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Resumen

Se propone un marco teórico para modelar funciones distancia generalizadas, las

cuales pueden ser asimétricas y no positivas definidas. Se da una definición de

longitud de arco asociada a una función distancia generalizada d. La función

distancia d cumple la propiedad de identidad, pero a diferencia de las métricas, puede

no satisfacer la desigualdad del triángulo, o las propiedades de simetría y definito-

reidad. Mostramos que cada función distancia generalizada d induce ciertos arcos,

que llamamos “d-inducidos”, los cuales cumplen una ley de conservación de la

distancia d y son una generalización de los segmentos de línea recta del espacio eucli-

diano. También se muestra que si d satisface la desigualdad del triángulo, entonces

los arcos d-inducidos son arcos de mínima longitud respecto de la función distancia

d, y en este caso, la función distancia d pueden modelarse como un problema

de cálculo de variaciones.

Descriptores: Funciones distancia generalizadas, longitud de arco, desigualdad del

triángulo,métrica de Finsler.

Abstract

We propose a theoretical framework for modeling generalized distance functions, which

can be asymmetric and non-positive definite. We give a definition of arc length associated

to a generalized distance function d. Our distance function d satisfies the identity pro-

perty but, unlike metrics, may not satisfy the triangle inequality, or symmetry and defini-

teness properties. We show that each distance function d induces certain arcs, called “d-in-

duced”, which satisfy a conservation law of the distance d and are a generalization of the

straight line segments of the Euclidean space. We also show that if d satisfies the triangle

inequality, then the d-induced arcs are arcs of minimal length with respect to the distance

function d, and in this case, the distance function d can be modeled as a problem of calcu-

lus of variations.

Keywords: Generalized distance functions, arc length, triangle inequality, Finsler

metric.
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Introducción

Frecuentemente, no es posible recabar los datos de las
“distancias” entre todos los pares ordenados de puntos
de una región dada, por lo que es útil contar con funcio-
nes distancia.

En este trabajo, se propone una definición de fun-
ción distancia (generalizada), la cual permite generali-
zar el concepto de longitud de arco, y este a su vez, per-
mite deducir la existencia de ciertos arcos que cumplen
una ley de conservación de la distancia.

Se da una definición de función distancia generaliza-
da, como una función binaria que cumple la propiedad
de identidad (la distancia de un punto consigo mismo es
cero), es decir, una función distancia generalizada pue-
de no satisfacer la desigualdad del triángulo, simetría y
no negatividad, propiedades requeridas por las métricas.
Se define la longitud de arco asociado a una función dis-
tancia generalizada d, como la integral de la derivada di-
reccional unilateral F(x,v) de d a lo largo del arco. La
función F representa la razón de cambio de la función
distancia en un punto dado x en la dirección considera-
da v.

La propiedad de identidad es necesaria para que una
función distancia d determine arcos “d-inducidos”, los
cuales cumplen un principio de conservación de la d-dis-
tancia. Se definirá “premétrica”, como una función dis-
tancia d, que además de la propiedad de identidad, cum-
ple la desigualdad del triángulo. Se muestra que los ar-
cos d-inducidos por una premétrica son arcos de míni-
ma longitud, con respecto a la función distancia d. Se
explora el problema de modelar una función distancia d,
cuya derivada direccional unilateral es una función
F0(x,v) dada a priori, que llamamos función fundamen-
tal de d. En este problema, d se obtiene resolviendo un
problema de cálculo de variaciones. Se muestra además
que si F0 es una función convexa en la dirección v, en-
tonces F0 coincide con la derivada direccional unilateral
F(x,v) de d.

Función distancia generalizada y
longitud de un arco

En esta sección se propone una definición de función
distancia que puede no satisfacer la desigualdad del
triángulo ni las condiciones de simetría y no negativi-
dad, requeridas por las métricas. También una defini-
ción de longitud de arco asociada a una función
distancia.

La función distancia generalizada d, o función distancia
d, se define como una función binaria d: Rn � Rn � R que

cumple la propiedad de identidad (la distancia de un
punto consigo mismo es cero, d(a, a) = 0, � a � Rn).

Para definir la longitud de arco asociada con una
función distancia generalizada d y obtener una ex-
presión para determinarla, se dan las siguientes
definiciones:

Un camino en Rn de a�Rn hasta b�Rn es una función
continua x:[a, b]�Rn tal que x(a) = a y x(b)= b. La
imagen orientada C(a,b)�Rn del camino x: [a, b] � Rn

se llama arco (orientado) de a�Rn a b�Rn. En este trabajo,
un arco significa un arco orientado. Un arco C(a,b) se
dice ser arco clase C1 si tiene una representación paramé-
trica x: [a, b] � Rn clase C1, cuya derivada es diferente
de cero en su dominio.

El conjunto de todos los arcos clase C1 en Rn se
denota por �. Por simplicidad, el conjunto de todos los
arcos de clase C1 que conectan a con b, y el conjunto de
todas las representaciones paramétricas de estos arcos,
se denotan por �[a,b].

Una sucesión de puntos en Rn de la forma

(a = x0, x1, x2,..., xk, xk+1 = b),

donde k � 1, se dice que es una sucesión en Rn desde a
hasta b. Los puntos a y b se llaman puntos extremos de la
sucesión. El conjunto de todas las sucesiones en Rn desde
a hasta b se denota por P[a,b].

Para cada sucesión de puntos en Rn,

P = (a = x0, x1, x2,..., xk, xk+1 = b),

la función distancia d: Rn � Rn�R determina un número
real �(P), que llamamos la d-longitud de la sucesión P y
está definida como la suma de las distancias respecto de
la función distancia d (suma de las d-distancias):

�( ) ( , )P d i i+
i

k

	
	

 x x

1
0

para toda

P P ,
k k

	 	 ��( , ,... , [a = x x ,x x x b a b
0 1 2 1

) ]

Consideramos una partición de un arco como una parti-
ción del arco en subarcos. Cada partición P de una arco
C(a,b) determina una sucesión (a = x0, x1, x2,..., xk,
xk+1 = b) de puntos de C(a,b). Recíprocamente, cada
sucesión (a = x0, x1, x2,..., xk, xk+1 = b) de puntos de
C(a,b) determina la partición P. Para simplificar, se
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denota también por P la sucesión de puntos de C(a,b)
correspondiente a la partición P. La partición trivial de
un arco C(a,b) es el conjunto {C(a,b)}, el cual está de-
terminado por la sucesión (a= x0, x1= b). Un refina-
miento de una partición P del arco C(a,b) es una parti-
ción Q de C(a,b), tal que, cada elemento de Q está con-
tenido en un elemento de P. El conjunto de todas las
particiones de C(a,b) se denota por P[C(a,b)]. Se define
la d-longitud de una partición P�P[C(a,b)] de C(a,b) co-
mo la d-longitud de la sucesión P, �(P).

Se define la longitud de arco asociada con la función
distancia generalizada d de un arco C, o d-longitud de C,
como un número real L tal que, para cada 
 > 0, existe
una partición P

�
de C tal que |L–�(P)|<
 para todo refi-

namiento P de P
�
. Si la d-longitud de un arco existe,

entonces es única.
Si la d-longitud de C(a,b) es finita, entonces C(a,b)

se dice d-rectificable y ld (C(a,b)) denota la d-longitud de
C(a,b). Es inmediato que los subarcos de cualquier
partición P de un arco d-rectificable C(a,b) son arcos
d-rectificables, y que la suma de sus d-longitudes es
igual a la d-longitud de C(a,b).

La derivada direccional unilateral de una función
d(x, ·) en x en la dirección v se denota por F(x, v) y se
define por

F
d s d(

ss
( , ) lim

( , , )
,x v

x x v x x
	

� �
� ��

�

�0

)

(Rockafellar 1970). Debido a que la función distan-
cia generalizada satisface la propiedad de identidad,
d(x, x)=0, F se escribe como

F
d , + s

sS

( , ) lim
(

x v
x x v

	
� ��

�

�0

)
para toda x,v�Rn (1)

donde F(x, 0)=0 para todo x�Rn.
La función F: Rn � Rn � R dada por (1) es la derivada

direccional unilateral F de la función distancia d. La fun-
ción F evaluada en un punto x y en una dirección v se
denota por F(x, v), y F a lo largo del camino x:[a, b]�Rn

se denota por F(x(s),�x(s)).
Ahora se va a determinar la d-longitud de un arco

C(a,b) en términos de F, suponiendo que C(a,b) es clase
C1 y además d-rectificable.

Como se verá, esta última suposición resulta redun-
dante. Sea x: [a, b]� Rn una representación paramétrica
clase C1 de C(a,b).

Cualquier conjunto ordenado de puntos interiores
de [a, b], s1,s2,..., sk � (a, b), con k > 0, determina una

partición no trivial (a = s0,s1,s2,..., sk+1 = b) de [a,b], y
una partición no trivial P = (a = x(s0), x(s1), x(s2),...,
x(sk),x(sk+1)=b) del arco C(a,b). Por tanto, la
d-longitud de P es

�( ) ( ( ), ( ))P d s si i
i

k

	 �
	

 x x

1
0

.

Supóngase que F(x, v) es una función continua sobre su
dominio. Puesto que x(t) y � ( )x t son funciones conti-
nuas, entonces F(x(t), � ( )x t ), es una función continua y
acotada en [a, b] y por tanto, integrable. Debido a la
existencia de F(x(t), � ( )x t ) en t � [ a, b], para todo 
 � 0

existe �s � 0 tal que

F
d s

s
( ( ), � ( ))

( ( ), ( ) � ( ) )
x x

x x x
� �

� � �
�

� �

�
� 


para toda �� �[ , ]t t s� .

Esto puede ser aplicado a una partición

(a = s0,s1,s2,..., sk+1 = b) de [a, b].

Por tanto, para todo 
 > 0 existe a una partición P
�

de
C(a,b) tal que

F
d s

s
i i

i i i i

i

( ( ), � ( ))
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s s i k� 	�[ , ] , ,... , ,

1
0 para todo refinamien-

to P de P
. Por tanto,

F s d si i i i i i i( ( ), � ( )) ( ( ), ( ) � ( ) )x x x x x� � � � �� �� � �


�si para toda �i i i
s s i k� 	�[ , ], ,... ,

1
0

se cumple. Puesto que

� �( ) ( ( ), ( ) � ( ) )P d si
i

k

i i i	 �
	

 x x x� � �

0

,

se obtiene

F s P b ai i i
i

k

( ( ), � ( )) ( ) ( )x x� � 
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0

para toda �i i i
s s� �[ , )

1
.



La última condición es también válida si se reemplaza

(b – a) por 
/2. Puesto que se supone que C(a,b) es un
arco d-rectificable, para todo 
>0 existe una partición
P

�
de C(a,b) tal que

F s Pi i i
i

k

( ( ), � ( )) ( )x x� �



� �� �
	



0 2

para toda �i i i
s s� �[ , )

1
; y

L P� ��( )


2

se satisfacen para todo refinamiento P de P
�
.

Por tanto, para toda 
>0, existe una partición P
�

de
C(a,b) tal que

L F si i i
i

k

� �
	

 ( ( ), � ( ))x x� � 
�

0

, para toda �i i i
s s� �[ , )

1
,

para todo refinamiento P de P
�
. Por tanto,

L F s s ds
a

b

	 � ( ( ), � ( ))x x .

(Sagan, 1974). Para todo arco C(a,b) clase C1, el inte-
grando anterior, F s s( ( ), � ( ))x x , es una función continua
en [a, b], y por tanto L está bien definida y C(a,b) es
d-rectificable.

Por tanto, la suposición de que C(a,b) es d-recti-
ficable resulta redundante. Entonces se ha demostrado
el siguiente teorema:

Teorema 1
(Determinación de la d-longitud de un arco

d-rectificable)

Si la función distancia d: Rn � Rn � R tiene una derivada
direccional unilateral continua, F: Rn � Rn � R, entonces
todo arco C(a,b) clase C1 es d-rectificable y su d-lon-
gitud está dada por

l C F s s ds
d

a

b

( ( , )) ( ( ), � ( ))a b x x	 � , (2)

donde x:[a, b] � Rn es una representación paramétrica
clase C1 de C(a,b).

Q.E.D.

El siguiente teorema establece propiedades importantes
de la derivada direccional unilateral F de una función
distancia d.

Estas propiedades son útiles en el modelado de fun-
ciones distancia.

Teorema 2
(Propiedades de la derivada direccional unilateral

F de una función distancia d)

Sea d: Rn � Rn � R una función distancia y F la derivada
direccional unilateral de d, dada por (1). Entonces se
tiene:

a)F(x, 0) = 0 para todo x � Rn.

b) La función F es positivamente homogénea de grado
uno: F(x,�v)=�F(x, v) para toda � > 0.

c) Para n�2, F s s( ( ), � ( ))x x no depende explícitamente del

parámetro s del camino.

d) La d-longitud de un arco d-rectificable no depende de
su representación paramétrica.

e) Si d cumple la desigualdad del triángulo, entonces
F(x, v) es una función convexa en v para cada x:
F(x,�v + (1–� )w) � � F(x, v) + (1 –�) F(x, w) para
toda ���0, 1], x � Rn.

Demostración

a) Inmediato de la definición de F y de que
d(x,x) = 0 para todo x�Rn.

b) Para � >0,

F
d h

hh
( , ) lim

( , )
x v

x x v
�

�
	

�
	

� �0

�
�

�
�

�

�
�

�
lim

( , )
lim

( , )
( , )

h

d h

h

d
F

� �� �

�
	

�
	

0 0

x x v x x v
x v .

c) La derivada direccional unilateral F a lo largo del
camino x: [a, b] � Rn, dada por

F s s
d s s s s

ss
( ( ), � ( )) lim

( ,( ), ( ) � ( ) )
x x

x x x
	

�
� ��

�

�0
,

no depende explícitamente de s.
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d) La d-longitud de un arco d-rectificable está dada por
(2). Sea s=s(t) una transformación de x(t) que
preserva la orientación. Por tanto ds/dt>0 y s(t) es una
función invertible. La homogeneidad positiva de F y
ds/dt>0 implican que

F d t dt dt F ds dt dt( , ( ) / ) ( , � / )x x x x	 	

F ds dt dt F ds( , � )( / ) ( , � )x x x x	 .

Puesto que F no depende explícitamente del pará-
metro s, entonces F s s ds( ( ), � ( ))x x es invariante bajo la
transformación s = s(t).

e) De la ecuación (1) y por el inciso (b),

F
d h

hh
( , ( ) ) lim

( , ( ( ) ) )
x v w

x x v w
� �

� �
� � 	

� � �
� �

1
1

0

�
� � � � � �

� �
lim

( , ) ( , ( ) )
h

d h d h h h

h0

1x x v x v x v w� � � �

	 � � 	 � �F F F F( , ) ( ,( ) ) ( , ) ( ) ( , )x v x w x v x w� � � �1 1

Q.E.D.

Arcos inducidos por una función distancia d

Nuestra definición de d-longitud de arco permite de-
ducir la existencia de ciertos arcos caracterizados por la
función distancia d, que les llamamos arcos d-inducidos.
En esta sección definimos arco inducido por una fun-
ción distancia d.

Sea d: Rn � Rn � R una función distancia. Decimos
que un arco C(a,b) es d-inducido si todas sus particiones
tienen la misma d-longitud.

Por la definición dada de longitud de arco, todo arco
d-inducido C(a,b) es d- rectificable, y su d-longitud es
igual a la d-longitud de su partición trivial, ld (C(a,b)) =
d(a, b).

Es inmediato que cada subarco de un arco d-indu-
cido es un arco d-inducido.

Equivalentemente, C(a,b) es un arco d-inducido si la
d-longitud de toda partición de C(a,b), P = (a = x0, x1,
x2,..., xk, xk+1 = b), con k �0, es igual a la d-distancia de
a a b,

d d i i
i

k

( , ) ( , ),a b x x	 �
	

 1

0

para toda

P P C
k

	 �( , ,... , ) [ ( , )]a x x b a b
1

,

la cual es la d-longitud de la partición trivial de C(a,b).
Es decir, un arco de a a b es d-inducido si, y sólo si, la
d-distancia de a a b es igual a la suma de las d-distancias
entre todos los puntos consecutivos de cualquier suce-
sión de puntos en el arco, donde la sucesión incluye los
puntos extremos a y b.

Es inmediato que un arco C(a,b) es d-inducido si, y
sólo si, la restricción de d a C(a,b) cumple la igualdad del
triángulo respecto del punto final b,

d s d s t d t( ( ), ( ( ), ( )) ( ( ), )x b x x x b) 	 � a s t b� � � ,

donde x: [a, b] � Rn es una representación paramétrica
de C(a,b).

Premétricas y arcos mínimos

Si una función distancia no satisface la desigualdad del
triángulo, los arcos mínimos no necesariamente son ar-
cos inducidos y el concepto tradicional de que la distan-
cia desde un punto hasta otro es igual a la longitud del
arco “más corto” que los conecta, no es válido. En esta
sección definimos premétrica, la cual es una función
distancia que cumple la desigualdad del triángulo, y se
dan dos teoremas importantes para el modelado de
premétricas.

Esto es de interés porque, en general, las funciones
distancia que intervienen en el modelado de problemas
de la vida real cumplen la desigualdad del triángulo; en
estos casos, los arcos mínimos sí coinciden con los arcos
inducidos y se pueden determinar mediante un pro-
blema de cálculo variacional.

Una función distancia d que cumple la desigualdad
del triángulo (para toda a, b, c � Rn d (a, b) � d (a, c) + d
(c, b)) la llamamos premétrica.

Una función distancia es completa si todo par
ordenado de puntos a, b en Rn está conectado por un
arco d-inducido.

Si la función distancia d es completa y cumple la
desigualdad del triángulo, es decir, d es una premétrica
completa, entonces los arcos d-inducidos son arcos de
mínima d-longitud, y la función distancia d está deter-
minada por su derivada direccional unilateral F.

La última afirmación implica que d y F contienen la
“misma información”, donde d proporciona “informa-
ción global”, ya que su valor depende de dos puntos
localizados arbitrariamente en Rn, y F proporciona “in-
formación local” porque su valor depende del punto y la
dirección considerados.



Es inmediato que una función distancia d:Rn�Rn�R sa-
tisface la desigualdad del triángulo, d(a, b) � d(a, c) +
d(c,b) para toda a, b�Rn, si y sólo si, para toda sucesión
P = (a = x0, x1, x2,..., xk, xk+1 = b) la d-distancia entre
los puntos extremos P es menor o igual que la d-longi-
tud de la sucesión de P, es decir, si y sólo si

d d i i
i

k

( , ) ( , )a b x x� �
	

 1

0

para toda P
k k

	 	 	�( , , ,... , , )a x x x x x b
0 1 2 1

.
Sea d: Rn � Rn � R una función distancia tal que su

derivada direccional unilateral F es una función conti-
nua. Si x: [a, b] � Rn es un camino clase C1 de a a b que
resuelve

min ( ( ), � ( ))
[ , ]x

a

b

a b

F s s ds
� ��

x x para toda a b, �Rn ,

entonces se dice que la imagen de x, C(a,b) �� [a,b], es
un arco de mínima d-longitud o arco d-minimal. Por las
propiedades de las integrales, todos los subarcos de un
arco d-minimal son arcos d-minimales.

Teorema 3
(Para cualquier premétrica los arcos d-inducidos

son arcos d-minimales)

Si d: Rn � Rn � R es una premétrica con una derivada
direccional unilateral F(x, v) continua en x para cada
v � Rn, entonces:

a) F: Rn � Rn � R es continua, y por tanto, la longitud de
arco de C(a,b) está dada por (2);

b) Si P, Q�P[C(a,b)] son dos particiones de un arco
C(a,b), tales que P es un refinamiento de Q,
entonces �(Q)� �(P);

c) Para todo arco C(a,b) clase C1, ld (C(a,b)) =sup{�(P):
P�P[C(a,b)]};

d) (a,b)��(P)� ld(C(a,b)) para toda partición P�P
[C(a,b)] de un arco d-rectificable clase C1;

e) Para todo arco C(a,b) clase C1, d(a,b) = ld(C(a,b)) si y sólo
si C(a,b) es un arco d-inducido;

f) Todo arco d-inducido es un arco d-minimal;

g) Si d es completa, entonces

d F s s ds
x

a

b

a b

( , ) min ( ( ), � ( ))
[ , ]

a b x x	
� ��

, para toda a,b�Rn

(3)
donde el mínimo se alcanza para un arco d-inducido de
a a b.

Demostración

a) d cumple la desigualdad del triángulo y, por (e) del
teorema 2, F(x, v) es una función convexa en v para
cada x � Rn. Por tanto, F es una función continua
(Rockafellar, 1970).

b) Se puede probar directamente de la desigualdad del
triángulo.

c) Sea C(a,b) un arco clase C1. Entonces C(a,b) es
d-rectificable con una longitud que denotamos por
L. Por tanto, para todo 
>0 existe una partición P

�

de C(a,b) tal que |L –�(P)|< 
 para todo refina-
miento P de P

�
. En particular, |L–� (P

�
) |<
. Se

tienen dos casos, L � � (P
�
), o bien, L <�(P

�
). El se-

gundo caso se descarta porque si C(a,b) no es un
arco d-inducido se llega a una contradicción: existe
una 
 > 0 y una partición Q de C(a,b) (la partición
trivial, por ejemplo), de la cual P

�
es un refinamiento

y tal que �(Q)–L>
; esto lleva a � �P
�
)<
+L<� (Q),

en donde (b) contradice que P
�
es una partición de Q.

Por tanto, si d es una premétrica, entonces �(P) � L
para toda partición P�P[C(a,b)] de C(a,b), y la
longitud de un arco es L si para todo 
 > 0 existe una
partición P

�
de C(a,b) tal que L – � (P) < 
 para todo

refinamiento P de P
�
. Por tanto, L=sup{�(P):

P�P[C(a,b)]}.

d) Cualquier partición de C(a,b) es un refinamiento de
la partición trivial; por (b) d(a,b) � � (P). Por �(c),
(P) � ld (C(a,b)).

e) Sea C(a,b) clase C1. Si C(a,b) es un arco d-inducido,
entonces d(a,b)=ld(C(a,b)). Recíprocamente, si
d(a,b)=ld(C(a,b)), entonces por (d) se tiene d(a,b)=
�(P) para toda P�P[C(a,b)], y por tanto, C(a,b) es
un arco d-inducido.

f) Si C(a,b) un arco d-inducido que no es un arco
d-minimal, entonces d(a,b)=ld(C(a,b)) y ld (C*
(a,b)) � ld (C(a,b)) para algún arco C*(a,b). Entonces
se obtiene ld (C*(a,b)) � d(a,b), lo que contradice (d).
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Por tanto, todo arco d-inducido es un arco
d-minimal.

g) d completa implica que para todo par ordenado de
puntos a y b existe un arco d-inducido C(a,b) que
los conecta, el cual por (e) tiene d-longitud d(a,b).
Por (f), C(a,b) es un arco d-minimal, y por lo que
resuelve (3).

Q.E.D.

Por el teorema 1, la longitud de un arco respecto de una
función distancia d es la integral (2) de la derivada direc-
cional unilateral F(x, v) de d a lo largo del arco. Explora-
mos ahora la relación recíproca entre las funciones F y
d: Sea d: Rn � Rn � R la función distancia definida por

d F s s ds
x

a

b

a b

( , ) min ( ( ), � ( ))
[ , ]

a b x x	
� �� 0

, para toda a,b � Rn

donde F0: Rn � Rn � R es una función dada a priori que
satisface las condiciones (a)-(c) del teorema 2, llamada
función fundamental de d. El problema de minimización
(4) se denomina problema variacional correspondiente a la
función F0.

Interesa ahora saber qué condiciones adicionales de-
be cumplir F0 para que ésta sea la derivada direccional
unilateral de d dada por (1). En primer lugar, para que la
función d esté bien definida, F0 debe ser tal que el pro-
blema de cálculo de variaciones (4) tenga una solución
para cada par ordenado a, b � Rn.

En segundo lugar, por las propiedades de las
integrales de línea, la función d dada por (4), cumple la
desigualdad del triángulo, y por tanto, según (e) del teo-
rema 2, F0 debe ser una función convexa con respecto a
la variable dirección.

Ya sea que F = F0 o F � F0, se cumple que

d F s s ds F
x

a

b

xa b a b

( , ) min ( ( ), � ( )) min
[ , ] [ , ]

a b x x	 	
� ��� �0

( ( ), � ( ))x xs s ds
a

b

� .

Tenemos entonces el siguiente teorema.

Teorema 4
(Premétrica definida a partir de una función

fundamental)

Sea F0: Rn � Rn � R una función positivamente homogé-
nea de grado uno con F0(x, 0) = 0 para todo x � Rn, y tal
que cumple la siguiente condición de solubilidad: para
cada par ordenado a, b � Rn existe un camino

x: [a, b] � Rn de a a b clase C1 que resuelve el problema
de cálculo de variaciones

min ( ( ), � ( ))
[ , ]x

a

b

a b

F s s ds
� �� 0

x x .

Sea d: Rn � Rn � R la función dada por (3). Entonces:

a) d es una premétrica sobre Rn, la cual es completa si F0 es
la derivada direccional unilateral de d.

b) F0 es la derivada direccional unilateral de d si y sola-
mente si, F0(x, v) es convexa en v.

Demostración

La homogeneidad positiva de F0 implica que toda trans-
formación continua que preserva la orientación de un
camino x: [a, b] � Rn que resuelve (4) es un camino que
también resuelve (4), teniendo ambos caminos la
misma imagen.

Por tanto, dados a y b, cada solución de (4) depende
sólo del arco y no de la elección particular de su
representación paramétrica. Entonces, la función d
dada por (3) está bien definida.

a) Por las propiedades de las integrales, la función d
dada por (4) cumple la propiedad de identidad y la
desigualdad del triángulo, y por tanto d es una
premétrica. Si F = F0, entonces para cada par orde-
nado de puntos a y b existe un arco C(a,b) que
cumple d(a,b) = ld (C(a,b)), y por (e) del teorema 3,
C(a,b) es un arco d-inducido. Así que d es una
premétrica completa.

b) La homogeneidad positiva de F0 implica que la conve-
xidad de F0 se reduce a:
F0(x, v1+ v2) � F0(x, v1) + F0(x, v2) para todo
v1, v2� Rn. Por tanto, la convexidad de F0 implica
que la derivada direccional unilateral F de la función
d dada por (1) es la función F0:

F
h

F s s ds
h x

x

x v

x x vh

( , ) lim min ( ( ), � ( ))
[ , ]

x v x x	
� �

�

�
�0

0

1
�

h

F�
�

�
��

�

�
�� 	

0
( , )x v .

La última igualdad se puede explicar como sigue. En el
límite cuando h � 0+, x(s) se puede considerar constan-
te, y por tanto, el integrando F s s

0
( ( ), � ( ))x x sólo depende

de � ( )x s . Debido a la convexidad de F0, la integral alcanza
su valor mínimo si � ( )x s tiene la dirección de v en todos
los puntos a lo largo del arco que va de x a x + vh. Por
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tanto, el integrando F s s
0
( ( ), � ( ))x x permanece constante

a lo largo del arco que va de x a x + vh y toma el valor
F0(x, v). Para demostrar la afirmación recíproca, su-
póngase que la función F0 que define a d a través de (4)
es igual a la derivada direccional unilateral de d. Por (a) d
es una premétrica, es decir, d cumple la desigualdad del
triángulo, y por (e) del teorema 2, F0 es una función
convexa.

Q.E.D

El teorema 3 expresa que para toda premétrica con
derivada direccional unilateral continua, la distancia de
un punto a otro es igual a la d-longitud del arco más
corto que los conecta, y el teorema 4 establece que si la
d-distancia desde un punto hasta otro se define como
“el mínimo de la longitud de los arcos que los conectan”,
entonces la función distancia resultante es una premétrica.

Cabe mencionar que en la métrica de Finsler, las
condiciones sobre la función fundamental F0 son más
restrictivas que en el teorema 4, pide que F0(x, v) sea
estrictamente convexa, no negativa y suave sobre su
dominio (Anastasiei, 2004 y Chern, 2005).

Conclusiones

Se propone una definición de función distancia genera-
lizada como una función binaria que cumple la
propiedad de identidad, pero que no requiere satisfacer
la desigualdad del triángulo ni las propiedades de
simetría y no negatividad requeridas por las métricas,
como es el caso de las métricas Lp y sus combinaciones

lineales positivas usadas tradicionalmente en el mo-
delado de funciones distancia. También se definió la
longitud de arco, la cual permite asociar longitudes de
arco a funciones distancia generalizadas. Se encontró
que toda función distancia generalizada d determina
ciertos arcos, los cuales satisfacen una ley de con-
servación de las d-distancias. Se demostró que para
cualquier premétrica (función distancia que cumple la
desigualdad del triángulo), la distancia desde un punto
hasta otro se puede expresar como el mínimo de la inte-
gral de línea de su derivada direccional unilateral para
los caminos que unen dichos puntos. Esta relación entre
las premétricas y sus derivadas direccionales unila-
terales asegura que cualquier premétrica se puede de-
finir por su derivada direccional unilateral a través de
un problema de cálculo de variaciones.
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