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ABSTRACT

The accuracy on time delay estimation given pairs of irregularly sampled time series is of great relevance in
astrophysics. However the computational time is also important because the study of large data sets is needed.
Besides introducing a new approach for time delay estimation, this paper presents a parallel approach to obtain a fast
algorithm for time delay estimation. The neural network architecture that we use is general Regression Neural
Network (GRNN). For the parallel approach, we use Message Passing Interface (MPI) on a beowulf-type cluster and
on a Cray supercomputer and we also use the Compute Unified Device Architecture (CUDA™) language on Graphics
Processing Units (GPUs). We demonstrate that, with our approach, fast algorithms can be obtained for time delay
estimation on large data sets with the same accuracy as state-of-the-art methods.

Keywords: neural networks, time series, parallel algorithms, machine learning

RESUMEN

La precision para estimar retrasos en tiempo en series de tiempo muestreadas irregularmente es de gran importancia
en astrofisica. Sin embargo, el tiempo computacional también es importante para el estudio de conjuntos de datos de
gran tamano. Este articulo primero presenta un nuevo método para estimar retrasos en tiempo, posteriormente se
presenta una metodologia basada en computo paralelo para estimar de manera rapida retrasos en tiempo. En ambos
casos se utiliza una arquitectura de redes neuronales denominada regresion generalizada (General Regression
Neural Networks — GRNN). Para el computo paralelo se utiliza MPI (Message Passing Interface) en un cluster tipo
beowulf y en una supercomputadora Cray, también se utiliza el lenguaje CUDA™) (Compute Unified Device
Architecture) para GPUs (Graphics Processing Units). Finalmente se demuestra empiricamente que con nuestra
metodologia se obtienen algoritmos rapidos para estimar retrasos en tiempo en conjuntos de datos de gran tamano
con la misma precision que métodos que se usan en la actualidad.

1. Introduction

The time series analysis has great relevance in
astrophysics [1]. Although diverse sciences study
time series, in astrophysics time series analysis has
special characteristics that makes it a challenging
area open to research. The time series are
irregularly sampled with several levels of noise and
with missing data, also known as gaps [2, 3]. The
problem consists in estimating time delays between
pairs of time series [1, 4]. In Figures 1-4, we show
graphically the time delay problem, see §2.3.

Upon predicting that the Hubble’s parameter can be
estimated through time delays on gravitational
lenses [5], many observation campaigns have been
launched since then [4], and new projects for

ambitious surveys like Large Synoptic Survey
Telescope (LSST) and the  Super-Nova
Acceleration Probe (SNAP) devoted to study dark
matter are in development. Moreover, current
surveys like The Sloan Digital Sky Survey (SDSS)
and Sloan Lens ACS (SLACS) are generating a
tremendous amount of large monitoring data sets.
The above surveys are not only useful to estimate
the Hubble’'s parameter, because they are also
important to study lensed supernovae (SNe) [6].
Therefore, time delay estimations become a big
issue to study dark matter and microlensing [7].

So far, methods to estimate time delays have
concentrated on the accuracy of time delay
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estimations [8], because the accuracy to measure
dark matter depends precisely on the accuracy of
time delay estimations [4].

Our approach is based on artificial neural networks,
in particular, General Regression Neural Networks
(GRNN) [9], which are based on Radial Basis
Function neural networks (RBF) [10]. It has been
shown that GRNN are more suitable for the time
delay problem than backpropagation-based neural
networks [11].

Several time delay methods have been proposed
across the literature, including a survey of methods
[8]. In the astrophysics literature, the most popular
method based on correlation analysis is Dispersion
Spectra [12]. Another popular method is the PRH
method [12, 13]. In the machine learning literature,
only two methods appear: one which is based on
kernel methods and evolutionary algorithms [14,
15], and another which is based on Bayesian
analysis [16].

In this paper, we compare the results obtained from
several methods: Linear Interpolation (LI) [14], two
versions of Dispersion spectra method D and D7,
[12], PRH method [17, 13], Kernel-based method
(K-V) and a kernel method with evolutionary
computation (EA-M-CV) [15].

Q0857+561 at g—band (Kundic) n=87
T

17.15 T T T

We compare the results with both artificial and real
data. In particular, our research focus on large data
sets so the time computation can be evaluated. The
contribution of this paper extend in several
directions:

1. The introduction of a fast method for time delay
estimation based on GRNN, which is sequential.

2. The parallelization of the GRNN method.

3. The performance of the parallel GRNN with MPI
running on a cluster and on a supercomputer.

4. A parallel version of GRNN running on GPUs.

5. The comparison of performance of GRNN with
state-of-the-art-methods.

The remainder of the paper is organized as follows:
the next section contains the description of the data
sets used in this research. In Section 3, we
describe our sequential algorithm for time delay
estimation. Section 4 presents our parallel
algorithms. It follows the experiments and results
section, and finally it comes the conclusions and
future work.

2. Time Series and Time Delay

This section describes the type of time series we
studied. We also describe the time delay problem.
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Figure 1. Kundic data. Real Data: Q0957+561. Optical data at g-band with 97 observations.
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2.1 Real Data

First, we start describing real data for the quasar
QO0957+561, which is the most studied quasar so
far [4]. We present two data sets for real data:
Kundic data [4] and Schild data’. We studied
Kundic data because, apparently, it stopped a
controversy regarding the definite time delay for the
quasar Q0957+561 (see Fig. 1) making this data
set and its time delay the most accepted across the
literature [29]. Schild data is important because it is
a large data set with 1,232 observations (see Fig.
2). Typical data sets for Q0957+561 are about one
hundred observations, which are far from the new
generations of observations such as the LSST,
SNAP, SDSS and SLACS projects. These projects
will generate data sets with thousands of
observations automatically. Currently, the data sets
for quasars are obtained manually [4]. In Figures 1—
2, the x-axis represents the time when the source
of light is observed and the y-axis represents the
flux f of light from a source, which is expressed in
logarithmic units known as magnitudes (mag).

2.2 Afrtificial Data

Due to the importance of the study of time delay,
many efforts have been made to estimate the time
delay with real and artificial data [12, 13, 17, 20,
21]. The problem with real data is that the definite
time delay estimation for most known gravitational
lenses remains uncertain [20]. Thus, in this paper,
we also study the GRNN on artificial data.

The public artificial data DS-5 has been generated
to test algorithms for time delay estimation on
gravitational lenses [14, 20]. These data simulate
one observation every 1.3 years with 50 samples
taken irregularly. The time delay is 5 days with a
shift of M = 0.1, between image-A and image-B.
These data are grouped in five different forms (see
Fig. 3), tree noise levels 0.03%, 0.106% and
0.466% (see Fig. 4), fifty realizations per noise level
and ten realizations per gap size.

We simulated gap size in observations by imposing
five blocks of missing data. The blocks were

Q08574561 at r-band (Schild) n=1232
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Figure 2. Schild Data. Real Data: Q0957+561. Image-A is shifted up 0.6 mag for clarity.
Opotical data at r-band with 1.232 observations.

! These data are unpublished data and collected by
Schild et al. [18], and provided thanks to Somak
Raychaudhury. Available on request.
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located randomly with at least one sample between
them. We used gap sizes of 1, 2, 3, 4 and 5. Since
this process is repeated ten times, we obtained ten
pairs of time series with randomly located gaps.

For each noise level, there are fifty different
realizations in which the percentage of noise is
represented by the size of the error bars which, in
turn, are proportional to the mag (y-axis).

Considering all forms, the different noise levels and
gap sizes, the DS-5 contains 38,505 pairs of time

DS=5-1-GAP-0-1-N-0

17.8r

A 4
——B

17.71

176}
175
v}

E q7.4}
173}
172}
171}

17 1 1 L 1
0 10 20 30 40 50
time

(a) Form 1.

DS—5-3-GAP-0-1-N-0

17.7

17.6r
17.5
o 17.4F

[v]
Eq73
17.2¢
171
17

16.9 : : ‘ :
0 10 20 30 40 50
time

(c) Form 3.

mag

series (see Table 1). The true time delay is known
to be five units. These data are shown in Fig. 5.
These data simulate optical data with short time
delay and high precision. Figure 5 shows
realizations for different noise levels and gap sizes:
(a) Form 3, no gaps and no noise, (b) Form 3, no
gaps and noise level of 0.106%, (c) Form 3, no
gaps and noise level of 0.466%, (d) Form 3, gap
size 1, realization 1, noise level of 0.466%. (e)
Form 3, gap size 1, realization 6, noise level of
0.466%, and (f) Form 3, gap size 5, realization 2,
noise level of 0.106%.
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Figure 3. The artificial data DS-5. The data is grouped in five different
forms or shapes. These examples do not contain noise.

2.3 Time Delay Problem

The main problem is the estimation of the time shift
between pairs of time series. In Figure 3, it is clear
that there is a time shift between A and B. The
same occurs with Figures 1 and 2, which show real
data. In fact, the presence of the time shift is

clearer on artificial data, since real data have gaps
and noise. The study of the time delay is important
because it is a method to measure dark matter. The
time delay is proportional to the mass that causes
the time delay, which acts as a gravitational lens.
This fact has many implications and applications in
astrophysics.

Gap Size
Noise 0 1 2 3 4 5
0% 1 10 10 10 10 10
0.03% 50 500 500 500 500 500
0.106% 50 500 500 500 500 500
0.466% 50 500 500 500 500 500
SUB-TOTAL 151 1510 1510 1510 1510 1510

Table 1. Artificial Data DS-5. 7,701 pairs per form, generating 38,505 pairs of time series.
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DS-5-1-GAP-0-1-N-0-error(0.466%)

D3S-b—1-GAP-0-1-N-O-error(0106%)

7L

0 5 10 15 20 25 30
time
(a) Level of noise 1. (b) Level of noise 2.

DS -5-1-GAP-0-1-N-O-error(0.03%)

178
177
176
175

§’174
173

17.2

4] 5 10 15 20 25 30 35 40 45 50

(c) Level of noise 3.

Figure 4. Form 1 with error bars, and different noise levels.

3. General Regression Neural Network (GRNN) where X is the input vector (x;, x2, ..., Xq ) with d
inputs and y represents the output. E(y|X) is the
The GRNN model (see Fig. 6) is supported by the  expected value of the output given the input X, and

theory of non-linear regression theory [22]: f(X)y) is the probability of a density function. By
- using a Parzen estimator to obtain f(X,y) from the
E(IX) = f}:g};f(gf.y)dy (1) training data of size m, the output is as follows:
oo SXY)dy
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m o
y(X) = E[y|x] = 2 @

=171
The ¢; functions represent the radial functions,
which give to RBF networks their name. In the
kernel methods literature, these ¢; functions are
known as kernel functions k(:,-),where the ¢
function embeds the data into a feature space
where the nonlinear pattern now appears linear
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[9,39]. Functions ¢ may have different forms
including Gaussian, multicuadratic and inverse
multicuadratic. However, the Gaussian functions
are the most used in the literature, known as
Parzen-Rosenblatt density estimator or Parzen
window [10, 25]. Consequently, ¢; (n) is defined as
follows:

¢i (n) = exp(

—IIX(n)—ciIIZ) (3)

2
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Figure 5. These plots show the form 3 from DS-5 with different noise levels and gap sizes.

where [IX(n) - ¢; Il is the Euclidean distance
between the input X(n) and the center ¢; (located at
each observation of the training data). The
standard deviation, spread, of the Gaussian
function is o; (Parzen window size).

Employing the Gaussian functions as basis in Eq.
2, it is expressed as [22]:

yX) = Emw—p(f .- (4)

S,
m i s
L%y ex?’(z,,z

where D; is the Euclidean distance, similar to Eq. 3.
Note that Eq. 4 is similar to Eqgs. 5.134 and 5.138
[10], which correspond to the Nadaraya-Watson

regression estimator and the normalized RBF
network, respectively.

In practice, the advantage of the GRNN model
over the RBF one, is that ¢ (known as spread) is
the only parameter to estimate.

3.1 Learning in GRNN

Now, the issue is how to estimate w; in Eq. 4,
which refers to the learning process of the weights.

In backpropagation, we use the steepest descend
methods based on gradients to learn the weights
while, in RBF, linear algebra is used through the
pseudo-inverse and singular value
decomposition (SVD) for the same purpose [10,
26, 27, 28]. In GRNN, it is well known in the
literature that the weights are obtained
straightforward from the outputs of the training
data, see Eq. 1 against Eq. 2 [22].

Here, we show from Gaussian mixture models
(GMM) how the weights w; in Eq. 4 are learned
from data [29, 30]. Let us see the output y as a
probabilistic model:

r(y) = X, p(y1D ¢, (5)
which is a linear combination of m models where
each ¢ is a Gaussian model, and p(y|i) are the
mixing coefficients (weights). Therefore, p(y) is a
combination of Gaussian models ¢;. Assuming the
data X is Gaussian N(u;,07), then E[p(y|)] = u;.
Now, Eq. 5 reads:

p(y) = X% uid; (6)
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Input Layer

Pattern Layer

Output
Layer

Summation
Layer

Figure 6. GRNN Architecture.

where y; comes from the observed data (x;,¥;), so
the weights w; are equal to y;. It is important to
recall that, in supervised learning, the observed
data comes in pairs(x;,¥;) , the input and the
observed output.

3.2 Sequential Algorithm for Time Delay Estimation
with GRNN

We have two irregularly sampled time series with
noise as input (series A and series B) and the time
delays for those series as the output. In this

method, series A and B are combined to generate
a new series called C. This series must be learned
by a GRNN. To achieve this, a parameter o
(spread) must be found. We have two different
series with potentially different spreads. Using five-
fold cross-validation, we find o for every time
series. The average of these two values o, is used
for the GRNN. We define a range of values
A, = [ApminAmax] Where the real time delay is found
and we test for each A,. In other words, A,,;,, and
A4 are defined with prior knowledge about the
quasar under analysis.

Data: Time T , series A, series B, At and M
Result: Combination of series A and B

Tg = T — Al
C=A

To =T

For each TBQ- €Ty

If Tg. 3 Tc
L

ci= e+ (s ) 1

else

Add TB@- to T in order with its respective value B in C

end If
end For

Figure 7. Algorithm to combine the series A and B.
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The combination of the series is made as follows:
we have two vectors, A and B, representing both
time series and the vector T representing the
sampling time for both series. A new vector Tp is
generated representing the time of the series B. A
delay 4; is applied to this vector. Now we generate
two new vectors, C and T¢, representing the
combined series and its sampling time,
respectively. Vectors T and Tg are orderly included
in T, and the corresponding values for A and B
into C. If the time value T; of vector T is equal to
the time value Tg; of vector Tg, then we use
C; = (C;+ (B; + M))/2, where M is the vertical
shift between A and B. This procedure is
summarized in Fig. 7.

Once the combined time series has been
generated, the neural network is trained with the
time series (T,;, C;) and o. Then, we obtain the
Mean Squared Error (MSE), at training points
between C and the curve generated by GRNN.
Afterwards, we register the pair (A,, MSE) in a
vector called RMSE. Finally, the best time delay is
obtained when the MSE reaches its minimum in
RMSE. The pseudo-code of the sequential
algorithm is showed in Fig. 8.

Data: T, A, B and M.
Result: The best time delay

We performed a time complexity analysis of the
sequential GRNN algorithm. This analysis is
based on asymptotic notation [31], especially on
the O-notation which is an upper bound. In other
words, we are interested on the order of growth
of the running time of an algorithm. Because we
are looking at the input size (of training data) to
ng the upper bound of the running time (time
complexity), we are studying the algorithm
efficiency [31].

Therefore, the time complexity of the sequential
GRNN algorithm is O(n’). Because the cross-
validation procedure is always quadratic.

4. Parallel Algorithm for Time Delay Estimation
with GRNN

In the next two sections, we introduce our parallel
algorithms for time delay estimation. The
parallelization is carried out using two
technologies: MPI and GPU. Therefore, we come
up with two versions of a parallel algorithm. These
parallel algorithms are based on our sequential
algorithm described in §3.2.

Use five-fold cross-validation on A and B to obtain the average spread op
Define a set of trial time delays Ap = [A,in . Amaz]

For each A?f’i = Ap

Combine the series A and B with the delay Ap, (Figure T)
Train the GRNN on the combined ecurve C by using the spread Tp

estimated as above

Obtain the mean squared error, MSE, at training points between

C and the curve generated by GRNN
Register the pair (Ap,MSE) in RMSE

end For

The best time delay is obtained when the MSE reaches its minimum in REMSE

Figure 8. Sequential GRNN to estimate the time delay between pairs of time series.
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4.1 Performance Analysis of GRNN

Before parallelizing the GRNN sequential
algorithm, we performed a study that allows us to
calculate the amount of time spent in each routine.
So, we used the GNU profiler, i.e. gprof. The
results are in Table 2, where % time is the
percentage of the total running time; cumulative
seconds is a running sum of the number of
seconds accounted for by this function and those
listed above it; self seconds means the number of
seconds accounted for by this function alone; calls
is the number of times this function was invoked;
and name is the name of the function.

From Table 2, we can see that the time-consuming
functions are OutputHidden and CreateGRNN.
These functions correspond to the pattern-layer of
GRNN (see Fig. 6), and also the parallel part of the
GPU-CUDA™ approach below.

4.2 MPI

MPI is a widely used interface to parallelize
algorithms, due to its portability [32]. This
feature makes it an important option to develop
parallel algorithms using clusters and
supercomputers as targets.

The first aspect to consider when parallelizing
algorithms is using data parallelizing, which means
dividing the input data in several parts in order to
be concurrently processed [33, 34]. This technique
dramatically reduces the processing time. There is

a limit in the number of processes to use. In other
words, as we increase the number of processes,
we expect to reduce the computing time. However,
the more processes there are, the more the
exchange of information among processes will be.
This is known as the latency time [35]. For
example, in Fig. 13, when the number of processes
reaches the amount of nine, the computational time
starts increasing rather than decreasing, because
of the latency time. Upon comparing a cluster with
a supercomputer, it tourns out that the latency time
of a cluster is greater than that of a supercomputer,
due to the technology of the communication among
nodes — including the bandwidth. Nevertheless, it is

a lot cheaper to build a cluster than a
supercomputer [36].
Given the portability of MPI, we use this

technology to test our parallel algorithms using
different architectures.

In Figure 9, we present the MPI algorithm for the
time delay estimation. From the sequential
algorithm (Fig. 8), we parallelize the loop For each
Ap; € Ap. As we can see in Fig. 9, the master
process divides the tasks according to Ap =
[Ain, Amax] and the number of computing
processes desired. The master process sends
each part to its corresponding computing process.
Then, the best time delay for each part is
estimated with the computing process and is
returned to the master process. Finally, the best
time delay result, out of all of the parts, is
computed by the master process.

% time cumulative seconds self seconds calls name
74.78 5.62 5.62 367,330 OutputHidden
13.57 6.64 1.02 49,742 CreateGRNN
4.79 7.00 0.36 61'220,544 FindIndex
4.79 7.36 0.36 99,384 CreateCVSets
213 7.52 0.16 50 CombineSeries

Table 2. Results of GNU profiler for GRNN.
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4.3 GPU and CUDA™

Although the GPU was originally designed for
graphics processing, nowadays it is been used for
parallelizing algorithms which are not related to
graphics processing [37, 38, 39]. This is due to the
fact that the GPU has several cores help to
speedup floating point operations.

GPU  programming can use different
technologies including NVIDIA® CUDA™ [40],
GLSL? and OpenCL>. For these technologies, a
kernel definition is required for GPU

programming. When a kernel is called, it is
executed M times in parallel by M different
threads, as opposed to only once in sequential
programming. This is illustrated in Fig. 10.

Contrary to our parallel GRNN algorithm with MPI,
in our parallel GRNN algorithm with CUDA™, we
use our sequential GRNN algorithm as reference.
Then, we only parallelize the pattern-layer of
GRNN (see Fig. 6). If we observe Fig. 8, the
parallelized part corresponds to the computing of
the curve estimated by the GRNN, which was also
used to obtain the mean squared error.

Data: Time T, series A, series B, At and M.

Result: The best time delay

C P = current process
N = Number of parallel process
If CP = Master process

Use five-fold cross-validation on A and B to obtain the average spread op
Define a set of trial time delays Ap = [A,in, Amaz]

Divide Ap in N — 1 parts
For i=1to N

Send N; part of Ay to process CF;

end For
For i =1to N

Receive and save the best time delay of process CP; in RMSE

end For

The best time delay is when the MSE reaches its minimum in RMSE
The function return the best time delay

else
Receive Ay
For each Ap%. in Ap

Combine the series A and B with the delay Ap@ (Fig. 7)
Train the GRNN on the combined curve C by using the spread oyp,

estimated as above

Obtain the mean squared error, MSE, at training points between C
and the curve generated by GRNN
Register the pair (Ap,MSE) in RMSE

end For

The best time delay is when the MSE reaches its minimum in RMSE
The function send the best time delay to master process

end If

Figure 9. Parallel GRNN with MPI. This algorithm estimates the time delay between pairs of time series.

2 http://www.opengl.org/documentation/glsl/
http://www.khronos.org/opencl/
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Data: :’3:, B
Result: C

2 = thread

Figure 10. Kernel example. Two vectors A and B of size N are added and the result is
stored as vector C, where i is the identifier of a thread in M threads per core.

Data: input = , centers C, spread S, weights W
Result: Sg , Sy

i = thread
2
— wr. —llz—C;l
Swi = W;exp 232
i
—llz—C;ll?
S s = e _—
54 P 252

Figure 11. Parallel GRNN. GPU kernel to compute the output of a pattern-layer.

In Fig. 11, we present the kernel for our CUDA-based algorithm for time delay estimation. This
kernel computes a single output of a pattern layer, i.e. S,,; and S,; in Eq. 4. Our parallel GRNN
algorithm with CUDA™ is the combination of our sequential algorithm and the algorithm shown
in Fig. 12.

Data: sizelnputs, simInputs, grnn
Result: GRNN output

size=grnn.numberHiddenNeurons
Reserve memory for centerd, spredd, weightd, ssd and swd in the graphics device
Copy grnn.centers to centerd, grnn.spreads to spreadd and grnn.weights to weightd
in the graphics device
For i = 0 to sizelnputs
[ssd,swd] = Call Kernel with parameters simInputs;, centersd, spreadd and
weightd (see Fig. 11)
Copy ssd to ss and swd to sw from the graphics device
For j = 0 to size
vss+ = 88;
vsw+ = sw;
end For
output; = vsw/vss
end For

Figure 12. Parallel GRNN with GPU. Function to simulate a GRNN with input x.
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5. Results and Discussion

First, we tested the sequential algorithm to estimate
time delays on the artificial data, dataset DS-5,
described in §2.2. In order to test the accuracy of
our algorithm, we compared these results using
several methods: Linear Interpolation (LI) [14], two
versions of the Dispersion spectra method D? and
D%, [12], PRH method [13, 17], K-V a Kernel-
based method [20] and EA-M-CV method
(evolutionary algorithm) [15]. These are state-of-
the-art methods used across the literature, and for
each of these methods, trial time delays in the
range of A,;,= 0.1t0 A, = 10 were used with
increments of 0.1, since the true delay is known a
priori, i.e., to be 5 days [20].

Table 3 contains the results obtained from all of
the methods, including our sequential GRNN
algorithm. The statistic values of MSE (Mean
Squared Error), AE (Absolute Error, average), [
(mean) and & (standard deviation) were obtained
over the 38,505 datasets described in §2.2. The
best results are highlighted in bold text. The
sequential GRNN method shows the best results
when taking into account the MSE, AE and &
statistic values, while the D? method shows the
best results when considering the fi statistic value.

MSE and AE measure the accuracy of
estimates, that is the error between the
estimated delay {A;; i = 1,2,...,38 505} and the
true delay Ay= 5. The i measures the bias and
& the dispersion or variance.

Secondly, we tested our algorithms on real data
(see §2.1). We use A= 400and A= 449.
Two datasets were used: Kundic and Schild data.
Kundic data is the most accepted data across the
literature [19]. Our algorithms on these data
suggest a time delay of 420 days, which are
consistent with previous estimations of time delays
on Q0957+561 [14]. It is worthwhile mentioning
that the time delay for a given quasar must be the
same regardless of the dataset used and the time
delay estimation method [5].

We also test our parallel GRNN algorithm on
Schild data. We use this large dataset because it
has more than one thousand samples. New
projects such as LSST, SNAP, SDSS and SLACS
(see §1) will generate large datasets in the future.
Our motivation for this paper is based precisely on
the fact that fast and accurate algorithms will be
required to deal with such datasets. Furthermore, it
is important to emphasize that some current time
delay estimation methods cannot manage large
datasets [15].

With Schild data, our aim was to test the speedup
of our algorithms. Our sequential GRNN algorithm
lasts one second on Kundic data (97 samples) and
108 seconds on Schild data (1232 samples). The
best time delay from Schild data is 428 days. In
Table 4, we show the results of our parallel
algorithm, MPl and CUDA™, on Schild data only.
Let us describe Table 4, the first row shows the
computational time from a sequential algorithm
and the specifications of the computer where the
algorithm was running. The second row shows the

Statistic L1 D? D3, PRH K-V EA-M-CV GRNN
MSE 0.49 0.74 0.99 13.46 0.47 0.63 0.30
AE 0.39 0.52 0.59 3.01 0.39 0.41 0.31
i 5.068 5.013 5.589 2.704 4.946 5.015 5.034

o 0.70 0.86 0.80 2.86 0.68 0.79 0.54

Table 3. Comparison among different methods, including GRNN
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Parallel GRNN MPI Cluster (1p) and the
computational time from a cluster with a single
process. This cluster is a beouwolf-type cluster,
and it has six nodes including the master node,
each one with a single processor. The third row
presents the results from the cluster with six
processes. The forth and fifth rows show the
results from the Parallel GRNN with MPI running
on a Cray XD1 with one or eight processes. The
sixth row refers, once again, to the sequential
GRNN results obtained from a different
computer, which has the GPU graphics card.
The last two row shows the results from our
parallel algorithm with CUDA™ using two
different graphics cards.

From Table 4, we can observe that the best
results were obtained from our parallel GRNN
method with MPI running on the Cray XD1, since
it was the fastest one. Therefore, in Figure 13,
we compare the results from the number of
processes against the computing time of the

Cray on Schild data. Our best results occur
when we use eight processes.

Although we compared two versions of our
parallel GRNN method, the parallelization
between MPI and CUDA™ turned out to be
different. Nevertheless, we achieved to optimize
both technologies in order for them to run as
good as possible. It was determined that the
GPU memory management restricts the
parallelization procedure, if the CUDA™ version
runs as MPI works.

In fact, we performed a profiling analysis for the
CUDA™ version similar to the sequential algorithm
in §4.1. We use the Compute Visual Profiler for
NVIDIA® CUDA™ technology, the results are in
Table 5. We found that the time-consuming
methods in CUDA™ are memcpyHfoD and
memcpyDtoH, which correspond in Figure 12 to
Copy ... in the graphics device and Copy ... from
the graphics device, respectively.

Technology Time Specifications

Sequential GRNN 108.00 seg Intel Core2 2.40GHz, 2GB

Parallel GRNN, MPI Cluster (1p) 256.80 seg Intel PIV 2.80GHz, 512MB

Parallel GRNN, MPI Cluster (6p) 81.13 seg Intel PIV 2.80GHz, 512MB

Parallel GRNN, MPI Cray XD1 (1p) 45.54 seg AMD Dual Core 2.2GHz

Parallel GRNN, MPI Cray XD1 (8p) 12.32seg AMD Dual Core 2.2GHz

Sequential GRNN 158.00 seg Intel Core2 1.86GHz, 2GB

Parallel GRNN, CUDA™ CPU+GPU 87.00 seg Intel Core2 1.86GHz, 2GB GeForce 8800
GTX (Graphics card)
Number of multiprocessors: 16 Number of
cores: 128

Parallel GRNN, CUDA™ CPU+GPU 20.00 seg AMD Phenom Il 3 Ghz, 2GB GeForce

GTX 470 (Graphics card) Number of
multiprocessors:14 Number of cores: 448

Table 4. Sequential GRNN versus Parallel GRNN (MPl and CUDA™).

Method #Calls GPU time (us) % GPU time
memcpyHtoD 147,750 175,277 0.65
memcpyDtoH 729,904 1.9e+06 717

Table 5. Results of Compute Visual Profiler for NVIDIA® CUDA™.
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2 4 G

g 10 12 14

Parallel process

Figure 13. Number of processes versus computing time. This plot was obtained with
Schild Data and Parallel GRNN with MPI running on a supercomputer Cray XD1.

We tested a MPI version similar to the CUDA™
version, i.e. parallelizing the pattern-layer of GRNN
(see Fig. 6), but the MPI algorithm in Figure 9 give
us the best performance.

6. Conclusions

We introduced a new approach for time delay
estimation based on GRNN. According to the best
of our knowledge, this is the first methodology for
time delay by using artificial neural networks. In
Table 3, we show that our sequential algorithm
based on GRNN (Fig. 8) is competitive with state-
of-the-art methods in terms of accuracy. Since the
speedup on large datasets is important for new
monitoring projects, i.e. LSST, SNAP, SDSS and
SLACS, besides the new sequential algorithm
based on GRNN, we developed two parallel
versions of our sequential algorithm. The first
version of our parallel algorithms is based on MPI
(Fig. 9), running in a cluster and a supercomputer.
The second parallel version is based on CUDA™
for GPU (Fig. 12). Therefore, we also presented
the computing time from our sequential and
parallel GRNN algorithms in Table 4. Finally, we
conclude that the parallel GRNN with MPI running
on a Cray supercomputer with eight processes
provides a superior performance, because the
Cray architecture, i.e. communication among

nodes, allows fast data transfer. As we see in
Table 5, the bootleneck of GPU are the functions
to manage the GPU memory for data transfer

7. Future work

Part of the future work is to explore new CUDA™
capabilities, so we can take advantage of the GPU
technology. The new survey projects are starting to
generate new large datasets and some of these
projects are still in development. As part of the
future work, we would like to test the performance
of our parallel approaches on real large datasets,
because these datasets may differ to the Schild
data used in our experiments. We only parallelize
the GRNN method, so the parallelization of other
methods has not been done. More work on this
direction is also part of our future work.
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