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ABSTRACT

Recently, several mathematical models have been developed to study and explain the way information is
processed in the brain. The models published account for a myriad of perspectives from single neuron segments to
neural networks, and lately, with the use of supercomputing facilities, to the study of whole environments of nuclei
interacting for massive stimuli and processing. Some of the most complex neural structures -and also most
studied- are basal ganglia nuclei in the brain; amongst which we can find the Neostriatum. Currently, just a few
papers about high scale biological-based computational modeling of this region have been published. It has been
demonstrated that the Basal Ganglia region contains functions related to learning and decision making based on
rules of the action-selection type, which are of particular interest for the machine autonomous-learning field. This
knowledge could be clearly transferred between areas of research. The present work proposes a model of
information processing, by integrating knowledge generated from widely accepted experiments in both morphology
and biophysics, through integrating theories such as the compartmental electrical model, the Rall's cable equation,
and the Hodking-Huxley particle potential regulations, among others. Additionally, the leaky integrator framework is
incorporated in an adapted function. This was accomplished through a computational environment prepared for
high scale neural simulation which delivers data output equivalent to that from the original model, and that can not
only be analyzed as a Bayesian problem, but also successfully compared to the biological specimen.

Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry.

RESUMEN

Recientemente se han desarrollado modelos matematicos que permiten explicar y definir a través de la ingenieria
la manera como se procesa la informacion de sefales eléctricas producidas por iones en el sistema nervioso de
los seres vivos. Se han disefiado numerosas propuestas de este tipo de lo discreto a lo masivo, que operan como
segmentos de una neurona, una red, y en ultimas fechas con ayuda del supercomputo, hasta conjuntos de
nucleos que interactian en entornos de estimulos y procesamiento a gran escala. De las estructuras neurales mas
complejas y de mas interés ha sido la del grupo denominado de los Ganglios Basales, de los que el Neoestriado
forma parte, y sobre el cual se han hecho pocos trabajos de modelado computacional. Se ha demostrado que en
esta region residen funciones de aprendizaje, y otras relacionadas con la toma de decisiones bajo las reglas de
accion-seleccién que son ampliamente estudiadas en el aprendizaje autdnomo computacional, permitiendo
transferir el conocimiento de un campo de investigacion a otro. El presente trabajo propone un modelo
computacional en tiempo real, a través de integrar el conocimiento obtenido de experimentos ampliamente
aceptados en biofisica, aplicando la teorias de compartimientos electrénicos, de la ecuacién de cable de Rall, las
leyes de potencial de particulas Hodkgin-Huxley, entre otros. Dichos modelos se incorporan en un entorno basado
en la funcion de integrador con fugas, a través de un ambiente computacional de simulacion neural a gran escala,
que entrega una salida de datos equivalente al modelo bioldgico, susceptible a ser analizada como un problema
Bayesiano, y comparada con el espécimen bioldgico con éxito.
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1. Introduction

In the past two decades, researchers have
increasingly become interested in building
computer simulations of diverse brain structures,
based upon morphological and physiological data
obtained from biological experimental procedures.

The efforts for building off these constructs are
only directed by the findings in biological models,
leading to specific algorithms [1, 2]. Thus, they are
aimed to the creation of neural simulation
platforms --yet specifically designed for suiting a
particular characteristic from a given region [3] -- or
for general purposes, demonstrating that many
functions are present in specific regions of the
nervous system and can be applied generally, and
at the same time, they are also present among
many species at many levels of differentiation [4].

All of these tools have been useful both, for
consistently recreating the findings at different
scenarios, and for welcoming new proposals and
directing new experiments, or even to predict new
findings in diverse brain structures [5,6]. The use
of this kind of methodologies have made possible
the simulation of neural processes at many levels
of detail, analyzing from membrane regions with
ionic channels for simulating the effects of
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neuromodulation and neurotransmitter action in
membrane potential, and building off a whole
neuron with all the electrophysiological responses
[7,8], to a specific cell network [9,10]. These
algorithms and computational environments are
only limited by the current state of art of their
respective experimental procedures on the one
side, and for the computing capacity on the other
[11-13].

Many simulations of diverse regions and networks
as well as analysis of several information
processing strategies about how this neural
network works, have been published elsewhere
[14-17]. For supporting this research, plenty of
tools for building real time simulations of diverse
brain structures have been reported [18]; thus
helping and directing the biological findings
trough experiment-biological cycles and
perfecting each other in every iteration [19]. Given
this knowledge production for biophysics, there is
understandable growing interest in computer
engineering field, to study the information
processing in living neural structures, because
the so-called "Intelligent Planning and Motivated
Action Selection" [20, 21], which is a task well
characterized in animal behavior, and also a
computational problem intensively studied in
artificial intelligence field [22-24].
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Figure 1. A, classical Model of NS Connectivity. This nucleus receives excitatory input mainly from both the cortex
and the thalamus regions. Its architecture is composed of patches and matrices which under modulatory influence of
DA, determine the output signaling by direct and indirect pathway to the basal ganglia nuclei. The main unit is the
MSN, which generates a series of inhibitory, excitatory and modulatory connections inside the NS, as shown in B.
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These particular properties of information
processing and decision making have been
discovered on some brain structures as the
respective methodologies for their study have been
developed, and the equipment needed for the
experimental procedures has been perfected. In
mammals, the specialized brain structures where
this functions have been demonstrated -but not
well understood- are the basal ganglia (BG), which
are located in sub cortical brain region [25,26]. BG
structures are composed by several nuclei, from
which neostriatum (NS) is widely accepted as the
main input nucleus [27-29]. Although there is a lot
of theoretical approach about the information
processing form of this region, the construction of
respective real time computer models and analysis
are just emerging [10, 25, 30, 31].

From the perspective of computational ccience,
"Reinforcement-Learning” [32], and "Action-
Selection" theories [33] have been developed
many decades ago as theory for machine learning
strategies [20, 34]. Therefore, they have been
associated to some of the functions of BG [35, 36]
and more specifically within the activity of NS
[37,38]. However, related to this nucleus, only a
few dynamical systems in real time have been built
allowing integration, comparing and testing the
experiences and data acquired from biological
models to computational ones [39,40].

The present work extends the use of these
methodologies, through the use of a general
purpose neural simulator [41,42] in a high demand
computational environment, which served for
building a simplified model of NS composed of
mathematical models for the best characterized
cell types, -- the main output neuron is one of
them, organized in regions and delimited by the
interconnection of their respective inter- neurons
[43, 44]-. This whole structure was added with both
excitatory external signaling and bi-modal
modulation as inputs, assembling the functions of
cerebral cortex and thalamus effect on the NS on
one side, and dopaminergic (DA) effect on the
other [45, 46]. All this model was strictly built
based on morphological and physiological data
reported from classical experiments reviewed in
biological reports [47-49].

The output data of the model was processed and
analyzed qualitatively against the biophysical

experiments, and quantitatively by the same
component current/voltage analysis methodologies
which were used for characterizing separately
each ionic currently studied in electrophysiology
[50, 51], as is discussed in the results section.

2. Neostriatum, Anatomy and Function.

The anatomical and physiological data which form
the basis of our model are well known, and are
described in several reviews [43-45, 52]. Their
function has been conceptualized as four nuclei that
process information from the cerebral cortex related
to the pathway regarding movement, posture and
behavioral responses [53]. Initially BG function was
associated to movement execution and feedback
control [54, 55], this is because the first knowledge
of BG was a condition known as "Parkinson
Disease" which clinically expresses an impairment
of motor responses [56, 57, 58]. Actually, it is known
that BG are also involved in the process of attention
and decision making, as explained above.

Anatomical and physiological studies have shown
NS cellular architecture which reveals an internal
network directed to the output of its main neuronal
type: the medium spiny neuron (MSN) -an
inhibitory type cell which forms a series of loops
divided in two main classical circuits- calling direct
and indirect pathways [59,60] (Fig 1a).

NS would also receive input from a nucleus that
can change the internal state of the network: the
DA action of "substantia nigra pars compacta”,
which is not considered excitatory or inhibitory,
but modulatory instead [61]. This means that a
dual effect is produced over the natural output
MSN neurons. Depending on several network
variables this can either enforce or not —or both at
the same time-, the action of cortical stimulation on
the MSN.

The default function of the BG output nuclei is to
exert a widespread tonic inhibitory control over
target structures. This starts with the NS over
influence of DA modulation, which is able to
promote actions through disinhibiting their
associated target structures while maintaining
inhibitory control over others [62]. This prevailing
model was proposed by Albin et al on 1989 [55],
nevertheless, a full computational model still
needs to be developed [11].
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We have opted for a mathematically model
simplified as the basis for validating the most
relevant variables and incorporating them in more
controlled manner. We have chosen to refer the
electrical responses and morphology of MSN,
within @ minimum circuit and adding the least
synaptic contacts necessary to obtain comparative
results. Although there are several cellular sub
types that contribute to affect and modulate the
membrane potential of MSN, some of them are
not yet fully characterized, or are still under
further discussion.

The signaling of the cells that take part in the
network within the NS is complex and particular.
The MSN is a cell that is normally silent, but
presents this special condition in its potential
membrane that keeps its value dynamically
oscillating, in some moments making it easier to be
excited from a summatory input [63, 64]. In their
default state, MSNs are largely silent and do not
respond to low input levels. However, on receiving
substantial levels of coordinated excitatory input,
these cells vyield a significant output whose
magnitude may be subsequently affected by low-
level inputs, which are ineffective when presented in
isolation. This dichotomous behavior is described
using the terms “down state” and “up state”
respectively, for these two operation modes [50].

The remain types of interneurons that conform NS
architecture have also particular properties for
signaling: a) "Giant Cholinergic Aspiny Cell",
electrophisiologically called “Tonically Active
Neuron”, (TAN) because it produces spontaneous
bursts that affects directly the MSN [65,66]. b)
"Medium  GABAergic" interneurons  divided
electrophisiollogicaly in two types: “Fast spiking
and Plateau” (FS) and “Low Threshold” spiking
named after these firing characteristics [67]. All
these types of interneurons are the 3-10% of the
total NS architecture, and profile its input/output
function by interconnecting with MSN [68] in a
network outlined in Fig 1b.

We chose to consider only afferents provided to
the MSN that are better identified, such as FS
neurons and TAN, and check the results in the
simulations according to the biological model. First,
FS [65,66], characterized histologically as
parvalbumin - immunoreactive neurons in MSN
affect the proximal synapses with large amplitude

IPSPs, and strong effect to block signals from the
axons of projection of the MSN [67]. Secondly
TAN, which are characterized as cholinergic
neurons have a modulatory effect, because they
are activated by cortical afferents with lower
latency than MSN, which in turn are their
respective targets [60].

3. Methods

3.1 Implementation of the Neostriatum Computati
onal Cell components

A computational neural model, yet robotic or purely
theoretical, has to be composed of elements that
are bio-mimetic, --that is, they are intended to
directly simulate neurobiological processes with
the available computational resources and
knowledge [69]. They have to be engineered in
such a way that they provide an interface in order
to allow the model to ask questions and handle
some of all available variables in a controlled and
limited way. A model that seeks to simulate
complete behavioral competences also results
impractical, because of the task scale, or
impossibly, because of the lack of necessary
neurobiological data, as many experiences have
shown [13, 70, 71].

The process of building a biologically realistic
model of a neuron, or else a network of such
neurons, is based on the compartmental concept
and involves the following three steps [72]:

a) Build a suitably realistic passive cell model,
without the variable conductance.
calcium  activated

b) Add voltage and/or

conductance.

c) Add synaptically activated conductance, and
connect them to other cells in a network and
provide artificial inputs to simulate the in-vivo
inputs to the neuron.

The first two steps are explained bellow; the last
one will be covered in the subsequent section.

For the first step, the key feature for performing
excitability in a neuron is the ability for maintaining
a voltage difference from inside (Vinsige) t0 oOutside
(Voutsize)- This is accomplished by the equilibrium
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potential Ei between ion concentrations divided
by [C] given by the Nernst Equation (for the
complete mathematical modeling process see the
appendix in supplementary material):

RT ln [C] ut (1)

Ei = Vin - Vout ZF [C‘])

In presence of several different ions in the cell,
the equilibrium potential depends on the sum of
their relative permeability. The eq (1) was
integrated in the classical Goldman-Hodgkin-Katz
solution [73-771]:

Enat9kEk+ Eq+..
Veq — INaENatIKEKTICIEcl (2)
9Natgk+tgcit-

For using this theoretical approach for computing
facilities, and solving it in a real time model, we
need derivation of it in a linearized version:

_ 9NaENat+9gkEk+gciEcit--
Veq = 3)
INatgktgcit.

With this, and based on experimental data, we
obtain a form to predict the value of a membrane
potential at a given time. Next, it needs to be
implemented on an algorithm that represents a
morphological model of the specific cell. We can
represent a piece of a neuron as a simple RC
circuit, which can be constructed in a
connectionist point of view, and can be as
complex as the computing facilities allow. Given
the known capacitance of a piece of membrane,
and starting with an initial voltage V(0), which can
be obtained from another compartment serialized,
or from an external input, like synapses or
another stimuli, we have:

V(t) =V + (V(0) = Ve /T (4)
For giving a numerical solution of this passive
model, it is much easier to simulate a neural
activity by these compartments, where some
particularities can be added like ionic membrane
behavior, and morphological properties, thus
allowing to differentiate neurons within a network
[78]. The General Neural Simulator available for
working with this technique solves differential
equations with different integration techniques.
Therefore, for a single compartment under a single
ionic stimulation we have the following model:

av

(®)

Where A is the area of the membrane
compartment and Cy is specific Membrane
Capamtance in terms of the area of the membrane,
F/cm®. The actual membrane resistance (Rm) can
be expressed in terms of area, as Ry, = Ry/(417 r2).
Thus, allowing to calculate a time constant (1) of
the model as 1,=RCn, =AXCnA. We can calculate
for a membrane patch:

_(V - Vm)/Rm (6)

C —=
™m at

and, using 1, as

T = —(V = Vi) (7)

Because of magnitudes (millivolts, milliseconds,
and picoamps) and for being consistent to the
International Unit System we can solve this
equation as follows:

= (gu W = V) +1(0))/Cy (8)

For complete mathematical deploying, see proper
I *%

section in supplementary material.

For physiological consistency, we use the
inversion of resistance for calculation of ionic
currents; thus gy = 103/Ry is the membrane
conductance in pS/cm?.

Finally for calculating the dissipation of the Voltage
(V) between compartments, modeled as a
continuous piece of membrane coupled with an
axial resistance R,, given the know morphological
properties of the neuron, we use the Rall's cable
equation [79, 80].

dvj E-Vj Vi =2Vj+Vjy
mE T R R ®)
This equation can be solved for several boundary
conditions. axial resistance (Ra) depends on the
cable geometry, diameter, length and if it is a
sealed end or finite o semi-infinite cable [64,81].
With these methodologies we have been coding,
arise the three main types of neurons for this
particular network: MSN, FS, and TAN. All of them
were built using simplified morphological models,
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well tested and known as "Equivalent Cylinder
models" [82,83].

In the second step, we need to add the dynamic
conductance of the ions gated in the cell, as
needed for the three types of neurons used in this
model. These represent the channels that drive the
neuron electrical behavior. For the passive
compartment explained above, the value of
conductance -as inverse of resistance-, was
obtained using a probabilistic function of ion
diffusion interpreted as transitions between
permissive or not permissive states of the
molecular gates that the channels ions can cross
trough; hence changing dynamically the
conductance of each patch of membrane:

i = 0, (V)(A ~ po) = B(V)p; (10)

dt
Where ao; and B; are voltage-dependent rate
constants describing the non permissive to
permissive and permissive to non-permissive
transition rates, respectively [84, 85]. For each of
the three cells we modeled Na®, Ca” dependent,
and K" ions are well known related variables and
documented by their participation on shaping their
output frequencies and wave morphology. All
those responses where tested separately against
the results published on the real neurons.

3.2 Integration of Neural models in a NS network.

In the third Step mentioned in the above section,
the model was interconnected using a simplified
diagram according to Wilson, 1980 [68], and
shown on Fig 1.b. This schematic connectivity
gives relevance to the position within the dendritic
tree regarding the other connections, the back
propagation between MSN, the relation between
patches and matrixes, and the type of synapses
within the NS: excitatory or inhibitory, plus
modulatory DA  effects. Following  the
consideration that the model is focused in the
responses of MSN projections as a result of the
simulation of PSP selected neuronal types, and
under the modulatory effect of dopamine. This
simulation is generic and can be changed in the
future with the characteristics of the direct or
indirect pathway, and the responses obtained can
be validated and discussed.

Finally, this network was tuned with the synaptic
weights needed for reproducing the operation
conditions. The physiologically experimental data
available have not considered data analysis
processed in real time, but only qualitative analysis
of outputs, thus the network model has to be tuned
up empirically in cycles of trial and error [87-90].

For the integration of all constructed algorithms,
we have used of the leaky integrator neuronal type
as our framework [86, 87]. In principle, this
proposal does not completely fit into the scope of
our model, because of the idea of a dynamic
membrane potential obviating the need to model
an abundance of ionic channels [88].
Nevertheless, we have been updated these
simplified neuronal units with full conductance-
modeled neurons instead, with the cost of a high
computing-resource need, but with the benefit of
having a more reliable interface to compare
against biological experiments. The framework
then is defined by the rate of an activation change,
which may be interpreted as the threshold
membrane potential near the axon hillock. Let u be
the total post-synaptic potential generated by the
afferent input, k a rate constant which depends on
the cell membrane capacitance and resistance,
and a the equilibrium activation, then:

a=-k(a-u), a=u (11)
Where a = da/dt. The output y of the neuron,
corresponding to the mean firing rate is a
monotonic increasing function of a. It will be
bounded below by 0 and above by some maximum
value ymax which may be normalized to 1. We
have adopted a piecewise linear output function of
the form [89]:

0:a<e
y= ma—e)ra<e<l/m+e
l:a>1/m+e

(12)

The choice of this form for y is motivated by the
fact that the equilibrium behavior of the model is
then analytically tractable. The activation space of
the model is divided into a set of disjoint regions
whose individual behavior is linear, and which may
be exactly determined [62,90].
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The NS model built this way admits the possibility
of local recurrent inhibition. Within each recurrent
net, every node is connected to one other by an
inhibitory link with weight w. Let the non-zero slope
in the output reaction be m, the equilibrium output
of the i" node x, and the output threshold ¢, then
the network equilibrium state is defined by the
following set of coupled equations
a=Ji—-w Zjiixj (13)
Now with Jx = max; (Ji). If w.m = 1, then one
integral solution to (12) and ( 13) is:

x; = m(J; — ©H(J; — €)dix

Where i is the Kronecker delta. This solution may
be easily verified by direct substitution.

(14)

In order to make contact with the idea of channel
salience ¢; as input, we put J; = wsCi, where wg, is a
measure of the overall synaptic efficiency of the
MSN, in integrating its inputs. NS is supposed to
consist of many recurrent nets of the type defined
by eq. (12). Each one processing several channels;
the solution in eq. (14) implies however that only
those saliences, which are maximal within each
network, are contenders for further processing.
Now, suppose there are N NS sub-networks (as in
patches or matrixes) and let cri be the salience on
the ith channel of network r. Let ¢y = max; (c,) and
P = {cwy: =1, ..., N}; therefore, the set of potentially
active channels. Now the next step is re-label each
member of P with its network index so that each
local recurrent network r obeys, at equilibrium a
relation of the form expressed in (14) for its
maximally salient channel:

x.=m(wgc, —€)H(c, —€/wg) r=1, ..., N (15)
DA Modulation. For activating the action of
dopamine modulation on MSN, it would be
desirable to model the resulting innervation from
substantia nigra compacta, and particularly the
short-latency DA signals associated with the onset
of biologically significant stimuli [19, 28, 91]. The
whole operation of BG resides on the basis that
these structures operate to release inhibition from
desired actions while maintaining or increasing
inhibition on undesired actions, somehow affected
by the modulation of DA [92-94].

DA synapses occur primarily on the shafts of
spines of MSN computationally speaking, this is
suggestive of a multiplicative rather than additive
process. This can be done by introducing such a
multiplicative factor in the synaptic strength ws;
assuming by documentation, the excitatory effects
in the direct pathway and in inhibitory effects in the
indirect pathway. Thus, for direct pathway, the
afferent synaptic strength ws is modified to ws (1-
Ae), where A, means the degree of tonic DA
modulation, and obeys 0< A.< 1. The function in
(15) now becomes H [ci- €/ws(1-Ae))]. The
equilibrium output x%; in the i™ channel of the
indirect pathway is now:

x| = mwy(L = A)ci — €lH; T () (16)

In order to ease notation, we write the up state as
H; T (A.). Similarly in the direct pathway:

X_ig = m[w(1 — Ag)ci; — €]H; T (Ay)

(17)
Finally, all these sets of equations coupling
compartments with all variables (currents,
synapses, modulation) were solved by replacing
the respective differential equation trough a
difference equation that is solved at discrete time
intervals [95]. This has been done through a
computer neural simulator system over a high
demand computer environment. The single neuron
simulations have been built in "NEURON"
simulator [96], and then migrated and incorporated
into a Network running in a "GENESIS" simulator
[41, 97]. The latter was preferred because it used
implicit methods of numerical integration for
accuracy besides its faster numerical capabilities
for integration by these methods [72, 78].

4. Results and discussion

The running simulation output was processed in
real time for graphical visualization of the network
activity. The data was passed through a Cartesian
plane, representing the position of MSN neurons
as triangles and squares. Then a MSN patch
represented by the squares were stimulated and
scale colored as their membrane potential
changed. Some random MSN potential plots where
added (four in the video shown in suppmentary
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material, representing arbitrarily named cell 1, 1
55, 161, 368. International System Units). The
cortical stimulus simulated was defined as a 50
“spot flash” applied 20 milliseconds to only the fifth
part of the active patch.

For demonstrating the validity of our model, we
analyzed our outputs in two phases: in phase 1 we
compared the cell units modeled against the most
accepted results in biological research [47,98-100].
The morphology and activity of those are based in
the circuit, shown in Fig 2. The effect and
parameters simulated in the circuit are shown in
table 1. The effect of the PLTS, not entirely
characterized yet as an homogeneous population
of cells, has been reported to actively participate in
the regulation of the balance between excitation
and inhibition in cortical circuits to the NS,
Beierlein et al. [122 ], Silberberg and Markram [123
] and Kapfer et al. [124] but only evoke a sparse
and relatively weak GABAergic IPSCs in MSN
[67]. So, we do not have conclusive results on its
direct effect on GABAergic MSN. Although is
theorized about whether its main function focuses
on the modulation of SOM / NPY NOS [68,69,70].
Because of that, for purposes of this model are not
considered.

The main insights of the waves’ morphology of
MSN, FS [101] and TAN [102] indicate that
neurons could be visualized in the Time/Voltage
plots, although some conductance need to be
adjusted from the experimental findings to fit the
curves obtained from the electrophysiological sets
where real neurons are recorded.

The anomalous rectification classically reported in
MSN need to be verified in function of the currents
modeled [47]. Classically up to six different
conductance have been described in MSN
[50,103-105], but data about their respective
weights against each other and proper location in
the cell compartments, are neither available nor
complete [106].

In the state-of-art regarding experimental
procedures which have been done with MSN in
vitro and in vivo, methodologies that require
isolating or blocking each current have been used
[107,108]. Thus, complete model would need the
simulation of these six conductances mainly
characterized, plus the network parameters
selected, which represent a series of variables that
are difficult and impractical to analyze as a whole.
We have chosen to simplify the model

Cell Type Input Resistance | Time constant (ms) Effect on MSN Dopaminergic effect
MQ simulated
MSN 20-60 5-15 - Only considered
Depolarization
FS 50-150 7-9 Proximal synapses. | Depolarization and
Can delay or block | increase of Input
completely spiking resistance
on PSP
TAN 71-105 17.8-28 Moderate effect, as none
modulator of
excitability of MSN
sensorial activation
from cortex
(Misgeld 1986)

Table 1. Cell properties used in simulated NS circuitry.
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representing the activity of each cell with a leaky
integrator function, the procedure for this is
explained in supplementary material**. The model
used only one projection cell for analysis, leaving
the other inactivated for further study. There are
different procedures available where some steady
values vary such as input resistances or, where
time constants are mostly altered by either micro-
pipettes, or the type of recording device [109].

volts

Most of the experiments have been carried in
different species [110,28,54,85,86], and tough
there is some acceptance on the fact that are
equivalent, there is still a lot of variables that
must be taken into account for a mathematical
model that goes from simple to complex
structures, and can deliver a whole output of
all these isolated conductances in real time
[111-113].
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Figure 2. Voltage output graphics simulated against biological models, taken from known and accepted reports.
A: Simulated output from MSN. B, MSN from experiments performed by Wilson & Kawaguchi in 1996 [50].
C. Simulated output from FS GABAergic interneurons. D. FS from experiments by Tepper in 2010 [101]. E,

Simulated Output from TAN, Cholinergic Inter-neurons. F. Results reported by Bennet et al. in 2010 [102]. In all

simulations, ionic environment could be reproduced in the network for the equivalent of 0.5 milliseconds of the

biological activity. The graphics B,D and F are not comparatively scaled. With A,C and E.
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Considering all this background and though the
simulated neurons act real enough to be compared
to real ones, it is still under consideration whether
the encountered differences are due to a variable
not considered or to a current or neural integration
just not discovered yet. In electrophysiology,
reports are still discussed to determine whether the
conductances actually characterized are solid
enough by themselves or there are still other

different interactions to be discovered [114]. The
whole picture can be taken with a model that
integrates the knowledge really available, that
would encourage further use and perfecting of this
model. Similarly as MSN's, in the case of FS and
TAN neurons the results were still accurate
enough but with more differences derived from the
very novel biological data available regarding their
function [101, 102,115].

ost”

11 &

0.4

= MSMN/P1
MSM |/ P2

“ TAN /CHOLIN
GABA/FS
GABA/PLT

02

02 04 08

Figure 3. A, Representation of the Simulated Neural Units over a Cartesian plane. The main neuron MSN is
segregated in a patch (MSN/P1) and matrix (MSN/P2) region, representing 97% of the whole population.
TAN and FS interneurons, representing 5% of the network, are incorporated and connected using a pattern
described in the text. In the bottom: Phase trajectories in A-space, product of double KL decomposition.
This represents the responses of three different stimuli on the network, and over two different conditions:
B without the influence of DA Neuromodulation (top), C, with the influence of DA Neuromodulation.

The first decomposition represents a wave as a linear combination of a series of spatial modes with time-varying
coefficients.Thus, the wave is adequately represented (as has already been shown by Senseman and Robbins
[10]) by a trajectory in a phase space called A-space. Most of the energy contained in the original wave can be

captured by the decomposition coefficients corresponding to the first three principal modes.

A further reduction of the dimensionality of the wave is achieved by a second KL decomposition which maps the

trajectory in A-space into a point in a low-dimension space. A-space is spanned by temporal modes.
The data was processed by using windowing techniques, including a sliding encoding window
in the wave encoding process and expanding detection window (EDW) and sliding detection window
(SDW) techniques in the information decoding process, to estimate the position of stimuli in space (see
supplementary material for visualization**).
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In phase 2 we analyzed the model’s behavior as a
whole network (fig 3a). A video reconstruction of
this is available in supplementary material** The
main issue at this stage is testing against the
biological specimen, because there are no
experiments available to compare. Nonetheless,
we do have information about field responses and
postsynaptic responses, which indirectly have
been useful for inferring the activity of the NS.
Notwithstanding the lack of biological data to
compare against, cortical and sub-cortical waves
have been analyzed in many computational
models as a Bayesian problem [13,116], using two-
step Karhunen_loeve (KL) decomposition. Briefly,
each time-step was split up into a sequence of 10
ms overlapped encoding windows. Within each
window, the movie was projected as a point using
double KL decomposition in a suitable low
dimensional B-space (fig 3b). The sequence of
point in the B-space rise a strand, called a [3-
strand. Each NS wave was represented as a
vector-valued time series given by the B-strand,
and the detection task operated by DA was to
discriminate strands from different combination of
modulation status, empirically tuned as explained
above. That is how the problem was reduced to a
Bayesian Problem. Expanding detection windows
(EDW) a sliding detection windows (SDW) where

{A)

0.9;
0.6

0.3

©

Error probability
g
g
g

03

08}

03

applied over the B-strand. The combination of
encoding and decoding windows made it possible
to localize the NS target in space as a function
related to double-input-time-delay stimuli. This
means that this analysis enables to show, in a
rather simplified way, activation/no activation of NS
network patterns against activation/no activation of
DA Modulation (fig 4), demonstrating with it that
modulation of DA over the tree neuron network
configured in the framework is possible.

The leaky integrator function that is present here is
a classical framework that uses simplified neuronal
units that are just represented as circuits without
considering the operation electric properties of
ionic conductances within the cell [117]. It has
been used for building proposals of data
processing in neural structures [78, 111], but all
those mathematical constructs cannot be
contrasted against the biological models for
feedback because their own information nature
and mathematical building are not the same,
especially from the point of view where the neural
tissue processes information in an analogical
manner [83, 90, 118, 119]. For this reason, there
are different proposals and alternatives against
leaky integrator function elsewhere, specially using
the fuzzy integrator technique [7, 120, 121].

(B)

0.9

06 :
0l NJ»/W

0.9
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0.3

ol

Ending Time (ms)

Figure 4. Detection of error probability (activation rate) as a function of the ending of time windows.
A. Detecting the stimuli by EDW approach. B. By using SDW approach. C. With DA modulation, by EDW
approach. D. With DA modulation by SDW approach. This analysis shows the overall action of DA
modulation over the probabilistic activation of the NS simulated network.
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The modeling work considered above, can be
applied to demonstrate signal selection by the BG,
and the proper response of the cells that are
mathematically simulated and embedded on it,
rather than theoretically apply action selection per
se. So that we can convincingly show that the
basal ganglia model is able to operate as an
effective action selection device, we believe it
needs to be embedded in a real time sensory
motor interaction with the physical world, or else
through a given construct that simulates so.

** Supplementary Material Available online in
http://www.academs.mx/jart605
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