Generalized SSPRT for Fault Identification and Estimation of Linear
Dynamic Systems Based on Multiple Model Algorithm

Ji Zhang1, Yu Liu** and Xuguang Li®

! Department of Computer, North China Electric Power University
Baoding, Hebei 071003, China

Department of Electrical Engineering, University of New Orleans,
New Orleans, LA 70148, USA
Iayu2@uno.edu

Clinical Laboratory, 323 Hospital
Xi’an, Shaanxi 710054, China

ABSTRACT

The generalized Shiryayev sequential probability ratio test (SSPRT) is applied to linear dynamic systems for single
fault isolation and estimation. The algorithm turns out to be the multiple model (MM) algorithm considering all the
possible model trajectories. In real application, this algorithm must be approximated due to its increasing computation
complexity and the unknown parameters of the fault severeness. The Gaussian mixture reduction is employed to
address the problem of computation complexity. The unknown parameters are estimated in real time by model
augmentation based on maximum likelihood estimation (MLE) or expectation. Hence, the system state estimation,
fault identification and estimation can be fulfilled simultaneously by a multiple model algorithm incorporating these two
techniques. The performance of the proposed algorithm is demonstrated by Monte Carlo simulation. Although our
algorithm is developed under the assumption of single fault, it can be generalized to deal with the case of (infrequent)
sequential multiple faults. The case of simultaneous faults is more complicated and will be considered in future work.

Keywords: Generalized SSPRT, state estimation, fault isolation and estimation, multiple model, Gaussian mixture
reduction, model augmentation

1. Introduction

Fault diagnosis has been extensively studied [1- independent and identically distributed (i.i.d.)
10]. It can be addressed by hardware redundancy  observations, optimal algorithms exist, e.g.,
or analytical redundancy [4]. With the increasing  cumulatve sum (CUSUM) test [11], which

computational power and decreasing cost of the (asymptotically) minimizes the worst-case expected

digital signal processors and software, the method
of analytical redundancy, which diagnoses the
possible fault by comparing the signals from a real
system with a mathematical model, is prevailing
due to its low cost and high flexibility.

In this work, we study the fault diagnosis problem
of a linear stochastic system subject to a single
sensor/actuator fault. As pointed out in [3], the fault
diagnosis problem consists of the following three
sub-problems:

Fault detection: Is there a fault in the system? The
answer is “yes”, “no” or “unknown”. It is actually a
change detection problem with binary hypotheses.
We want to detect the fault after its occurrence as

quick as possible. For simple hypotheses with

detection delay under some false alarm restrictions
[12, 13]. If the change time is assumed random and
prior information is available, the Shiryayev
sequential probability ratio test (SSPRT) [14] in
Bayesian framework is optimal in terms of a
Bayesian risk. Note that the fault source needs not to
be identified (or isolated) in fault detection.

Fault isolation (or identification): Usually there are
many components in modern systems and merely
knowing there is a fault (by fault detection) in a
system is far from enough for a quick and effective
remedy. Hence, the goal of fault isolation is to
identify the source of a fault as soon as possible.
So, the answer to this problem is a fault type, e.g.,
which component in a system is faulty. This is a
change detection problem with multiple alternative
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hypotheses. Each alternative hypothesis
corresponds to a fault model (unlike fault detection,
all the fault models are included in a single
alterative hypothesis) and we need to isolate which
hypothesis happens after a change. The fault
isolation can be carried out subsequently after the
fault detection (i.e., identifying the source after
declaration of a fault) or individually (i.e., operates
in a stand-along mode without the fault detection).
Sequential algorithms for this problem were
proposed in [6, 9] and it minimizes the worst-case
expected isolation delay under the restriction of
mean time before a false alarm/isolation. The
generalized SSPRT (GSSPRT) in Bayesian
framework was proposed [8] and it is optimal in
terms of a Bayesian risk for fault isolation. To the
authors’ best knowledge, joint optimal solution for
fault detection and isolation is not known.

Fault estimation: Estimate the severeness of a
fault. For example, a sensor/actuator may fail
completely (it does not work at all) or partially
(has degenerated performance). This piece of
information is useful for future decision and
action. If a sensor/actuator fails completely, the
system may have to be stopped until the faulty
component is replaced or fixed. In another hand,
if only minor partial fault occurs, the
sensor/actuator may be kept in use, with some
online compensation [3].

In this work, system state estimation, fault isolation
and estimation are tackled simultaneously. We
start from applying the GSSPRT to a linear
dynamic system and the algorithm turns out to be
a multiple model (MM) algorithm considering all
possible model sequences [15]. Fault diagnosis by
multiple model algorithms is gaining attentions. A
bank of mathematical models is constructed to
model the normal operation mode and the fault
modes. Filters based on these models are running
in parallel, and the system state estimation is
obtained by the outputs from MM, and the fault
isolation can be done by comparing the model
probabilities with the pre-defined thresholds. So,
the fault diagnosis and state estimation can be
done simultaneously, and the performance of the
state estimation is independent to that of fault
diagnosis. The MM is attractive since it uses a
bunch of models rather than a single model to
represent the faulty behaviours of a system [10].
The autonomous multiple model (AMM) [15]

algorithm was the first MM algorithm proposed for
fault diagnosis [16—18]. However the underlying
assumption of AMM about the model trajectory—
the model in effect does not change over time—
does not fit the change detection problem. Then,
the interacting multiple model (IMM) [19] algorithm,
which considers the interaction between models,
was proposed [7,10,20,21] and they outperform
AMM in general. In [7], the IMM was directly
applied to a fault isolation problem, but it was
assumed that the fault models are exactly known.
The hierarchical IMM [22] and IM3L [10] were
proposed to address the fault isolation and
estimation. However, they were tackled in a
sequential manner, i.e., isolation-then-estimation.
Without the information of the fault severeness, the
isolation performance suffers. In this paper, we
propose a multiple model algorithm that solves the
fault isolation and estimation simultaneously.

In practical applications, each sensor/actuator fault
can be total or partial. So, a parameter « €[0, 1]
is introduced for each sensor/actuator to indicate
its fault severeness [7,10]. & =0 means complete

failure while 0 < <1denotes a partial fault. If «
is known after a fault occurrence, the hypothesis
for each sensor/actuator fault becomes a simple
hypothesis and the GSSPRT algorithm for this
case is exactly the same as the MM algorithm
considering all possible model sequences. Hence,
the optimality of GSSPRT and the virtues of MM
algorithms are all preserved. Further, the system
state can be also estimated as a by-product.
However, two difficulties impede its exact
implementation in practice:

a) Its computational complexity is increasing due to
the increasing number of model sequences.

b) a is unknown in general.

The first problem can be solved by pruning and
merging the model sequences so that the total
number of sequences is bounded. A bunch of
algorithms were proposed for this purpose, e.g.,
B-best and GPBn, see [15] and the references
therein. We propose to use the Gaussian mixture
reduction [23, 24] to merge the “similar” model
sequences, since it can be better justified than
GPBn or IMM. Second, the unknown parameter
a can be estimated online by model
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augmentation. We introduce one augmented
model for each sensor/actuator with an (unknown)
fault parameter « , which is updated at every step
by maximum likelihood estimation (MLE) or
expectation—the so-called maximum-likelihood
model augmentation (MMA) [10,20] or expected
model augmentation (EMA) [15,25], respectively.
So, before declaration of a fault, the fault
severeness has been estimated and updated in
real time based on these augmented models.
Further, these augmented models are expected to
be “close” to the truth, and hence further benefit
the overall performance of state estimation and
fault isolation. As shown in the simulation, the EMA
and MMA have their pros and cons to each other.
The MMA has better adaptation of parameter
change and hence has faster isolation and smaller
miss detection rate, while the EMA performs better
in terms of the parameter estimation and correct
isolation rate.

Although our algorithm is developed based on the
assumption of single fault, it can be extended to
deal with infrequent sequential multiple faults
easily provided the interval between two faults is
long enough for isolating the first fault before the
second fault. If a fault has been identified and its
fault severeness estimated, then all the models
can be revised to accommodate this fault and
hence detection for further fault can be carried out.
The case of simultaneous faults is more
complicated and deserves further studies.

This paper is organized as follows. First, the
problem of fault isolation and estimation for linear
dynamic systems is formulated in Sec. 2. The
algorithm based on GSSPRT is derived in Sec. 3.
The multiple model methods based on the
Gaussian mixture reduction and the model
augmentation are presented in Sec. 4. Three
illustrative examples are provided in Sec. 5, and
our algorithms are compared with the IMM method.
Conclusions are made in Sec. 6.

2. Problem Formulation

A linear stochastic system subject to a
sensor/actuator fault can be formulated as the
following first-order Markov jump-linear hybrid
system:

X = Fy1Xpoq + Bi_Up—q + G Wiy (1)
Zk = H,{xk + Uk (2)

where X, and z_ are the system state and the
measurement at time k&, respectively. Each
column of B, is an “actuator” while each row of
H, is a “sensor” in the system [7, 10, 21]. The
superscript j denotes that the matrices dependent
the model m’ in effect. It is assumed that there
are total M fault models {ml,m2,---,mM} and

one normal model m’. The control input u, is
assumed deterministic and known all the time. The
process noise w, and measurement noise Vv, are
Gaussian white noise with zero mean and
covariances (O, and R, , respectively. The model

sequence {mk}is assumed to be a first-order
Markov sequence with the transition probability

m; 2 P{mi|m,_,}

where m,’c denotes the event that m' is in effect at
time k. The system usually starts with the normal
model mg and at each time k it has probability

7,; >0 to transfer to m' (the ith fault model).
Further, it is assumed that all
m',i=1,---,M, are absorbing state
Markov chain, that is

fault models
in the

_{1,f0ri=j¢0
Tt =00, fori#j,j#0

meaning that once a system gets into one of
the fault models, it remains, since we only
consider the case with single fault. The
possibility that a system recovers
automatically from a fault model is ignored
since it rarely happens in practice. So, the
transition probability matrix (TPM) is
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Too To1 To2 Tom
o 1 0 - 0

m=l 00 1 o @)
o 0 0 - 1

The total and partial sensor/actuator faults are
considered, and the fault models proposed in [7,

10] are adopted. Let a,{e[O, 1) denotes the
severeness of the jth sensor/actuator’s fault at

time k. The corresponding “actuator” in B,

or‘sensor” in H, is multiplied by ] due to the

fault.  Clearly a,sz means that the

sensor/actuator fails completely while0 < akj <1

indicates a partial fault. In general, if a fault
happens, a,{ is unknown and time varying. The

problem becomes much more difficult if a,f is fast
changing. For simplicity, only a constant or a
slowly drifting sequence is considered fora,{. If
prior information is available, more sophisticated
dynamic models for a,{ are also optional.

Under these problem settings, we are trying to
achieve the following three goals simultaneously
based on sequentially available measurements

VA ={ZI,Z2,---,Zk}:

(a) State estimation (%, , ) in real time;
(b) Fault identification (i.e., sensor/actuator });

(c) Fault severeness estimation 0?,5 when a fault is
identified.

Once a fault has been isolated and an estimate of
the fault severeness is provided, additional actions
based on these results can be taken to further
inspect the decision and improve the estimation
accuracy. This is problem dependent and there are
many options, e.g., use a different model set
specifically designed for the faulty sensor/actuator
to achieve better state estimation and fault
estimation. Also, the declared fault can be further
tested against the normal model (or other fault
models) to mitigate the possible false alarm (or

false isolation) rate. We do not further examine
these possibilities since they are beyond the scope
of this paper.

3. Generalized Shiryayev Sequential Probability
Ratio Test

First, we only consider the goal (b) and assume
aj is exactly known after a fault occurs. Then an

optimal solution in Bayesian framework—
generalized Shiryayev sequential probability ratio
test (GSSPRT)—was proposed in [8] for this fault
isolation problem. The optimality of GSSPRT was
proved in terms of a Bayesian risk. Further, it
minimizes the time of fault isolation given the costs
of false alarm, false isolation and a measurement

at each time k , see [8] for the proof and details.

Assume the system starts with no fault. At each
time k&, the GSSPRT computes the posterior

probability of the event 0,-{’ (] {Transition from "

to m' occurs at or before time k}, and compares
it with a threshold #", i=1,2,---,M . Once one

of the thresholds is exceeded, the corresponding
fault is declared. The optimal thresholds can be

determined by the given costs [8]. Note that &
means the system remains in normal mode up to
time k. The event H,i is equivalent to the event

m, since the fault model m' is an absorbing state

in the Markov chain. The GSSPRT algorithm is
summarized as follows:

Declare a sensor/actuator fault i if
Hic 2 P{6|Z"} = P{mj |z} > pTi
i=12-,M
Else, compute pt,,,i =0,1,-+,M
Loopk=k+1

Note that in the algorithm there is no threshold set
for m° since declaration of the normal model is of
no interest. The posterior probability sz, is
computed by

412
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nl

k
i i,(h i,(h) A i,(h
ul :Z“’l‘( O P{m;( )le}
h=1

i,(h)

and m;"“denotes a model sequence which starts

from time 0 and reaches model m' at time k, &
is the index, and n! is the total number of such
sequences. Since the system starts with no fault,

mg'(h) is the only valid sequence at time k = 0, and

hence #g'(”=1. The probability ,u,"c‘(h) can be

computed recursively. Since
i,(h) IO L
(Y, = i3]
h=1,-n}, j=0,M
by Bayesian formula, we have
JAQ)

i,(h _
O f(zlmi®, 7" D=,
« f(z|Z%1)

where the likelihood function f(z|m:™, z¥-1) can
be calculated based on the Kalman filter (KF) [26]
under the linear Gaussian assumption. This can be

done since the model trajectory has been specified

by m,ic'(h) ,

i,(h _ i =(h h
f(zk|m;c( ) 7k 1= N(zk;H,l(x,((“z_l,S,g D)
where

—(h i,(h _
£, = ElxImi®, 701

h i n(h iN/
SOV = HEBSY | (L)' + Ry

and 13,{((,16)_1 is the error covariance matrix off,i’lllz_l.

The model conditional density of the system state
is

' 1 i (h i (h
f(elmic ) = o T3k £ Caelmil™, 269 (4)

Clearly, f(x;|mi, z*) is a Gaussian mixture density
and the number of Gaussian components is

increasing geometrically (i.e., (M+1)k) with

respect to k for a general TPM. However, due to
the assumption that all the fault models are

absorbing states (the special structure of Eq. (3)), it
only increases linearly (i.e., MK+1) for our problem.

The estimate of x, and its mean square error
(MSE) matrix can be obtained by:

M
X 2 E[x|2¥] = ch\llaullc

i=0
M
Pe= ) [P+ (R — 2@ — 2]
i=0

where
RL 2 E[x,|mb, Z¥]
PL 2 MSE(%y|mL, Z¥)

can be obtained from f(x;|mi, Z¥) (Eq. (4)). % is
optimal in terms of the MSE.

The above procedure turns out to be the well-
known cooperating multiple model (CMM)
algorithm [15] considering all possible model
trajectories. Before, the multiple model algorithm
was developed for state estimation with model
uncertainties. It is estimation oriented. Here, it is
derived from a totally different angle by starting
from GSSPRT for decision purpose. So, the goal
(@) and (b) can be fulfiled simultaneously and
optimally in terms of their criterions, respectively.
Further, the state estimation is not affected by the
performance of fault isolation.

Even a false alarm or false isolation occurs, the
state estimation is still reliable, since the detection
has no impact (or feedback) to the model-
conditioned estimates and model probabilities, and
hence does not affect the state estimation.

Besides the increasing computational complexity,
the unknown fault parameters a,{ in practical

applications incur further difficulties to our
algorithm. The hypothesis of a fault model
becomes composite in this case, rendering it much
more complicated. Further, it is usually very

desirable that a good estimate of a,{ can be
provided at the time a fault is identified, meaning
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that ] should be estimated online along with the

fault identification process. The fault estimation
can also provide useful information for fault
isolation, and consequently benefits its
performance.

4. Multiple Model Algorithm Based on Gaussian
Mixture Reduction and Model Augmentation

First, we address the problem of computation
complexity. As aforementioned, Eq. (4) is a
Gaussian mixture density and its number of
components is increasing rapidly. Each Gaussian
component in f(x;|m, Z*) corresponds to a model

trajectorymf('(h). In real time implementation, the

number of the components must be bounded.

In MM method, there are many algorithms
proposed to reduce the number of model
sequences [15]. They can be classified as: a)
methods based on hard decision, such as the B-
Best algorithm, which keeps the most likely one or
a few model sequences and prunes the rest; b)
methods based on soft decision, such as the
GPBn algorithm, which merges those sequences
with common model trajectories in last n steps
(they may have different trajectories in older
times). In general, the algorithms based on soft
decision outperform those based on hard decision.
However, for GPBn methods there is no solid
ground to justify why sequences with common
model steps should be merged. These common
parts of model trajectories do not necessarily imply
that the corresponding Gaussian components are
“close” to each other. Consequently the merging
may not lead to good estimation accuracy. We
propose to use a more sophisticated scheme
based on Gaussian mixture reduction, which
involves both pruning and merging. The idea is
simple and better justified, but requires more
computation. However, in our problem, the number
of model trajectories increases linearly instead of
geometrically. The reduction process usually
needs not to be performed frequently. Of course,
this approach can be implemented for general MM
algorithm, which may require the reduction for
every step.

Once the number of components in f(x;|mi,Z%)
exceeds a threshold, the extremely unlikely
components can be pruned first. Then, the number

of Gaussian components is further reduced to a
pre-specified number by pairwise merging, with the
grand mean and covariance maintained. This is
the so-called Gaussian mixture reduction problem
and was studied by [23, 24, 27-32]. The problem
is to reduce the number of Gaussian components
in a Gaussian mixture density by minimizing the
“distance” (to be defined) between the original
density and reduced density, subject to the
constraint that the grand mean and covariance are
unaltered. The optimal solution requires solving a
high dimensional constrained nonlinear
optimization problem that the weights, means and
covariances are chosen such that the “distance”
between the original mixture and the reduced
mixture is minimized. This is still an open problem
and optimal solution is computationally infeasible
for most applications. However, a suboptimal and
efficient solution is acceptable for our problem. As
proposed in [23, 24, 30], a top-down reduction
algorithm based on greedy method is employed.
Two of the components are selected to merge by
minimizing the “distance” between them at each
iteration, until the number of components reduces
to a pre-determined threshold. For two Gaussian

components with weights w,, means /. and

covariances P, they are merged by

1
w=w;+w, U= W(Wﬂh + waly)

2

1
P = ;Z wiPr + (g — ) (e — ']

i=1

so that the grand mean and covariance are
preserved.

Further, there were many distances proposed for
merging. They can be categorized to two classes:
global distance and local distance. The global
distance of two Gaussian components measures
the difference between the original mixture density
and the reduced mixture density (by merging these
two elements), while the local distance only
measures the difference between these two
components. The global distance is preferred in
general since it considers the overall performance.
Kullback-Leibler (KL) divergence may be a good
choice [30], but it cannot be evaluated analytically
between two Gaussian mixtures, see [33] and
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reference therein for some numerical methods. An
upper bound of KL divergence was proposed in
[30] to serve as the distance, which is, however, a
local distance. We adopt the distance proposed in
[23, 24]—the integral squared difference (ISD). For

two Gaussian mixture densities f(x) and g(x),
the ISD is defined as

D= j (F () — g(x))2dx

It is a global distance and can be evaluated
analytically between any two Gaussian mixture
densities:

D =]t +]gg t]rg
where

ny ny
Jir = Z ww; N (ui; uj, Py + Py)
7

4

ng Tg
]gg =Z V_VinN(.ai;ﬁjﬁpi-l'Fj)
J

i
ng ng

Jrg = ). ) ity N (i i, Py + B)
i

and {w;, w;, P} and {w;, i;,P;} are the weights,
means and covariances, respectively, of the ith

Gaussian components in f(x) and g(x).

Efficient algorithms to compute the distance was
proposed in [24]. Hence, the distance between two
Gaussian components for merging is defined as

Dl = [ (@) - fyax

wheref(x)is the original Gaussian mixture,
fl.? (x) is the mixture density after merging the i th
and jth components infl(x), which is the

reduced Gaussian mixture at iteration /. For each
iteration /, two components are selected to merge

such thatDi; is minimized. The iteration stops

when the number of the components reduces to
the pre-specified number. Compare with the
merging method in GPBn, the merging based on
this Gaussian mixture reduction is better justified.
Although the above reduction procedure does not
reduce the Gaussian component optimally, it is
based on a good guidance—only components that
are “close” to each other are merged and hence
the loss should be smaller than GPBn.

In MM algorithm, at time k—1, assume the
Gaussian mixture densities f(xk_1|m,’('_1,Z"‘1) and
the model probabilities ,ui_lforj =0 1, ..., Mare
obtained. Then f(x,|m/,Z¥)can be updated
recursively:

f(Zklm;c!xk)f'(xklmliazk_l)
f (zx|my, Z*-1)

f (i my, 2%) =
and the model probability u}

= f @il mi, Z¥ ) ptipe—s
‘ f(zelZE1)

where

f (xic|mi, 271)

= 2o f (lmby mi_y, Z71) f (my_y Imi,, 2871 (5)
f (iclmi mi_y, 2%1)

= [ f(xelml, %1 )f Calmi_y, 2 Vdxy  (6)

and
M
Pijk-1 = f(mk|z1) = Z il _y
=0

Falmt, 27) = [ fCadmi, w0 Coelmd, 2 dxe

il j

J i 7k-1) —
f(my_y [mi, 2571) = X it
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f(xeImk, x,—1) and f(z;|mk, x;) are obtained from
Egs. (1) and (2), respectively. It can be seen from
Eq. (5) that the number of the Gaussian
components in f(x;|mk,Z¥) is increasing in each
cycle. The Gaussian mixture reduction is
implemented if necessary and f(x;|mk,Z%)
replaced by the reduced density.

As mentioned before, due to the special structure
of the TPM in our problem, the number of the
Gaussian components increases linearly and
hence the Gaussian reduction procedure needs
not to be performed frequently.

The second problem of applying the MM algorithm
is the unknown parameter ak for each
sensor/actuator in the fault identification process.
Before any fault occurrence, ak' =1 and it subjects
to a possible sudden jump to a value that

0<al <1 7)

Practically, only when a,{ drops below a
threshold ™/ < 1 it is considered as a fault:

0<al <a™

Several methods may be applied to estimate a,{ t
may be augmented into the system state. However,
this requires a dynamic model for a,{, and the

system becomes nonlinear (for sensor fault models)
and subjects to a constraint. It can be also
estimated by least squares method with fading
memories [34, 35]. However, the abrupt change of

a,{ when a fault happens can incur difficulties for

this algorithm. The method based on the maximum
likelihood estimation (MLE) [10] is a good choice.
For the j th sensor/actuator fault, a few models with
different but fixed ¢/ (a] = a’i,i = 1,2,--,1, where
Iis the number of fault models for the jth
sensor/actuator) values and one augmented model
with the parameter «/ estimated by the MLE in
real time are included in the model set. The

estimate ¢/ can be obtained by

al = max f (z|a, my, Z*1)

s.t. Eq. (7)

where, for simplicity, f (z|a,m],Z¥*)can be
approximated by a single Gaussian density, e.g.,
for a sensor fault, it yields

f(zla,ml, 7YY = V' (2,; 0,S,)
where

Zx = 23— H)(Feea®)_y + BY_quy—r)

S = HIP(H])' + R,
P =Fy 1P y(Fie1) + G Qpo1(Gr—r)’

Since both Z, and S, are functions of a,{ , the MLE

becomes a one-dimensional nonlinear inequality-
constrained optimization problem which may be
solved numerically. The MLE for an actuator fault
can be obtained similarly, but the optimization
procedure is simpler since it becomes a quadratic
programming problem, which can be solved
analytically by solving a linear equation. Then, the

augmented models are updated by a,f in real

time. This is the maximum likelihood model
augmentation (MMA). It has a quick adaption in
fault estimation when a fault occurs.

Another option is the expected model
augmentation (EMA). It is similar to the MMA but

the parameters a,{ for the augmented models are

estimated by weighted average of the models for
the same sensor/actuator. That is, for a

sensor/actuator fault j, the @/ for the augmented
model is obtained by

= —(“k#ku\z 1t Z a’ :uklk 1t ak 1”k|k )
i=1

where

.. ~J
_,0 ji X1
C=Hgg—1 T § Hicjk-1 F Bije—1

i=1
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J

is a normalizing constant, af =1, ukl"k‘_ll is the

predicted probability of the augmented model,
Ky, are the predicted model probabilities of the

models with fixed parameter a’‘. Note that this
method circumvents the requirement of the
constraint (Eq. (7)) since it is automatically
guaranteed by the convex sum.

The augmented models in the model set serve two
purposes: a) They are expected (hopefully) to be
closer to the truth than the other models, and
hence benefit the overall performance of the MM
filter. b) The fault severeness can be obtained
based on those augmented models, i.e., once a
particular fault  is declared, the corresponding

@] can be outputted as the fault estimate.

It is clear that the state estimation, fault isolation
and estimation are solved simultaneously the a
MM algorithm based on Gaussian mixture
reduction and model augmentation. The results
provide a basis for further diagnosis and actions. If,
for example, a fault is declared but not sever or the
faulty sensor/actuator is not critical, some online
compensation can be applied to maintain the
system in operation. Major action may have to be
taken if a crucial or total failure occurs.

5. lllustrative Examples

We provide three illustrative examples to
demonstrate the applicability and performance of
our algorithms by comparing with the results of
IMM based on Monte Carlo (MC) simulation.

5.1 Simulation Scenario

The ground truth is adopted from [10, 21], i.e., a
longitudinal vertical take-off and landing (VTOL) of
an aircraft. The state is defined as

x = ViV, q,6]

where the components are horizontal velocity
(m/s), vertical velocity (m/s), pitch rate (rad/s) and
pitch angle (rad), respectively. The target dynamic
matrix and measurement matrix are obtained by
discretization of the continuous system:

Fk = eAT

T
By, = <f eATdT> G
0

0
0
Hk= 0
1

SO O
= o= o
= =0 O

Where T =0.1s is the sampling interval, and

—0.0366 0.0271 0.0188 —0.4555

0.0482 —-1.01 0.0024 —4.0208
0.1002 0.3681 —0.707 1.420
0 0 1 0

0.4422 0.1761
G = 3.5446 —7.5922
=552 449
0 0

The control input is set to be u;, =[0.2 0.05]', the
true initial state = [250 50 1 0.1]', the covariances
of the process noiseQ, =022 and the
measurement noise R, = diag[1,1,0.1,0.1]. In this
system, there are two actuators (A1 and A2) and
four sensors (S1 — S4). The simulation lasts for 70
steps and the fault occurs at £k =10. The initial
density of the state for the algorithms is chosen to
be a Gaussian density N(x,P,) with P, =
diag[10,10,1,1].

5.2 Performance Measures

The performances of our algorithms are evaluated
by the following measures:

1.- Correct identification (Cl) rate: the rate that an
algorithm correctly identifies a fault after it
happens.

2.- False identification (FI) rate: the rate that an
algorithm incorrectly identifies a fault after it
happens.

3.- False alarm (Fa) rate: the rate that an algorithm
declares a fault before any fault happens.

4.- Miss detection (MD) rate: the rate that an
algorithm fails to declare a fault within the total
steps of each MC run.
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5.- Average delay (AD): the average delay (in
terms of the number of sampling steps) for a
correct isolation.

A

6.- a: the root mean square error (RMSE) of «
for a correct isolation.

All the performances are obtained by Monte Carlo
simulation with 1000 runs. The thresholds for
decision are determined by the results of
simulation such that different methods have
(almost) the same false alarm rate.

5.3 Total Failure

In this case, we consider the complete failure for
each actuator/sensor. Hence, the fault severeness
a =0 is known. We compare the IMM, the exact
MM (MME) method (i.e., considering all possible
model trajectories) and the MM method based on
the Gaussian mixture reduction (MMR). All the
methods have the same model set of M +1
models. It includes one normal model, and one
fault model for each sensor/actuator.

There is no model-set mismatch between the
algorithms and the ground truth. In MMR, the
number of the Gaussian components for each
model is reduced to 2 if it exceeds 10. This is a
relative simple scenario since the fault parameter
is known. The results are given in Table 1. It is
clear that a sensor fault is much easier than an
actuator fault to be identified.

A sensor fault can be detected (almost)
immediately after the occurrence while it takes
some time to detect an actuator fault. This makes
sense because a sensor fault is directly revealed
by the measurement while an actuator fault affects
the measurement only through the system state.

The performance differences among the three
algorithms for a sensor fault are negligible, while
MME and MMR evidently outperform the IMM
algorithm for an actuator fault. But this superior
performance is achieved at the cost of higher
computational demands (given in Table 2).
Comparing with MME, the performance loss of
MMR is tiny.

Fault |Algo.| CI Fa Fl MD | AD
MME |0.854| 0.010. | O ]0.136[11.01
A1 |[MMR|0.850| 0.010 0 ]0.140(11.09
IMM [0.819] 0.010 |0.001|0.170|11.94
MME|0.823| 0.016 |0.057|0.104| 15.8
A2 |MMR|0.823| 0.016 |0.057|0.104| 15.8
IMM [0.771] 0.016 |0.039|0.174| 17.3
MME | 0.985| 0.015 0 0 0
S1 |[MMR|0.985| 0.015 0 0 0
IMM [0.985| 0.015 0 0 0
MME|0.990| 0.010 0 0 |0.36
S2 |MMR|0.990| 0.010 0 0 ]0.36
IMM [ 0.990| 0.010 0 0 ]0.39
MME|0.992| 0.008 0 0 0
S3 |[MMR|0.992| 0.008 0 0 ]0.002
IMM [0.992| 0.008 0 0 |0.002
MME|0.990| 0.010 0 0 0
S4 |MMR|0.990| 0.010 0 0 0
IMM [0.990| 0.010 0 0 0

Table 1. Total fault, & =0 and known.

IMM MME
1 20.7

MMR
15.4

Table 2. Average computational cost (normalized).
5.4 Random Scenario

In this case, for each MC run, the fault severeness
a,f is sampled uniformly from the interval [0, a”/]

when a fault occurs and remains constant. The
IMM, EMA and MMA (both based on Gaussian
mixture reduction) are implemented and evaluated.
The IMM contains 13 models: one normal model,
two fault models for each sensor/actuator with a =
0 and 0.5, respectively. The EMA and MMA
contain 19 models: all the models in IMM algorithm
and one augmented model for each
sensor/actuator. The results are given in Table 3.
Similar to Case 1, a sensor fault is easier to be
identified than an actuator fault, revealed by a
shorter detection delay and better fault estimates.
The performance differences among the three
algorithms are insignificant for sensor faults. For
actuator faults, MMA has a shorter detection delay
and smaller miss detection rate, while EMA is
better in terms of correct identification rate, false
identification rate and estimation root mean square
error a.
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This can be explained by the quick adaption of the
change in ¢ by MLE after the fault occurrence. It
helps identifying the fault faster, but in general its
estimation is less accurate than EMA and hence
may increase the false identification rate. Overall,
they outperform the IMM method.

Fault|Algo.| CI Fa Fl MD | AD a
MMA|0.709 | 0.009 | 0.066 |0.216| 18.2 |0.208
A1 |EMA|0.711/0.009|0.037 |0.243 | 18.4 |0.199
IMM |0.707 | 0.009]0.045|0.239| 18.7 |0.209
MMA|0.762|0.011/0.116]0.111| 15.1 |0.230
A2 |EMA|0.771|0.011]0.099|0.119| 17.1 |0.215
IMM | 0.743|0.011]0.118 |0.128 | 17.5 |0.219
MMA|0.9920.008| O 0 0 ]0.103
S1 |[EMA|[0.992]0.008| O 0 |0.257]0.117
IMM |0.992|0.008| O 0 10.500]0.206
MMA|0.981]0.012|0.007| 0 |1.320]0.147
S2 |[EMA|0.984]0.012]0.004| 0 [1.322]0.138
IMM |0.980|0.012]0.008| 0 [1.3200.235
MMA|0.990(0.010] O 0 0 |0.131
S3 |[EMA|0.990|0.010| O 0 [0.001]0.126
IMM ]0.990|0.010] O 0 0 10.235
MMA|0.991]0.009| O 0 0 ]0.135
S4 |[EMA|[0.991]/0.009| O 0 0 |0.127
IMM ]0.991]0.009| O 0 0 ]0.232

Table 3. Random fault, a™/= 0.7.

5.5 Fault with Drifting Parameter

In this case, a,{ is drifting after the fault. It is

sampled uniformly from theinterval [0, o'/] at the
time of the fault occurrence and then follows a
randomwalk (but bounded within [0, a”/]), that is

al, if a{clk_l > al
al={ 0 if al <0
k ’ klk—1
j
Q-1 else

where
j _ J
Wjgj—1 = Xp—q + Lk

and ¢, is uniformly distributed random samples
(i.e., x,~U([—0, a]. Asmentioned before, a sensor
fault is easier to be detected. It is identified
(almost) immediately when it happens. So, in this
case we only evaluate the performancefor actuator

faults. The results are given in Table 4. Compared
with Case 2, the drifting a,{ decreases the

estimation accuracy and miss detection rate for
both actuators, but increases the false
identification rate significantly for actuator 1.

Fault |Algo.| CI | Fa Fl MD |AD| «

MMA |0.710| 0.04 | 0.188 | 0.062 |14.8]0.220
A1 |EMA |0.724|0.04 | 0.160 | 0.076 |15.3|0.208
IMM |0.681|0.04 | 0.188 | 0.091 |16.9|0.225
MMA |0.745|0.08 | 0.106 | 0.069 |15.6|0.236
A2 |EMA|0.755|0.08 | 0.094 | 0.07116.3|0.231
IMM |0.726 | 0.08 | 0.118 | 0.076 |17.9]0.245

Table 4. Fault with Drifting Parameter,
where a™/ = 0.7 and ¢ = 0.02.

6. Conclusions

Applying the generalized SSPRT to a linear
dynamic system for fault isolation and estimation
leads to the multiple model algorithm. However,
this algorithm must be approximated in real
applications due to the increasing computational
demands and the unknown fault parameters. The
Gaussian mixture reduction (GMR) and model
augmentations are proposed to address these two
problems, respectively.

The GMR reduces the number of Gaussian
components in a greedy manner by merging
iteratively components that are “close” to each
other. This merging algorithm is based on more
solid ground than the conventional GPBn method
for multiple model algorithms. Further, the fault
parameters can be estimated based on the
augmented models.

The model augmentations by expectation and MLE
are good options. They have their pros and cons
as indicated by the simulation results. The MLE
provides a shorter fault isolation delay and an
smaller miss detection while the EMA performs
better in terms of the correct isolation rate and the
estimation accuracy for the unknown parameter.

As mentioned before, the isolation and estimation
of a fault provide a reference for further actions,
and hence infrequent sequential faults can also be
dealt with. The case of simultaneous faults is more
complicated and is considered as future work.
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