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ABSTRACT

The aim of this paper is to solve the problem of placing safety stock over a Logistic Network (LN) that is represented
by a Generic Bill of Materials (GBOM). Thus the LN encompasses supplying, assembling, and delivering stages. We
describe, in detail, the recursive algorithm based on Dynamic Programming (DP) to solve the placing safety stock
problem under guaranteed-service time models. We also develop a java-based application (JbA) that both models the
LN and runs the recursive DP algorithm. We solved a real case of a company that manufactures fixed brake and
clutch pedal modules of cars’ brake system. After running JbA, the levels of inventory decreased by zero in 55 out of
65 stages.

Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry.

RESUMEN

El objetivo de este articulo es resolver el problema de colocacién inventario en una Red Logistica (LN) que es
representada por una Lista de Materiales Genérica (GBOM), de manera que la LN tiene etapas de suministro,
ensamble y entrega. Describimos, a detalle, el algoritmo recursivo de Programacién Dinamica (DP) para resolver el
problema de colocacion de inventario en modelos de servicio garantizado. También programamos una aplicacién en
java (JbA) que modela la LN y ejecuta las operaciones recursivas del algoritmo de DP. Resolvimos un caso real de
una empresa que manufactura médulos de frenos y pedales del clutch del sistema de frenos utilizados en los autos.
Los resultados muestran que los niveles de inventarios se reducen a cero en 55 de 65 etapas después de ejecutar
nuestra JbA.

1. Introduction

or solve the routing and inventory problem
simultaneously [23,26]. Moreover, companies have
to dynamically evaluate the LN operations [24] and
reduce the complexity generated by the product
diversification [25] to reach the global aim of cost
reduction.

Manufacturing companies are highly pressured
into producing quality products and delivering them
to the right location, at the right quantity or amount,
and at the right place, subject to reduce both
manufacturing and logistic costs. In order to reach
this aim, companies have realised that a global
approach is required to coordinate operations
across the entire Logistic Network (LN) or Supply
Chain, e.g. share information to minimise the

Global inventory management is an important
strategy in reducing manufacturing and logistic
costs because a proper inventory policy could

bullwhip effect [1]; pass products' demand to
upstream members to reduce inventory levels [2]

result in reducing the amount of safety and
pipeline stock.

538

Vol. 12, June 2014




Placing Safety Stock in Logistic Networks under Guaranteed-Service Time Inventory Models: An Application to the Automotive Industry, L. A. Moncayo-Martinez et al. / 538-550

In literature, the problem of placing inventory is
divided into single stage and multi stages. The first
one is a difficult but well studied problem, the
models used to solve it are deterministic (e.g.
economic order quantity and wagner-whitin model)
and stochastic (e.g. (r,Q) and (s,S) policies)[3].
The multi stage problem could be either stochastic-
service (SS) or guaranteed-service (GS). The main
difference between SS and GS is the way in which
a stage supplies components or assemblies to
other downstream stages.

Backorders are allowed in SS multi stage problem,
i.e. a fraction of an order cannot be filled at the right
time due to a lack of available supply [4-5]. Unlike
SS model, the GS model must serve the complete
order just in a guaranteed-service time .

Our paper deals with GS models in multi stages,
thus the problem is to minimise the cost of the
safety stock that every stage must hold in order to
serve its downstream stages just in the o, given
that the days of inventory required are U = 6+t -
o, where & is the time in which a stage must be
served by its upstream stages and ¢ is the time
spent by a stage to perform its task.

The novelties of the proposed paper lie in the
methodology employed to solve a real-life LN and
in the java-based application programmed to solve
the DP algorithm used to solve the GS inventory
placing problem [2]. Additionally, we provide a
pseudo code full of practical insights to carry out
the recursive operations.

We implemented and applied the GS time
inventory model (GSTIM) to a company that
manufactures fixed brake and cluich pedal
modules. We both selected the product with the
highest demand and described the steps followed
to collect the necessary information to run the java-
based application.

In the following section, a literature review of the
GSTIM is provided. In section 3, the model is
defined and some assumptions are stated. In
section 4, the methodology used to implement the
GS model is depicted, so also the DP algorithm
and the java-based application are described. A
real case is described in section 5. Finally, results
are presented in section 6 and we draw some
conclusions in section 7.

2. Related Literature

In this section, we cite a set of approaches related to
GSTIM. Back in 1958, Simpson [6] solved the
problem of placing inventory over a serial process.
Adjacent stages were coupled together to equate the
incoming service time of a downstream stage with
the outbound service time of its upstream stage. The
optimum inventory level per stage was found by
determining the service time. It was proven that the
optimal service time in serial processes is found in an
extreme point property where the outgoing service
time is equal to either zero or its incoming service
time plus its processing time, i.e. using an all-or-
nothing inventory policy. A boundary demand is
used, thus it is interpreted as the amount of inventory
a company wants to satisfy from its safety stock.

Later, the same problem was solved by standard
operations of DP in [7] and was extended to supply
chains modelled as assembly networks [8], to
distribution networks [9], and to spanning trees [10].

In a recent approach, a stage could include more
than one upstream or downstream stage [2,11],
so we have to notice two important facts: i) in
case a downstream stage is served by multiple
upstream stages, the downstream stage has to
wait for the component with the longest service
time, and ii) in case an upstream stage serves
multiple downstream stages, the upstream stage
quotes the same service time to all the adjacent
downstream stages. Moreover, the assumption
about demand boundary remains and it is
supposed that the LN is designed already, thus
the time and cost of every stage is known.

The complexity of the aforementioned approach has
been proven to be NP-hard [12, 13]. As a result,
modification to the DP algorithms have appeared in
literature to solve bigger instances than those solved
efficiently using the DP standard algorithm, e.g.
CPLEX is used to iteratively solve a piecewise-linear
demand once redundant constrains are added [14];
branch and bound algorithm is used to reduce
complexity [15]; tailor-made heuristic has been
proposed [16]; and general purpose genetic
algorithms are used to solve the problem [17]. Other
generalizations that do not apply to our real-life case
included: capacity constraints [18], LN design
constraints [19], non-stationary demand [20], and
stochastic lead times [21].
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3. Problem Definition

The problem is represented by a network G={V,E},
in which the set of vertices represents the different
stages s, V={1,...,s,...,S} where S is the total
number of stages. The set of edges represents the
relationship among the stages,
E={(1,9),...,(s,5'),...,(s",S)} where (s,s') means that
s' is a downstream stage of s or s is an upstream
of s'. As stated in section 1, there are: a subset of
supplying stages (PcV) that provide the
components or raw material; a subset of
assembling stages that manufacture a sub- or final
assembly (ACV); and a subset of delivering
stages (Dc V) which each one represents a
customer who asked for a specific product. Notice
that if a customer asks for m products, then there
are m delivering stages. Therefore, if n customers

ask for m, products, the LN has znmn delivering
stages (s D).

In order to mathematically define the problem, we
describe four important assumptions. First, the
demand at every stage s for r periods of time is
bounded to Fs(z) and the demand at stage s is a
random uncorrelated variable x(z) with mean

X, (r) and standard deviation cs(7). Fs(z) is set by
companies as a service policy, thus if we assume
that x(9)~N(y,0), then Fy(7) = x (7) + Ksoi(7)
where K; is a given safety factor. Second, every
stage has a periodic-review  base-stock
replenishment inventory policy with common
review period, thus all stages seV place their
demand (multiple by a scalar ¢s) on their
upstream stages s' at the common review period.
Moreover, the base stock policy (B;) is set to Bs =
Fs(z), so the average amount of safety stock at

stage s is Is =F4(7) - xs(r) = Ks;os(7) . As the
demand is a random uncorrelated variable, then

os(7) =Gs\/; (see [6]), where o is the standard
deviation over a unit of time. Third, each stage
quotes a guaranteed-service time (ws) to their
downstream stages, hence s will fulfii every
demand occurred at time U = & + t; - ws, (notice
that 7= U) where & = max .. . {os} , i.e. the

net replenishment time is equal to the
replenishment time (85 + t; ) minus the guaranteed
service time. In practise, U stands for the days of
inventory required to serve a downstream stage in
o days.

According to the assumptions, the problem to find

the guaranteed-service times per stage that
minimised the safety stock is [2]:

Min hY Cko S +t —o, (1)

ds+ts— w20 ()
ds- ws20, V sis,s)e E (3)
ws<Q, V se D (4)
ds, ws 2 0 and integers V se V (5)

where h is the per-unit holding cost and C; is the
cumulative cost at stage s computed by

C,=c + zs,_(s,s) C,. where c; is the cost at stage

s. Eq. 1 is the objective function that minimises the
total safety stock. Eq. 2 assures that the days of
inventory are non-negative, thus the service times
are feasible. Eq. 3 guarantees that for a stage
s:(s,s) e E the guaranteed-service time s is not
greater than the time in which the stage s’ must be
served. Eq. 4 assures the guaranteed-service time
to the delivering stages (s D) must be no greater
than the user-defined maximum (). Finally, the
times must be non-negative and integer (Eq. 5).

4. Problem Solution

The proposed framework encompasses seven
steps depicted in Figure 1. The first step of the
framework is to build the GBOM, in which the
goes-into relationships can be viewed, i.e. the
common structure of a set of products. The result
is a directed graph without cycles (see [22]). In
step 2, information about the cost (c;) and time (£;)
per stage must be collected. This information could
be computed using the accounting records. In step
3, the demand is fit to a distribution.
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Current Logistic Network Optimised Safety Stock

7. Imy tion of the optimised model

Data Collection Does the

solution satisfy

. Build the Generic Bill of Materials R - Simulation l-

Colleet the cost and tme per stage i i "
a e requirements’?
Fitting demand to a distribution

P

- hypothesize normal distribution This part is nol carried out Z
- estimate the distribution paramelers " in this paper g
- perform a goodness-of-fit test .
=

;‘;

Java-bascd Application Software é'

Input Data
4. Model the Logistics Network
set_of _edges.txt create_graph();
set_of vertices.txt set_the_generic_ BOM();
products_components.txt set the products assembly(); 6. Run the DP Algorithm
sel data();

compute_safety_stock_per_stage():
set_v_and_w_per_stage();

ﬁ. Run §f ing Tree Alglll'il]ll‘l" K

> order_stages():

L

Figure 1. Proposed framework to place safety stock.

Using the information generated in steps 1, 2, and

3, three plain-text files are created to input data Algorithm 1: order_stages()
about the set of edges and vertices as well as Data: G ={V, E}
products' components to the java-based Result: C,,0, M, VsV
application (JbA). It uses step 4 to read the input 1 begin
data and handle them to carry out steps 5 and 6 2 set k=1
which are described in section 4.1 and 4.2, 3 set L ={};
respectively. The JbA outputs the time in which a | while V # {} do
every stage must be served (3s) and the 5 select a stage s € V;
guaranteed-service time (ws) for all the stages, & if there is just one (s',s)V (s, s') € E then
thus the days of inventory are set. Using those 7 label s with index % (k,);
values, the optimised model is implemented in step B EsLs
7. Notice that after running the JbA, it is 5 dalihs S‘; B, 1
recommended to simulate the model but in this A s Bt T '
paper we only present the safety stock placement s J
problem. 11 S

12 else
4.1 Spanning Tree Algorithm = select another s € V;

14 go to 6;
Algorithm 1 depicts the way in which a graph 15 end
G={V,E} is representing as a spanning tree. Every id end
stage s has attached a label k represented by ks, i il

e.g ks=3 means that stage s is labelled three.
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So as to add stage s to the set L, s must be linked
to just one either downstream or upstream stage
(see line 6), thus the result is a set of indexed
stages L={1s, 2, ..., ks, (k*+1)s, (k+2)s, ..., S5 }.
Notice that the selection of stage s from V (lines 5
and 13) is at random, hence there could be more
than one way to index the stages in L.

4.2 Dynamic Programming Algorithm

In order to run the DP algorithm, the data related to
the cumulative cost (C;), the standard deviation
(os), and the maximum replenishment time (M;) per
stage must be computed as shown in Algorithm 2.
Notice that o5 is multiplied by a scalar ¢ s which
stands for the number of units of components s
required to carry out stage s.

Once we have computed all the necessary data,
the forwarding operations of the DP algorithm are
carried out by computing Eq. 6 as shown in
Algorithm 3.

O (S,0)=hCko o+t —o

6
£ 3 @+ Ye (o ©)
s g

The first term is the cost of placing inventory at the
current stage s. The second term is the sum of the
minimum cost of placing inventory at the upstream
stages s'.(s',s), given that the index of the upstream
stages ks is less than the index kg, ie. fy(w) =
mins{®s(5,w)}. Notice that ws is equal to & (see Eq.
3) because fy() is non-increasing in the service time
at stage s'[2]. The third term is the minimum cost of
placing inventory at the downstream stages s"(s,s’)
given that k<kg, i.e. gs(0) = min {Og(5,w)}. o5 = ws
(see Eq. 3) because gs() is non-increasing in the
service time at stage s".

Algorithm 3 is used to solve Eq. 1 and is divided
into four parts. The cost of the safety stock ®¢(0,®)
is computed for every stage s in the order they are
indexed in the spanning tree L (Algorithm 1). Then,
the cumulative cost of the upstream and
downstream stages is added to ®4(J,w). Finally, for
the last stage indexed S; in L, the minimum ®¢(5, w)
is find. This is the minimum safety stock cost, i.e.
this is the solution to Eg. 1. The stage's
guaranteed service time is ® and the time in which
it must be served is 5.

Algorithm 2: set_data()

Data: G ={V,E}, Qand ¢,,t, VsV

Result: C;,0,, M,V s
begin

[

s'i(s',s)

I 2
> b0

s':(s,8")

maximum replenishment time, M, = t, + max {.-U,,,;}:_

s":(s',8)

2 forall s € V do
cumulative cost, Cs = ¢ + Z Cs;
3
standard deviation, o, =
4
5
6 end
7 ;
8 set the safety stock factor h
9 end

542
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The first part (lines 5-11) computes the safety
stock cost for every stage s for all the values of ¢
and o. An upper bound of the service time in which
a stage s must be served is setto 6 £ M- t;. The
upper bound for the guaranteed-service time is
w< M; . The lower bound for §and wis set to zero
but Eq. 2 (line 7) must be satisfied to guarantee
feasible solutions.

The second part (lines 12-18) adds the minimum
safety stock cost of the downstream stages s:(s,s’)
to the cost of stage s. In line 14, Eq. 3 is satisfied
by setting w = 65~ The third part (lines 19-27) adds
the minimum safety stock of the s"(s’,s) to the cost

of the stage s. Line 21 is used to validate the need
of safety stock, i.e. if & is bigger than Mg, then
there is no need of safety stock and no cost must
be added to the ®4(5,w) .

Otherwise, the minimum cost of the downstream
stage must be added.

Finally, when the Algorithm 3 reaches the final
stage s in L then the minimum safety stock is
known (lines 30-33). The solution to Eq. 1 is the
minimum value of ®4(5,w) , Jis the time in which
this stage must be served and wis the guaranteed-
service time.

Algorithm 3: compute_safety_stock_per_stage()

Data: G = {V, E}, L = {1,,2,, ..

ke (k4 1, (k+2),. .., Se}

Result: The minimum cost of placing inventory, i.e. solution to Equation 1

1 begin

2 set k= 1;

3 while £ < S do

4 get stage s indexed k (k) in L;

5 for v =0 tod =M, -1, do

6 for w =10 fo w= M, do

7 if  +t, —w >0 then

8 | O, (J,w) = hCikyo/U + 1, —w
9 end

10 end

11 end

12 forall s: (s,s") € ' | ky < ks do

13 for w =10 tow= M, do

14 set w = 1y

15 get go (Jy) = min, { Py (V,w)};
16 O, (W, w) =P, (Y, w) + g (Fy);

17 end

18 end

19 forall &' : (s',s) € E | ky < k, do
20 for =0 to = M, —t, do
21 if v =0 < M, then
22 set ¥ = wgy;
23 get fo (wy) = ming {®@y (J,w)};
24 (I)s (7-9-"-"") = ¥s 1-935"‘) 2a fs’ (w.‘s')
25 end
26 end
27 end
28 k=k+1
29 end

30 get @, = (v, w) of the last stage s indexed S, in L;
31 get the minimum value of ®, (¥, w). This is the solution to Eq. 1;

32 set the guaranteed-service time of the last stage s in L to w, = w.;
33 set the time in which the last stage s in L must be served to vy = ¢
34 end

Journal of Applied Research and Technology
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In order to set the &s and ;s for all the stages the
Algorithm 4 is run, once the & and ws are set for
the last stage in L. This algorithm is based on Eq.
3, thus it is guaranteed that for two stages (s,s) e
E the guaranteed service time of stage s is less
than or equal to the time in which stage s’ must be
served, i.e. ws < ds. Without loss of generality, we
can assume that ws = o5y [19] as set in lines 8 and
19 in Algorithm 4.

This algorithm begins with stage s indexed ks.; and
backtracks until the first stage in L is reached.

When the algorithm reaches the stage s, the
values of either oy | s"(s',s) or ws | s"(s,s) of the
stage s’ have been set already. As the LN is
represented by a spanning tree (L) there is one
and only one link (s',s) or (s,s") that the index ks is
greater than the index k.

Lines 7-13 of the Algorithm 4 set &5 of s when ws
of an upstream stage s’ has been set, thus &; =
ws, according to Eq. 3. So as to set the value of
ws, the minimum value of ® in Eq. 6 is found,
given that o5 is known.

Algorithm 4: set__and_w_per_stage()

Data: G = {V,E}, L = {1,,2,,.

Result: d,,w, V s

--rkw(k'i' l)m(k"i_‘z)w-“ass}

1 begin

2 get s and wy of the last stage s in L;
3 delete the last stage s in L;

4 set k:=85—1;

5 while V # {} do

6 get stage s indexed k, i.e. kg;
7 forall 3 ' : (¢',s) | ke > ks do
8 set v, = wy;

9 if s ¢ D then

oo get min {® (J,,w)};

11 set w; = w;

12 end

13 end

14 forall 3 ' : (s,8') | ky > ks do
15 if M, < Jy then

16 | set wy = Mg;

17 else

18 | set wy = Vyr;

19 end
20 if 3¢ : (s, s) then
i get 111}11 {® (0, ws) };
22 set ¥, = ¥;
23 else
24 | set 1, = 0;
25 end
26 end
27 delete the stage s indexed k in L;
28 set k:=k—1;
29 go to 5
30 end
31 end
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Lines 14-26, set ws oncethe &' | s' : (s, s')
is known. When Ms > 3§, there is no need to
place safety stock because the downstream stage
s could wait enough to be served. In this case ws
= Ms (line 16), otherwise line 18 is used. To set
Js, the minimum value of 9 is found given that w
= ws (Eq. 6). If stage s does not have any
upstream stage J9; = 0 (line 24 If stage s does
not have any upstream stage §s = 0 (line 24).
Finally, line 27 deletes the stage s which has
just been set ws and J; , line 28 deletes the
current stage, and line 29 sends the algorithm to
evaluate if there are more stages that required
their times to be set.

k| 41

42

43

13

1 3 10 18 4
9 M4
45
4 n 19
35
7
46
1] 38
5
2 »
§ 12
3
7 13
4 40

16

48

49

51

52

5. Real-life Application

The study of a real-life application was carried out
in a manufacturing plant that assembles fixed
brakes and clutch pedals modules. The company
is located in the business automotive cluster in
Northeast Mexico and assembles 24 different
models, even though we selected the model with
the highest sales volume. The LN of the model is
depicted in Fig. 2 and the related data is shown in
Even though the data in Table 1 have been
modified as requested by the company, the LN is
the current one and the results and conclusion
drawn from this study are acceptable.

53 57

61 62 63 64 65

9

55 60

Figure 2. Real-life Logistic Network.
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stage cost] timeg stage cost time
() name (cs) (ts) (s) name (cs)|  (ts)

1 99664 11.7] 15 34 | Yoke RH 29.6 0
2 99657 34.6| 10 35 | 285567 0.9 60
3 Cutting 0.4 0] 36 | Yoke LH 11.4 0
4 99658 10.6] 10 37 | 285555 0.7 30
5 285627 1.1] 30 38 | 285591 1.6 40
6 285635 12.7] 30 39 |[285549 0.9 35
7 293852 4.3] 75 40 | Support-Clevis Union 1.4 0
8 99662 4.0/ 15 41 | Cutting 0.4 0
9 Cutting 0.5 0| 42 | Cutting 2.6 12
10 Folding 1.5 0| 43 | Painting 2.4 0
11 Cutting 0.4 0| 44 | Yoke RH Bushing Insertion 3.7 0
12 Worm Shaft Housing 0.5 0| 45 | 285529 0.9 35
13 285675 3.5| 45 46 | Yoke LH Transmission Shaft 4.2 0
14 285667 11.90 60 47 | Folding 1.9 0
15 285691 9.5 40 48 | Cutting 0.2 0
16 Cutting 0.3 0] 49 | Arm Yokes Union 4.3 0
17 Folding 3.0 0] 50 |285514 0.8 40
18 Yoke RH 13.7] 0] 51 |[285603 0.7 40
19 Leveler 11.1 0] 52 | 285519 7.9 30
20 99663 10.90 120 53 | Welding 4.1 0
21 285643 0.4] 55 54 | Clevis Bolt Insertion 3.3 0
22 285651 0.3] 65 55 |293482 4.9 60
23 285611 0.4 30 56 |291026 25.7| 55
24 Transmission Housing | 0.7 0| 57 | Main Bracket 32.7 0
25 285619 0.8/ 70 58 | 287723 3.0 50
26 285659 0.3] 30| 59 |285552 0.7 80
27 Plate 4.4 0| 60 | Pedal Pad Insertion 1.2 0
28 Arm 38.0 0| 61 | Pivot Bolt Insertion 1.8 0
29 Welding 4.8 0| 62 | Functional Tests 0.8 0
30 Cutting 0.4 0| 63 | Packing 0.9 0
31 99675 23.6) 10 64 | Shipping 0.7 0
32 Welding 4.8 0] 65 | T1ADJ 238.9 0
33 285585 1.1 40

Table 1. Data of the Real-life Application.

The manufacturing process of the brake pedal
comprises a phase of pre-assembly and a phase of
assembly. In the pre-assembly phase, the
components, supplied at the delivering stages, are
welded to each other to go to the next phase. The
main components are the switch flag, the arm, the
plate, and the main bracket.

The switch flag is produced by pressing a roll of
steel according to the required length. The plate is
produced in the same way the switch flag is, except
for the length of the piece and the steel thickness.
The arm and the main bracket are produced when a
stamped piece is folded.

In the assembly phase, the arm, the plate and the
switch flag are welded to each other, then painted
by an external provider. Intermediately, after this
the painted piece and main plate are taken to the
assembly shop. There, the bushes and pivot bolts
are inserted into the arm, the plate, and the flag.
Then the pedal pad is assembled and the
bolts/screws are adjusted according to the
desired torque.

Finally, a functional test is carried out and the
assembly is labelled, packed, and sent to
warehouse ready to be shipped.
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Based on historical demand, we set the value of
demand and standard deviation to psep=32'500$
and ocsep = 534% units per day. The safety factor
per stage is ks =1.645 and the unit holding cost is
h=0.2 . The algorithm was run in a Lenovo T520
computer with an Intel Core i5 processor at
2.5GHz and 4GB in RAM memory

6. Results

One of the most important issues in the
guaranteed-service time inventory models is the
cost of safety stock for a given guaranteed-service
time (Q) in the delivering stages. Hence, we run
the algorithm by setting ©=0,10,20,...,100 as
shown in Figure 3. According to it, the maximum
safety stock is $171'110 when the guaranteed-
service time is set to zero, i.e. Q=0.

We can see from Figure 3 that the shorter the
guaranteed-service time, the higher the safety
stock cost. In our real-life logistic network (Figure
2), the safety stock cost is lower when the Qis
increased from 0 to 40 days. After that, the cost
remains constant ($40'863%) until Q=80 days, i.e.
ws < 40 even though Q = (40,80), see constraint
4. If we set =80, the safety stock cost is zero

because of the maximum replenishment time of
the last stage sg5, see Table 2. In this case, there
is no need to keep safety stock.

In Table 2, columns 1, 2, and 3 are common for
all the values of Q. The data shown in columns
4,56, and 7 are computed when Q= 40. As
shown in columns 4 and 5, the values of the &;
for the stages when {; = 0 is equal to and ws, so
the days of inventory U; are zero, thus these
stages do not hold any inventory. On the other
hand, in eleven stages there is need to stock
inventory because the large times t;, see Table
2. The largest one is t5,=80 days, thus the days
of inventory is set to Us=40. Stage S
represents a component named 285552 which is
brought from overseas. The long-time affects the
position of inventory of the successive stages
because the time in which those stages perform
their task is zero.

Although the company must hold 40 days of
inventory of the component 285552, its safety
stock cost is not the highest one. Component
291026 (sss ) holds 10 days of inventory with a
cost of $17'434, thus the company decided to
implement a more tight control over this
component.

Safety Stock Cost (Eq. 1) —@—

Safety Stock Cost (x10%)

20 40

60 100

Guaranteed-service time (£2)

Figure 3. Safety Stock costs for different values of Q (Eq. 4).
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stage Cumulative Max. replenishment Days of Inventory

(s) cost (Cs) time (Ms) s ws | inventory (Us) cost
1 11.7 15 0 15 0 0
2 34.6 10 0 10 0 0
3 12.1 15 15 15 0 0
4 10.6 10 0 10 0 0
5 1.1 30 0 30 0 0
6 12.7 30 0 30 0 0
7 4.3 75 0 40 35 4’456
8 4.0 15 0 15 0 0
9 35.1 10 10 10 0 0
10 13.6 15 15 15 0 0
11 11.0 10 10 10 0 0
12 18.6 75 40 40 0 0
13 3.5 45 0 40 5 1’371
14 11.9 60 0 40 20 9'321
15 9.5 40 0 40 0 0
16 4.3 15 15 15 0 0
17 38.1 10 10 10 0 0
18 27.3 15 15 15 0 0
19 22.1 10 10 10 0 0
20 10.9 12 0 12 0 0
21 0.4 55 0 40 15 271
22 0.3 65 0 40 25 263
23 0.4 30 0 30 0 0
24 44.2 75 40 40 0 0
25 0.8 70 0 40 30 767
26 0.3 30 0 30 0 0
27 8.7 15 15 15 0 0
28 76.1 10 10 10 0 0
29 54.2 15 15 15 0 0
30 11.3 12 12 12 0 0
31 23.6 10 0 10 0 0
32 89.6 15 15 15 0 0
33 1.1 40 0 40 0 0
34 83.8 15 15 15 0 0
35 0.9 60 0 40 20 705
36 22.7 12 12 12 0 0
37 0.7 30 0 30 0 0
38 1.6 40 0 40 0 0
39 0.9 35 0 35 0 0
40 47.8 75 40 40 0 0
41 24.0 10 10 10 0 0
42 2.6 12 0 12 0 0
43 92.0 15 15 15 0 0
44 88.6 40 40 40 0 0
45 0.9 35 0 35 0 0
46 78.8 75 40 40 0 0
47 25.9 10 10 10 0 0
48 2.8 12 12 12 0 0
49 264.6 75 40| 40 0 0
50 0.8 40 0 40 0 0
51 0.7 40 0 40 0 0
52 7.9 30 0 30 0 0
53 32.8 12 12 12 0 0
54 277.3 75 40| 40 0 0
55 4.9 60 0 40 20 3'838
56 25.7 55 0 40 15 17°434
57 65.5 12 12 12 0 0
58 3.0 50 0 40 10 1’662
59 0.7 80 0 40 40 775
60 309.1 75 40| 40 0 0
61 380.1 80 40| 40 0 0
62 380.9 80 40| 40 0 0
63 381.8 80 40| 40 0 0
64 382.5 80 40| 40 0 0
65 621.4 80 40| 40 0 0

Table 2. Total safety stock when Q =40.
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7. Conclusions

In this paper, we solved a real-life application of a
company that assembles fixed brakes and clutch
pedals. We applied the dynamic programming
algorithm developed in [2] and we proposed a
framework to solve mid-size logistic networks (see
Figure 1).

The framework is based on a Java application
called JbA. We provide the pseudo code of the
algorithm to place safety stock inventory in
guaranteed service time models. The JbA solved a
65-stage logistic network in about 341ms, thus the
implemented algorithm solved it efficiently.

According to the company, it holds four weeks of
safety stock for most of the components and
assemblies. After the JbA is run, we conclude that
most of the stages do not hold inventory as shown
in Table 2 and just stages s7, S»5, and sso require
safety stock for about 4 weeks.

Future extensions of this algorithm must be
implemented in real-life applications. Some
exertions include stochastic times, non-stationary
demand and capacity constraints. Moreover, there
is a need for develop algorithms based on new
optimisation techniques given that the guaranteed-
service inventory models has been proven to be
NP-hard.
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