output y(k) for the
detection and the localization of the defects
actuators. This strategy requires the development
of two different multimodels, representing the
same system. To overcome this problem, it is
interesting to consider the case where the
functions of activation depend on the state of the
system. Among rare public works in this context,
we can cite for example [25] which, under the
assumption of Lipschitzian activation functions
Mi((k)), propose an observer of the Luenberger
type. The stability conditions of this last
assumption are formulated in the form of Linear
Matrix inequalities (LMI) easy to solve.

3. Design of multiobserver with unknown
inputs

3.1 General structure of the multiobserver

In this section, we consider a nonlinear discrete time
system described by a multimodel using activation
functions depending on the state of the system:

M _
x(k +1) = ;1 I (x(k))(AI.x(k) +Bju(k) + Rl.u(k))

i
y(k)=Cx(k)+ Fu(k) (3)

It is supposed that the number of unknown entries
is lower than the number of measured outputs. The
multimodel with non-measurable decision variables
(3) can be written as follows:

M _
x(k+1)= I_§1 1} (x(k))(AI.x(k)+ Bu(k)+ Riu(k)+w(k))
y(k) = Cx(k)+ Fu(k) )

Where:

M - _
W) = 3. (k0x(00) = (kD) (Apx(k) + Byu(k) + Ryik)
(5)

The multimodels (3) and (4) are equivalent. For
the design of the observer, we will use the second
structure.

The multiobserver is taken in the form:

M
z(k +1) = i§1 i (X(K))(N; z(k) + Qiu(k) + L;y (K))
x(k) = z(k)— Ey(k) (6)

Where N; e R™, Q;e R, Lie R and E are the
gain matrices of the jth local observer with
unknown input.

The variable z(k) is an intermediate variable
allowing to deduce the value estimated from the
state x(k).

Obviously, the observer uses only the known
variables u(k) and y(k), u (k) being not measured.

The whole of these matrices must be given with
a high degree of accuracy from a numerical point
of view in order to guarantee the convergence of
the state estimated by the observer towards the
real state. For that, let us define the state
estimation error:

e(k) = x(k) - x(k) (7)

Starting from this definition and by using the
expression of x(k) given by the equation (6), the

expression of the error becomes:
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e(k)=Px(k)—z(k)+ EFu(k) (8)
with:
P=I+EC (9)

Then, we can express the temporal evolution of
the state error in order to analyze its convergence
towards zero.

Thus, at time (k + 1), the state estimation error is
expressed as follows:

ek +1)=Px(k +1)—z(k +1)+ EFu(k +1)
PA;x(k)+ PBju(k) + PR;u(k) +
Pw(k)—N;z(k)-Qju(k)—L;y(k)

+EFT(k +1)

M _
=3 u,-(X(k))[
i=1

(10)
After recognizing the terms at the right side of
equation (10), and by using the definitions of y(k)
and z(k), (10) becomes:

Nje(k)+ (PA,- -N; - K,-c)x(k)

M
e(k+1)= '§1pi(x(k)) +(PB; - )u(k)+Pw(k)

= HPR; —K;F)i(k)

+EFt(k +1)
(11)

with :
K; = NE +L, (12)
If the following conditions are satisfied:
EF =0 (13a)
Qi = PB;
(13c)

then, the dynamic of the state estimation error
becomes:

M
ek +1)= I_§1 pi (x(K)(Nje(k) + Pw(k)) (14)

It is clear that the above dynamic is disturbed by
w(k). To synthesize the matrix of the multiobserver
(6), two approaches are proposed in the following
subsections.

3.2 Global convergence of the multiobserver

For the stabilization of the dynamic error (14),
we propose two approaches which are based on
two types of quadratic and polyquadratic
Lyapunov functions.

Hypothesis: It is supposed that term w(k) defined
in (5) satisfied the following conditions:

Iw (k)< 7 fle (o) (15)

Where 7 is a positive constant of Lipschitz.

3.2.1 Global convergence of the multiobserver by
the quadratic approach

In this part, the stabilization of the dynamic error
(14) is based on a quadratic Lyapunov function of
the form:

V(e(k)) = e(k)T Xe(k), X=X">0 (16)
Proposition 1: The state estimation error between
the multimodel (4) and the unknown input
multiobserver (6) converges globally asymptotically
towards zero if there exists matrices X = X' >0, H
and W; such that the following conditions are hold
vie{l,..M}:
A\ T
X ( >0 (17a)
(XA +HCA -W C+yX+yHC) X

HF =0 (17b)
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(X +HC)R, =W,F (17¢)

Multiobserver (6) is then completely defined by

E=X"H (18a)
K =X'w, (18b)
P=I+EC (18c)
N, = PA -K,C (18d)
L =K, -NE (18e)
Q =PB, (18f)

Proof. The variation of the quadratic function (16)
on all the trajectory of the multimodel (4) is:

AV (e(k)) = l(V(e(k+1))—V(e(k))) (19)
T

By using the equations (14) and (16), AV (e(k))
can be written as follows:

.l f«‘ JONT +wT (KPT)X(Nje(k)
Te +Pw (k))— e (k)Xe(k)
(20)

According to the condition of Lipchitz (15),
AV (e(k)) becomes:

T T T .
AV(e(k)) = Z“( X(K)) el (KNI + e (k)PT)X(Nje(k)
= +yPe(k)) - e (k)Xe(k)

M
Z (x(k) (k) (X; +yP YX(Nj + yP) e(k)
i=1 -

(21)

~||_\

Since the functions of activation are verifying the

conditions of convexity (2), the variation of the

quadratic function (16) is negative if:

(N, +yP)' X(N; + yP)- X <0, Vie{...,M}
(22)

The use of equation (22), the hypothesis X=X">0
and the Schur complement leads to:

o\ T
X C) >0, Vie{l..,M} (23)
X(N;+yP) X
Using equations (9) and (13b), the above

inequality (23) becomes:

X 7
(XAj + XECA; — XKiC + yX + yXEC) X

(24)

However, expression (24) is a bilinear matrix
inequality BMI with synthesis variables X, E and
Ki. In order to convert these conditions into an
LMI formulation, we consider the following
changes of variables:

H = XE (25)

W, = XK; (26)
Using the new variables of equations (25) and
(26), inequality (24) becomes:

X (*)
(XA +HCA -W,C+yX+yHC) X
(27)

The two equality constraints (17b) and (13c) are
obtained by pre-multiplying the last two constraints
(13a) and (13d) by X =X >0 with the change of
variable (25) and (26):

XEF=0  _ [HF=0 _ [HF=0
XPR; = XK.F | X(I+EC)R, =W,F ~ |(X +HC)R; = W;F

Therefore classical numerical tools may be used to
solve LMI problem (17a) subject to linear equality
constraints (17b) and (17c).

After having solved this problem, the different gain
matrices N, L;, Q;, and E defining the multiobserver
(6) can be deduced from the knowledge of X, H
and W, as given in equations (18). This completes
the proof.

Vol. 12, June 2014




Estimation of the State and the Unknown Inputs of a Multimodel with non Measurable Decision Variables, E. Maherzi et al. / 422-434

3.2.2 Determination techniques of the multiobserver
gains

To determine gain matrices of the multiobserver
(6) by quadratic approach, we propose to follow an
algorithm with the following steps below:

Step 1: determination of the matrices X, H and W;

Vie{l, ..., M.

We solve the Linear Matrix Inequalities (17a) in
synthesis variables X, H and W; subject to linear
equality constraints (17b) and (17c). This problem
can be solved by LMITOOL of Scilab.

Step 2: determination of the gains matrices N,, L;,
Q,and E Vie{l,..M}.

After the knowledge of the matrices X, H, and W,
we determine the other gains matrices of
equations (18) defining the multiobserver (4).

Remark 1: although the quadratic approach
makes synthesis possible by ensuring the
convergence of multiobserver (6) towards the
multimodel (4), it constitutes in certain cases a
source of conservatism due to the search of a
uniqgue matrix X which stabilizes a significant
number of local observers. Also, researchers [25]
define three cases where the quadratic approach
shows conservative:

- Case of the saturated systems,
- Case of the piecewise linear systems,

- Case of the multimodels with high number of local
models

These last points become the principal
objectives of the stability study of by using the
polyquadratic approach.

3.2.2.1 Global convergence of the multiobserver by
the polyquadratic approach

In this part, the stabilization of the dynamic error
(11) is based on a polyquadratic Lyapunov function
of the form:

M
V (e(k)) = e(k)| T, (x(k)) Xje(k), X; = X] >0
(28)

Where (X;, i = 1,.,M) are symmetric positive
definite matrices.

That is to say the following system:

M
e(k+1)= i§1 pi(x(k))(Y e(k)) (29)

Theorem 1 [7]: System (29) is polyquadratically
stable if and only if there exist symmetric positive
definite matrices S;, S; and matrices G; of
appropriate dimensions such that:

T o\ T
[G,- +G] =S, () (30)

v/G, S;

]> o, (i,j)={1,...,M}
The goal of this second approach is to mitigate the
conservatism of the quadratic approach by
formulating new less constraining conditions of
stabilization of the dynamic error (14) by using
theorem 1:

Proposition 2: The state estimation error between
the multimodel (4) and the unknown input
multiobserver (6) converges globally asymptotically
towards zero if there exist symmetric positive
definite matrices S; and matrices M, Z; and G; of
appropriate dimensions such that the following

conditions hold V(i, j) e {l,... M} :

G +G' -S T
I + 1 1 ( ) > 0 (31)

(ATG; + ATCT(M, ~71)~7G,~CZ) S,
MTF =0 (32a)
(6" +MC|R =Z]F (32b)

Multiobserver (6) is then completely defined by

E=MG) (33a)
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P=I+EC (33b)
Gy =PB, (33c)
K =ZG") (33d)
N, = PA —K.C (33e)
L, =K, -NE (33f)

Proof. According to the hypothesis (15) the
estimation error (14) can be written as follows:

M
e(k+1)= i§1 M (x(K)((N; +yP)e(k)) (34)
By substituting matrix ¥, by the matrix (Ni +yP)

in inequality (30) of theorem 1, one obtains the
following condition, (i, j) ={1,...,M} :

G+G - ()
- >0 (35)

Using equations (9) and (13b), the inequality (35)
becomes:

G+ GiT =S )" 0
>
(AiTGi+AiTCT(ETGi—7/)—7/Gi—CTKiTGi) S;
(36)
Z = KiTGi (37)
M, =E'G, (38)

Using the new variables of equations (36) and
(37), inequality (35) becomes:

G+ GiT =S )7

(ATG; +ATCT(M, —y1)-yG,-C"Z)) S,

>0 (39)

The two equality constraints (32a) and (32b) are
obtained by pre-multiplying the last two constraints

(13a) and (13d) by G with the change of variable
(37) and (38):

GTEF =0 MTF =0

{G,-TPR,- =G/ KF {G,-T(H EC)R; = G/'K;F
MTF =0
{(G,-T +MJC)R; =2F

Therefore classical numerical tools may be used to
solve LMI problem (31) subject to linear equality
constraints (32a) and (32b). After having solved
this problem, the different gain matrices N, L;, Q;
and E defining the multiobserver (2) can be
deduced from the knowledge of S;, G, M; and Z; as
given in equations (33).

This completes the proof of proposition 2.

Remark 2: It's obvious that the conditions of
proposition 2 are less conservative than the
conditions depending on the use of a single
Lyapunov function: the quadratic stabilization
conditions are considered like a particular case of
(31) by composing G; = §; = X .

3.2.2.2 Determination of the multiobserver gains

To determine the gain matrices of multiobserver
(6) using the polyquadratic approach, we propose
the algorithm:

Step 1: determination of the matrices G;, S;, Z; and
M, vie{l,..M}.

We solve the Linear Matrix Inequalities (32a) in
order to synthesis variables S;, S;, Z; and M;subject
to linear equality constraints (32b) and (32c).

This problem can be solved by LMITOOL of
Matlab.

Step 2: determination of the gain matrices N,, L;
Q,and E, Vie{l,...M}.

After the knowledge of the matrices S;, Z; and M,
we determine the other gains matrices of
equations (33) defining the multiobserver (6).

4. Estimation of the unknown input

In the system (4), the unknown input appears with
the matrix of influence F:
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v k)R
D(k) = E#ﬁ'(f( )R;

F

(40)

To estimate the unknown input, it is necessary that
the matrix ®(k) is of full column rank and its

pseudo inverse @ (k) exists:

@ (k)= (ch(k)cb(k))’1 o(k)' (41)

The unknown input can then be deduced:

_ M i
002 0 (h) x(k+1>—i§1u,-(§(k»(A,-x(k)+B,u(k))]

y(k)-Cx(k)
(42)

We choose @(k) of full column rank, to reverse

matrix(dJT(k)(D(k)) :

Example 1: Reconstruction of state and estimation
of unknown inputs by quadratic approach

Let us consider the following discrete multimodel:

x(k+1) = é ui(cf(k))(Aix(k)Jr Bju(k)+ RiU(k))

y(k) =Cx(k)+ Fu(k)
(43)
In this example, the variable of decision §(k) is not

measurable and depends on to the estimated
vector of states x(k) .

The numerical values of the matrices A;, B, R;, C
and F are as follows:

03 04 01 06 1
= A, = . R, = ,
A (-0.05 o.2j 2 [0.34 o.osj 2 [o.zs)

B =G] B, =(0?5]0=(0 1),R =[075), F=1.

The activation functions have the following form:

. 1—tanh(x(k))

(X)) = ——— == (44)
1o (X(K)) = 1= (X (K))

The multiobserver able to estimate the multimodel
(43) state is as follows:

2
2+ 1)= £ U (Npx(k)+ Q) + Liy (k)

x(k) = z_(k) —Ey(k) (45)

The stabilization conditions given by proposition 1
prove the stability of the multiobserver (45), via the
existence of quadratic function (16).

By applying the method of resolution presented in
paragraph  (3.2.1.1), we showed global
convergence of the multiobserver (45).

The resolution of the conditions of proposition 1
leads to the following result:

£_[0 N - 0.30 -0.60 N, - ~0.10 -0.40)
0 -0.05 -0.30 0.34 -0.20
1 1 2 2
b _(0.50} L _(8.78)’ Q= (1] < _(0.50]'

Figures 1 and 2 represents respectively the
evolution of the inputs known u (k) and unknown
u(k).

As for the figures 2, 3 and 5, they shows the state
estimation errors (xi(k)-x; (k)), i={1, 2}) as well as
the unknown input u (k) of the multimodel and
their estimation u (k) .

It is noted that the estimation quality is
satisfactory except in the vicinity of the origin
time; that is due to the choice of initial values of
the multiobserver (45).
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Figure1. Evolution of known input U .
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. . . — 0'30 1‘0 2‘0 3‘0 40 5‘0 éﬂ 70
Figure 2. Evolution of unknown input U.
I Figure 5. Evolution of U and U.
Example 2: Conservatism of the quadratic
or approach
D 1 Let us consider the following discrete multimodel,
-0.041 1 2 —
x(k+1) = I_z1 Wi (E(K)) (A x(K) + Bu(k)+ R;a(k))
006 . =
y(k) = Cx(k)+ Fu(k) (46)
In this example, the variable of decision ¢(k) is not
01} i = o o = = = measurable but depending on the estimated vector
of states x(k). The numerical values of the
Figure 3. Evolution of x; — %;. matrices A, B, R;, C and F are as follows:
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0.94 0.23 0.1 -0.81 0.1 O
A1: 0.3 065 0.3 ,A2: 0 1 0

-0.3 0.05 04 -01 0 0.91

05 1 1
,C= ,
05 10

2 2 5 1 1
By=|1| By = o.5,F:[_1], Ry=]05|,Ry=|0.25|.
0 0 0 0

The activation functions have the following form:

p(xp0) = 2 .

1 (X(K)) =1 gy (x(K)

The multiobserver able to estimate the multimodel
(46) state is as follows:

2
z(k+1) = i§1 Wi ()?(k))(Nix(k)+ Qu(k) +L; y(k))

x(k) = z(k) - Ey (k) (48)

The conditions of quadratic stabilization of
proposition 1 fails to prove the stabilization of the
multiobserver (48), which shows that no quadratic
function having the form (16) can exist.

The quadratic approach becomes more and more
conservative in the following cases:

- When the number of local models is very
important, this is due to the difficulty to find one
matrix P satisfying all (17) inequalities and
equalities.

- When the multimodel have local saturated models
(the eigen values of matrix A; are closer to 1) like the
local model number 2 (eigen values with A, = {0.91,
-0.81,1}).

Example 3: Reconstruction of state and
estimation of unknown inputs by polyquadratic
approach

Let us consider the discrete multimodel of example
2; the conditions of stabilization of proposition 2
prove the stability of the multiobserver (48), which
proves the existence of polyquadratic function of the
form (29).

By applying the method described at paragraph
(3.2.2.1), we ensure the global convergence of the
multiobserver (48).

The resolution of the conditions of proposition 2
leads to the following result:

5.32 7.53 4.41 9.39
Ny=|-28.24 -46.58 -28.21|, Q =|-48.78]|,

43.94 7356 44.67 75.72
-437 027 -0.06 061 3.08
N2(11.52 -25.14 13.21}5[4.14 20.74],
~16.06 4291 22.72 6.31 3155
461  24.65 7.54 017 -3.81
L, =|-28.08 —140.30 | Q, =|-36.83 | L{=| 2.68 37.84 |,
4427 219.83 56.79 ~4.76 -61.70

Figures 6 and 7 represents respectively the
evolution of the inputs known u(k) and unknown
u(k).

Figures 8, 9, 10 and 11 shows the state estimation
errors  (x(k)-x;(k)) =1, 2,3}) as well as the
unknown input u (k) of the multimodel and their
estimation u (k) .

It is noted that the estimation quality is satisfactory
except in the vicinity of the time origin; that is due
to the choice of the multiobserver (48) initial
values.

Therefore, we observe good performances of the
multiobserver estimation.

o input

-

[

Figure 6. Evolution of Known input U (Example 3).
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Figure 7. Evolution of unknown input U.
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Figure 11. Evolution of U and U.
5. Conclusions and prospects

In this paper, we presented two stabilization
approaches of a multiobserver with unknown
inputs for a nonlinear system described by a
discrete multimodel with non measurable decision
variables. The first approach is based on the use
of the Lyapunov quadratic functions, the conditions
obtained from this approach for the convergence of
the multi-observer are often easy to obtain but they
appear pessimistic.

The second approach suggested for the
stabilization of the observation error, is based on
the use of the Lyapunov polyquadratic functions.
The conditions obtained of the multiobserver

432

Vol. 12, June 2014




Estimation of the State and the Unknown Inputs of a Multimodel with non Measurable Decision Variables, E. Maherzi et al. / 422-434

convergence are given in the form of Bilinear
Matrices Inequalities BMI that we can linearize by
the technique of change of variables and easily
solve them with the traditional numerical tools.
This second approach appears less conservative
than the first.

Two illustrative examples are considered to
prove the efficiency and the effectiveness of the
proposed approaches. The first example showed
that the quadratic approach is interesting from
point of view of the practical implementation for
the supervision and the diagnosis of the
industrial processes. The second example puts
emphases on the important contribution of the
polyquadratic approach compared to the
quadratic approach for the states estimation and
unknown inputs of a nonlinear system
represented by a discrete multimodel.

Future work will relate to the poles placement of the
multiobserver for unknown inputs, with the application
to the diagnosis of the nonlinear systems.

References

[11 A. Akhenak et al., “State estimation of uncertain
multiple model with unknown inputs”, in 43rd IEEE
Conference on Decision and Control, Atlantic, Paradise
Island, Bahamas, vol. 4, 2004, pp. 3563-3568.

[2] A. Akhenak et al., “Unknown input observer based-
approach, application to secure communications”, First
Conference on Analysis and control of Chaotic Systems,
volume 1, part 1, 2006.

[3] A. Akhenak et al.,, “State estimation via Multiple
observer with unknown input. Application to the three tank
system”, 5th IFAC Symposium on Fault Detection
Supervision and Safety for Technical Processes, Safe
process, pp. 245-251, Washington, USA, June 9-11 2003.

[4] A. Jadbabaie. “A reduction in conservatism in stability
and L2 gain analysis of Takagi-Sugeno fuzzy systems
via linear matrix inequalities”. In Proc. Of the IFAC,
China, 1999. pp. 285-289.

[5] D. Marx and B. Dept. “Unknown input observers for
switched nonlinear discrete time descriptor systems”,
Automatica Control, IEEE Transactions on publication
data. February 2008.

[6] E. Maherzi et al., “Polyquadratic stabilization of a
multi inputs multimodel with quantified commands”.
International Journal of mathematics and computer in
simulation. Issue 4, Vol. 1, pp. 344-349, 2007.

[71 J. Daafouz and J. Bernussou. “Parameter
dependent lyapunov functions for discrete time
systems with time varying parametric uncertainties”.
Systems and Control Letters, 43/5:355 359, August
2001.

[8] J. L. Mata-Machuca et al., “Chaotic Systems
Synchronization Via High Order Observer Design”,
Journal of Applied Research and Technology (JART),
Vol.9, pp 57, 68, 2011

[9] J. Moreno, “Quasi-Unknown input observers for
linear systems”, IEEE Conference on Decision and
Control, pp. 732-737, 2001.

[10] T. A Johansen Et al., “On the interpretation and
identification dynamic Takagi-Sugeno fuzzy models”.
IEEE Trans on Fuzzy Systems. Vol.8.n.3. pp.297-313.

[11] K. Gasso, et al., “Structure identification in multiple
model representation elimination and merging of local
models”, IEEE Conference on Decision and Control,
Vol. 3, pp. 2992-2997, 2001.

[12] K. Tanaka and M. Sugeno. “Stability analysis and
design of fuzzy control systems”. Fuzzy Sets and
Systems, 45(2) :135-156, 1992.

[13] K. Tanaka et al., “Fuzzy regulators and fuzzy
observers: relaxed stability conditions and LMI-based
design”, IEEE Trans. Fuzzy Systems, Vol. 6 (1), pp.
250-256, 1998.

[14] L. Vandenberghe and S. Boyd, “Semi definite
programming”, SIAM Review 38 (1) (1996) 49-95.

[18] M. Chadli et al.,, “State and unknown input
estimation for discrete time multiple mode”, Journal of
the Franklin Institute 346 (2009) 593- 610.

[16] M. Chadli, and A. Elahajjaji, “Observer-based
robust fuzzy control of nonlinear systems with
parametric uncertainties — comment on”, Fuzzy Sets
and Systems Journal 157 (9) (2006) 1276-1281.

[17] M. Darouach et al., “Full-order observers for linear
systems with unknown inputs”, IEEE Transactions on
Automatic Control 39 (3) (1994) 606-609.

Journal of Applied Research and Technology




Estimation of the State and the Unknown Inputs of a Multimodel with non Measurable Decision Variables, E. Maherzi et al. / 422-434

[18] P. Amann et al., “Identification of fuzzy relational
models for fault detection”, Control Engineering
Practice, Vol. 9 (5), pp.555-562, 2001.

[19] P. Kudva et al., “Observers for linear systems with
unknown inputs”, |EEE Trans. on Automatic Control
Vol. 25 (1), pp. 113-115, 1980.

[20] R. Dixon, “Observer-based FDIA, application to an
electromechanical  positioning  system”,  Control
Engineering Practice, Vol. 12, pp. 1113-1125, 2004.

[21] R. J. Patton et al., “Fuzzy observer for nonlinear
dynamic systems fault diagnosis”, IEEE Conference on
Decision and Control, Vol. 1, pp.84-89, 1998.

[22] R. Acevedo-Gémez, et al., ’"State Variables
Monitoring Using a Class Of Nonlinear Observer Based
Estimaot, Applied To Continuous Bio-System”, Journal
of Applied Research and Technology (JART), Vol 6 n3,
pp 147-158.

[23] S. K. Dassanake et al., “Using unknown input
observers to detect and isolate sensor faults in a turbofan
engine”, Digital Avionics Systems Conferences, Vol. 7,
pp- 6E51-6E57, 2000.

[24] S.K. Chang, et al.,, “Design of general structured
observers for linear systems with unknown inputs”,
Journal of the Franklin Institute 334 (2) (1997) 1025-1030.

[25] Sami Zemmel et al., “Synthesis of a Robust
Multiobserver for the Estimation of Unknown Inputs
Using the Piecewise Quadratic Functions”. American
Journal of Applied Sciences 7 (9): 1264-1276, 2010ISSN
1546-9239.

[26] T. A. Johansen and R. Babuska, “Multiobjective
Identification of Takagi-Sugeno Fuzzy Models”, |EEE
Trans. on Fuzzy Systems, Vol. 11 (6), pp. 847-860, 2003.

[27] T. A. Johansen. “Computation of Lyapunov function
for smooth nonlinear systems using convex
optimization”. Automatica, 2000. no. 36, pp. 1617-1626.

[28] T. Floquet, and J. Barbot, “A sliding mode approach
of unknown input observers for linear systems”, in: IEEE
Conference on Decision and Control, vol. 2, 2004,
pp.1724-1729.

Vol. 12, June 2014




