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ABSTRACT

The nonlinear feedback cascade model of the underactuated IWP is obtained through a collocated partial feedback
linearization and a global change of coordinates. A nonlinear controller is designed with the nonlinear recursive
technology. The system stability is proved with Lyapunov theory. The simulation results show the system is globally

asymptotically stable to the origin.
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1. Introduction

Many researchers focus on the inertia wheel
pendulum (IWP) to look it as a test bed for the
effectiveness of control algorithms [1-5]. There are
two control problems in this system: one is to
control the pendulum swinging up from the
hanging position to the upright vertical position; the
other is to stabilize the IWP around its unstable
equilibrium point. Much remarkable work is done: a
control energy approach based on the passivity [1]
is used to solve the balance problem of the IWP.
The interconnection and damping assignment
passivity based control [2] is used for the
asymptotic stabilization of the IWP around its top
position while two necessary matching conditions
have to be satisfied in order to obtain a stabilizing
controller. A nested saturation function [3] is used
to stabilize the IWP. To reduce the dependence
upon the Lyapunov functions, a backstepping
approach [4] is proposed and a complex controller
is obtained. A recursive design algorithm is
designed for the inertia wheel pendulum, but a
sigmoid function is needed [5].

In this paper the asymptotic stabilization is
considered for the underactuated and strongly
damping IWP around its unstable top position. Our
main contribution is to utilize a suitable set of
transformations that allows us to accomplish a
nonlinear control design with the recursive
technology to bring the system to the unstable top
position. This paper is organized as follows. In
Section 2 we present the IWP model and the
model transformation to obtain the strict feedback

cascade model. In Section 3 we develop the
control strategy based on the recursive technology.
In Section 4 some simulation results are given and
Section 5 is the conclusions.

2. The IWP system model

The inertia wheel pendulum is shown in Figure 1,
which consists of a physical pendulum with the
equivalent mass m, and a revolving wheel with

the equivalent mass m, at the end. The motor

torque produces an angular acceleration of the
revolving wheel which generates a coupling torque
at the pendulum. The task is to stabilize the
pendulum in its upright equilibrium point while the
wheel stops rotating. The specific angle of the
rotation of the wheel is not important. The
revolving wheel is actuated and the joint of the
pendulum at the base is unactuated. That is to say,
it is a benchmark example of the underactuated
mechanical system [6, 7], which has one control
input r and two configuration variables (g, ,q,),

and its Euler-Lagrange equations of motion can be
obtained as

{"mlerudz—mosin(ql):O ™)

m g+ My, =7
where,

my, =ml>+mL?+ 1 +1,
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Figure 1. IWP system configuration.

My =My =My, = Iz,

my =(ml,+mL)g

In order to simplify the system dynamics. The
following collocated partial feedback linearization
[8] is used

m, m
z':(mn— 21 12ju

11

m, m, .
+ 2 gin(g,)
11

(2)
The dynamics of the shape variable g, is
simplified to

g,=u

The following global change of coordinates [9] is
designed

Z = myq, + myq,
Z,=q (3)
z,=q,

to transform the system dynamics into a nonlinear
system as

z =mysinz,

2, =(z - my,z,)l my, (4)

Since that g, does not play any important role in
the dynamics of the IWP, it is ignored as a state

variable. From Eq. 4, it can be seen that the
system model of IWP is a nonlinear feedback
cascade model.

3. The nonlinear controller design through
recursive technology

Since the model of IWP can be transformed into a
cascade nonlinear system with a collocated partial
feedback linearization Eq. 2 and a global change
of coordinates Eq. 3, the controller can be
designed with the recursive technology. The
design process is:

Step 1.

From the dynamic equation of state x, in the IWP

system model Eq. 4
z =mysinz,

®)

Firstly look z, as the virtual control input and
define a reference trajectory z,, for z, to follow as

Z,, =—mysinz, + z, — k;z,
which leads to an error e, defined as

6, =2,-2

(6)

where, k; is a positive constant.

Consider a scalar
function given by

positive definite Lyapunov

4 :%(212 + e22)2 0

The time derivative \/1 is given by

Vi =2z +e,8,
=2z(6;, -kz)+6,6
= —k1212 +€,(6, +2) (7)
= _k1212 +6,(my cos z,(z, — my,z3)/ my,
+Kkz +2z)

Journal of Applied Research and Technology




Nonlinear Recursive Design for the Underactuated IWP System, Weiping Guo / 602-606

We note that the variable z, enters the right hand
side of Eg. 7. We now proceed to look z; as the

control variable and design a reference trajectory
z,, for it to make the second term of right hand in

Eq. 7 be non-positive.

Step 2.

In step 1, the time derivative of the Lyapunov
function V] is obtained in Eq. 7. In order to make
the V, be a negative definite function, state z; is

looked as the virtual control input in Eq. 7. A
reference trajectory z, is defined as

Z—m,z .
— 1 1243
Z;, =—m, CoS zzm— +2z;-kz -z - ke,
11

The tracking error e, defined as

6 =22

-m,z ) (8)
A 25 4 k2 o+ + kae,
my,

4

So
Vi =-kZ - ke, +ee

We modify the scalar positive Lyapunov function
V20 as

V=V +e/

1 1 5, 1 » ©)
=—Z"+—6,"+—6 20
270 T2 T

Differentiating V,

V,=-V +eé, 10)
= _klzlz - k2922 +e5(é+e)

From Eq. 8,

Z —m,z Z —m,z
| '77123+mocoszzl myZ;

1 my

6, =-m,sinz,z,

+ Kz +2 + ke,

(11)

The system control variable u =z, enters in the
right hand of the Eq. 11.

Step 3.

In order to make the \/2 be a negative definite

function, we can make the following equation hold
since the control variable arises.

6 +e, =-kye (12)

Such that

L 4 My zZ —myz,
—m,sinz,z, —2= + mycos z, -—==

my my

(13)

Therefore, the control law can be obtained from

Eq. 13 as

_ 1
m,m,,cosz,

+ KM 2 + M2+ Komy @, +mye, + ke ey
(14)

u {_m) sinz,z)(z —m,z)+m,coszz

Theorem 1: The feedback cascade model Eq. 4,
which is transformed from the IWP system
described by Eq. 1 through the collocated partial
feedback linearization Eq. 2 and the global change
of coordinates Eq. 3, is asymptotically stable under
the control input Eq. 14.

Proof:

The recursive design process has proved: the time
derivative of the chosen positive definite Lyapunov
function V, is negative definite. That is to say, the

three terms of the right hand in Eg. 9 is
asymptotically approach to 0. Since that the first

term 212/2 approaches to 0, z  must
asymptotically approach to 0. From the second
term 622/2 approaches to 0, e, must
asymptotically approach to 0 and it is known from
Eq. 6 that z, must asymptotically approach to O.
The third term %2/2 approaches to 0 implies that
z; asymptotically approach to 0 from Eq. 8.
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Therefore, the system states (z,z,,z;) of the IWP

described by Eq. 4 asymptotically approach to
(0,0,0).

Remark 1: Both the collocated partial feedback
linearization Eq. 2 and the global change of
coordinates Eq. 3 in the second section are
invertible transformation, which is

q=2

. 1

q =—~(z-myz) (15)
1

4, =12z

It can be seen from Eq. 15 that (z,z,,z)
asymptotically approach to (0,0,0) implies that
(9,,91,9,) approach to (0,0,0,0). The control input
7 can be calculated with Egs. 2, 14 and 15.

Remark 2: There is a singularity when z, =+7/2

in the controller Eq. 14. The method to deal with
the singularity in the simulations is: the cosz, in

Eq. 14 is represented by a positive number (¢ ) for
Z,e(nl2-Anl2) or z,e(-xl2~xl2+A), and
by a negative number (-¢) for z, e (z/2,7/2+A)
or z, e(-n/2—A~x/2). The value of ¢ can be
decided by the output limit of the actual controller.

Remark 3: The design method is proposed for the
nonlinear feedback cascade system Eq. 4, so it
can be used for all the underactuated mechanical
systems that can be transformed to the cascade
system Eq. 4, such as the TORA and the Acrobot.
Compared with other recursive controllers, the
proposed algorithm is simple and easy to be
implemented as the implementation of the neural
control systems [10].

4. Simulation studies

In order to test the proposed control algorithm, the
following system parameters [11] are used:

my, =4.83x107, my, =m, =m,, =32x107°,
My =38.7x107x9.8 .

The parameters of the nonlinear controller are
chosen as

k=4, k=4, k=4, ¢=0.001, A=0.057°.

The simulation results are shown in Figures 2-5.

Figure 2. The phase plane of
q, in the system simulation.

Figure 3. The time response of
q, in the system simulation.

The simulation results in Figures 2-5 are obtained
under the initial state (z,,z,,z;)=(0,-60",0)
(4,.49,,9,)=(60"00)and the proposed control
algorithm is added at 3rd second. Figure 2 is the
phase plane of the (g,.4,), Figure 3 is the time
response of ¢,, Figure 4 is the time response of
4, and Figure 5 is the control torque  of the IWP.

It can be seen from the simulation results that: the
IWP system is freely swinging before the control
algorithm is added and the IWP system is
asymptotically stable under any initial states with

i.e.
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the proposed control algorithm. On the other hand,
the control performance can be improved through
adjusting the parameters of the proposed controller.
Lots of simulation experiments show that the
parameters k,,k, respectively correspond to the
system state ¢,,q,, therefore it is easy to adjust the

parameters for an improved system performance.
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Figure 4. The time response
of ¢, in the system simulation.
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Figure 5. The control torque =
in the system simulation.

5. Conclusions

A collocated partial feedback linearization and a
global change of coordinates are used to transform
the underactuated IWP to a nonlinear feedback
cascade system. A nonlinear control algorithm is
proposed with the recursive technology. A
Lyapunov function is found step by step in the
design procedure and illustrates the system
stability. The design method is proposed for the
nonlinear feedback cascade system, so it can be
used for all the underactuated mechanical system
that can be transformed to the cascade system.
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