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Resumen

Se propone un marco teérico para modelar funciones distancia generalizadas, las
cuales pueden ser asimétricas y no positivas definidas. Se da una definicién de
longitud de arco asociada a una funcién distancia generalizada 4. La funcién
distanciad cumple la propiedad de identidad, pero a diferencia de las métricas, puede
no satisfacer la desigualdad del tridngulo, o las propiedades de simetria y definito-
reidad. Mostramos que cada funcién distancia generalizada 4 induce ciertos arcos,
que llamamos “d-inducidos”, los cuales cumplen una ley de conservacién de la
distanciad y son una generalizacién de los segmentos de linea recta del espacio eucli-
diano. También se muestra que si 4 satisface la desigualdad del tridngulo, entonces
los arcos d-inducidos son arcos de minima longitud respecto de la funcién distancia
d,yenestecaso, la funcién distanciad pueden modelarse como un problema
de calculo de variaciones.

Descriptores: Funciones distancia generalizadas, longitud de arco, desigualdad del
tridngulo, métrica de Finsler.

Abstract

We propose a theoretical framework for modeling generalized distance functions, which
can be asymmetric and non-positive definite. We give a definition of arc length associated
to a generalized distance function d. Our distance function d satisfies the identity pro-
perty but, unlike metrics, may not satisfy the triangle inequality, or symmetry and defini-
teness properties. We show that each distance function d induces certain arcs, called “d-in-
duced”, which satisfy a conservation law of the distance d and are a generalization of the
straight line segments of the Euclidean space. We also show that if d satisfies the triangle
inequality, then the d-induced arcs are arcs of minimal length with respect to the distance
function d, and in this case, the distance function d can be modeled as a problem of calcu-
lus of variations.

Keywords: Generalized distance functions, arc length, triangle inequality, Finsler

metric.

Asymmetric and non-positive definite distance functions
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Introduccién

Frecuentemente, no es posible recabar los datos de las
“distancias” entre todos los pares ordenados de puntos
de una regién dada, por lo que es Gtil contar con funcio-
nes distancia.

En este trabajo, se propone una definicién de fun-
cién distancia (generalizada), la cual permite generali-
zar el concepto de longitud de arco, y este a su vez, per-
mite deducir la existencia de ciertos arcos que cumplen
una ley de conservacién de la distancia.

Se da una definicién de funcién distancia generaliza-
da, como una funcién binaria que cumple la propiedad
de identidad (la distancia de un punto consigo mismo es
cero), es decir, una funcién distancia generalizada pue-
de no satisfacer la desigualdad del tridngulo, simetria y
no negatividad, propiedades requeridas por las métricas.
Se define la longitud de arco asociado a una funcién dis-
tancia generalizada 4, como la integral de la derivada di-
reccional unilateral F(x,v) de 4 a lo largo del arco. La
funcién F representa la razén de cambio de la funcién
distancia en un punto dado x en la direccién considera-
dawv.

La propiedad de identidad es necesaria para que una
funcién distancia 4 determine arcos “d-inducidos”, los
cuales cumplen un principio de conservacién de la 4-dis-
tancia. Se definird “premétrica”, como una funcién dis-
tancia 4, que ademas de la propiedad de identidad, cum-
ple la desigualdad del tridngulo. Se muestra que los ar-
cos d-inducidos por una premétrica son arcos de mini-
ma longitud, con respecto a la funcién distancia 4. Se
explora el problema de modelar una funcién distancia d,
cuya derivada direccional unilateral es una funcién
Fy(x,v) dada a priori, que llamamos funcién fundamen-
tal de 4. En este problema, 4 se obtiene resolviendo un
problema de calculo de variaciones. Se muestra ademds
que si F es una funcién convexa en la direccién v, en-
tonces F coincide con la derivada direccional unilateral
F(x,v) ded.

Funcién distancia generalizada y
longitud de un arco

En esta seccién se propone una definicién de funcién
distancia que puede no satisfacer la desigualdad del
tridngulo ni las condiciones de simetria y no negativi-
dad, requeridas por las métricas. También una defini-
cién de longitud de arco asociada a una funcién
distancia.

La funcion distancia generalizada d, o funcion distancia
d, se define como una funcién binaria 4: R” x R" — R que
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cumple la propiedad de identidad (la distancia de un
punto consigo mismo es cero, d(a, a) = 0, V a € R").

Para definir la longitud de arco asociada con una
funcién distancia generalizada 4 y obtener una ex-
presién para determinarla, se dan las siguientes
definiciones:

Un camino en R de aeR" hasta beR" es una funcién
continua x:[a, b]—>R" tal que x(a) = ay x(/)= b. La
imagen orientada C(a,b)cR" del camino x: [4, ] — R"
se llama arco (orientado) de aeR" abeR". En este trabajo,
un arco significa un arco orientado. Un arco C(a,b) se
dice ser arco clase C' si tiene una representacién paramé-
trica x: [a, b] — R" clase C!, cuya derivada es diferente
de cero en su dominio.

El conjunto de todos los arcos clase C! en R" se
denota por Q. Por simplicidad, el conjunto de todos los
arcos de clase C! que conectan a con b, y el conjunto de
todas las representaciones paramétricas de estos arcos,
se denotan por Q, ;.

Una sucesién de puntos en R” de la forma

(a = X, Xy Xppeeny Xpy Xy = b)7

donde k > 1, se dice que es una sucesién en R" desde a
hasta b. Los puntos a y b se llaman puntos extremos de la
sucesion. El conjunto de todas las sucesiones en R desde
a hasta b se denota por P[a,b].

Para cada sucesién de puntos en R,
P = (a = Xoy Xy Xgpeeny Xy X1 = b)7

la funcién distancia 4: R" x R"—R determina un nimero
real A(P), que llamamos la d-longitud de la sucesién Py
estd definida como la suma de las distancias respecto de
la funcién distancia 4 (suma de las 4-distancias):

A(P) =Zk:d(x[,xl,+1)

para toda

P=(@=x,,x,,x,,..x,,x,, =b)ePlab]

Consideramos una particién de un arco como una parti-
cién del arco en subarcos. Cada particién P de una arco
C(a,b) determina una sucesién (a = X, X, Xy,..., X,
X,., = b) de puntos de C(a,b). Reciprocamente, cada
sucesion (a = X, Xy, Xy,..., X, X,,; = b) de puntos de
C(a,b) determina la particiéon P. Para simplificar, se
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denota también por P la sucesién de puntos de C(a,b)
correspondiente a la particién P. La particion trivial de
un arco C(a,b) es el conjunto {C(a,b)}, el cual estd de-
terminado por la sucesién (a= x,, x,= b). Un refina-
miento de una particién P del arco C(a,b) es una parti-
cién Q de C(a,b), tal que, cada elemento de QQ esta con-
tenido en un elemento de P. El conjunto de todas las
particiones de C(a,b) se denota por P[C(a,b)]. Se define
la d-longitud de una particion PeP[C(a,b)] de C(a,b) co-
mo la 4-longitud de la sucesién P, A(P).

Se define la Jongitud de arco asociada con la funcién
distancia generalizada 4 de un arco C, o d-longitud de C,
como un numero real L tal que, para cada ¢ > 0, existe
una particién P, de C tal que |L-A(P)| <& para todo refi-
namiento P de P,. Si la d-longitud de un arco existe,
entonces es Gnica.

Si la d-longitud de C(a,b) es finita, entonces C(a,b)
se dice d-rectificable y 1,(C(a,b)) denota la d-longitud de
C(a,b). Es inmediato que los subarcos de cualquier
particién P de un arco d-rectificable C(a,b) son arcos
d-rectificables, y que la suma de sus d-longitudes es
igual a la d-longitud de C(a,b).

La derivada direccional unilateral de una funcién
d(x, -) en x en la direccién v se denota por F(x, v) y se
define por

F(x.v) = lim d(x,x+Asv)—g’(x,x)7
As—0" As

(Rockafellar 1970). Debido a que la funcién distan-
cia generalizada satisface la propiedad de identidad,
d(x, x)=0, F se escribe como

F(x,v) = lim A xt+asy) para toda x,veR" (1)
A —>0" As
donde F(x, 0)=0 para todo xeR".

La funcién F: R" x R* — R dada por (1) es la derivada
direccional unilateral F de la funcion distancia d. La fun-
cién F evaluada en un punto x y en una direccién v se
denota por F(x, v), y F alo largo del camino x:[a, b]—>R"
se denota por F(x(s),x(s)).

Ahora se va a determinar la 4-longitud de un arco
C(a,b) en términos de F, suponiendo que C(a,b) es clase
C'y ademés d-rectificable.

Como se ver, esta tltima suposicién resulta redun-
dante. Sea x: [4, b]— R" una representacion paramétrica
clase C! de C(a,b).

Cualquier conjunto ordenado de puntos interiores
de [a, b], s1,54,..., S, € (a, b), con k > 0, determina una

particién no trivial (@ = 5,51,59,..., Sp41 = b) de [a,b], y
una particién no trivial P = (a = x(sq), X(s), X(5),--,
x(s,),%(s,.1)=b) del arco C(ab). Por tanto, la
d-longitud de P es

Zd(x

),X(s,.,))-

Supédngase que F(x, v) es una funcién continua sobre su
dominio. Puesto que x(¢) y x(¢) son funciones conti-
nuas, entonces F(x(r), x(1)), es una funcién continua y
acotada en [a, b] y por tanto, integrable. Debido a la
existencia de F(x(1), x(t)) ent € [ a, b], para todo & > 0

existe As > 0 tal que

A(x(8),x(8) +x(8)As)|

<e
As ‘

F(x(8),x(8)) -

para toda €[z, + As].
Esto puede ser aplicado a una particién
(&l = 50,5152 Se+1 = [7) de [al 17]

Por tanto, para todo € > 0 existe a una particién P, de
C(a,b) tal que

d(x(E,),x(§) +x(§,)As;)
As.

i

F(x(8),x(&,)) -

‘<8

paratoda &, €[s,,s, 1,/
to P de P,. Por tanto,

[F(x(E,), %(€,)As, —d(x(&,),x(€,) + ()

=0,...,k, para todo refinamien-

eAs; paratoda & €[s;,s, 1, i=0,..k
se cumple. Puesto que
Zd (%(E,),%(€;) + X(E,)As, ),
se obtiene
ZF X(&,))As, — A(P)| < e(b—a)

para toda &, €[s;,s, ).
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La dltima condicién es también valida si se reemplaza
g(b — a) por &/2. Puesto que se supone que C(a,b) es un
arco d-rectificable, para todo £>0 existe una particién
P, de C(a,b) tal que

k

Y E(x(E,),X(,))As, - A(P) <§

=0
para toda &, €[s,,s,,,);y

L—AP) <=
| ()\<2

se satisfacen para todo refinamiento P de P,.

Por tanto, para toda £>0, existe una particién P, de
C(a,b) tal que

L—iF(x(&lv),X(é,.))As, <g,paratoda & €[s,,s, ),

para todo refinamiento P de P,. Por tanto,

L= ji F(x(s),%(s))ds.

a

(Sagan, 1974). Para todo arco C(a,b) clase C!, el inte-
grando anterior, F(x(s),%(s)), es una funcién continua
en [a, b], y por tanto L estd bien definida y C(a,b) es
d-rectificable.

Por tanto, la suposicién de que C(a,b) es d-recti-
ficable resulta redundante. Entonces se ha demostrado
el siguiente teorema:

Teorema 1
(Determinacién de la 4-longitud de un arco
d-rectificable)

Sila funcién distancia 4: R” x R" — R tiene una derivada
direccional unilateral continua, F: R" x R" — R, entonces
todo arco C(a,b) clase C! es d-rectificable y su d-lon-
gitud estd dada por

I, (C(a,b)) = [ F(x(s),x(s))ds, @)

donde x:[a, b] — R" es una representaciéon paramétrica
clase C' de C(a,b).
Q.ED.
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El siguiente teorema establece propiedades importantes
de la derivada direccional unilateral F de una funcién
distancia 4.

Estas propiedades son utiles en el modelado de fun-
ciones distancia.

Teorema 2
(Propiedades de la derivada direccional unilateral
F de una funcién distancia )

Sea d: R" x R" — R una funcién distancia y F la derivada
direccional unilateral de 4, dada por (1). Entonces se
tiene:

a)F(x, 0) = 0 para todo x € R".

b) La funcién F es positivamente homogénea de grado
uno: F(x,av)=okF(x, v) para toda o > 0.

c) Para n>2, F(x(s), %(s)) no depende explicitamente del
pardmetro s del camino.

d) La d-longitud de un arco 4-rectificable no depende de
su representacién paramétrica.

e) Si 4 cumple la desigualdad del tridngulo, entonces
F(x, v) es una funcién convexa en v para cada x:
Fxov + (1-a)w) < o F(x, v) + (1 —o) F(x, w) para
toda a0, 1], x € R.

Demostracién

a) Inmediato de la definicién de F y de que
d(x,x) = 0 para todo xeR".

b) Para a >0,
F(x,av) = lim A, x+ohv) _
h—0" h
o lim A& X+ V) . dXXABY) oF(x, V).
h—0* oh B—0" B

c) La derivada direccional unilateral F a lo largo del
camino x: [a, b] — R, dada por
d(x,(s), x(s) + x(s)As)

F(x(s), %(5)) = lim o ,

no depende explicitamente de s.
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d) La d-longitud de un arco d-rectificable estd dada por
(2). Sea s=s(t) una transformacién de x(t) que
preserva la orientacién. Por tanto ds/di>0y s(t) es una
funcién invertible. La homogeneidad positiva de F y
ds/dr>0 implican que

F(x,dx(r) / dr)dr = F(x,xds / di)dr =

F(x,x)(ds / dt)dt = F(x,X)ds.

Puesto que F no depende explicitamente del paré-
metro s, entonces F(x(s),x(s))ds es invariante bajo la

transformacién s = s(z).

e) De la ecuacién (1) y por el inciso (b),

dx,x+(av+(1-a)w)h)
h

Fx,ov+(1-a)w) = hhno'l

< llirg} dx,x+ovh) +d(x+ oc;lzh, X+ ovh+(1-a)wh)

=F(x,av)+F(x,(1-a)w) =aF(x,v) +(1-o)F(x, W)
QE.D.
Arcos inducidos por una funcién distancia d

Nuestra definicién de d-longitud de arco permite de-
ducir la existencia de ciertos arcos caracterizados por la
funcién distancia 4, que les llamamos arcos d-inducidos.
En esta seccién definimos arco inducido por una fun-
cién distancia 4.

Sea d: R" x R" — R una funcién distancia. Decimos
que un arco C(a,b) es d-inducido si todas sus particiones
tienen la misma J-longitud.

Por la definicién dada de longitud de arco, todo arco
d-inducido C(a,b) es 4- rectificable, y su d-longitud es
igual a la 4-longitud de su particién trivial, /, (C(a,b)) =
d(a, b).

Es inmediato que cada subarco de un arco d-indu-
cido es un arco 4-inducido.

Equivalentemente, C(a,b) es un arco 4-inducido si la
d-longitud de toda particién de C(a,b), P = (a = x, Xy,
Xy,..., X, X, = b), con k >0, es igual a la 4-distancia de
aab,

d(a,b) =) d(x,,x, ), paratoda

k
i=0

P=(a,x,,..,x,b)eP[C(ab)]

la cual es la d-longitud de la particién trivial de C(a,b).
Es decir, un arco de a a b es d-inducido si, y sélo si, la
d-distancia de a a b es igual a la suma de las 4-distancias
entre todos los puntos consecutivos de cualquier suce-
sién de puntos en el arco, donde la sucesién incluye los
puntos extremos a y b.

Es inmediato que un arco C(a,b) es 4-inducido si, y
sélo si, la restriccién de d a C(a,b) cumple la igualdad del
tridngulo respecto del punto final b,

d(x(s),b) =d(x(s), x(r)) +d(x(1), b)

a<s<t<b,

donde x: [4, ] — R" es una representacién paramétrica

de C(a,b).
Premétricas y arcos minimos

Si una funcién distancia no satisface la desigualdad del
tridngulo, los arcos minimos no necesariamente son ar-
cos inducidos y el concepto tradicional de que la distan-
cia desde un punto hasta otro es igual a la longitud del
arco “maés corto” que los conecta, no es valido. En esta
seccién definimos premétrica, la cual es una funcién
distancia que cumple la desigualdad del tridngulo, y se
dan dos teoremas importantes para el modelado de
premétricas.

Esto es de interés porque, en general, las funciones
distancia que intervienen en el modelado de problemas
de la vida real cumplen la desigualdad del tridngulo; en
estos casos, los arcos minimos si coinciden con los arcos
inducidos y se pueden determinar mediante un pro-
blema de célculo variacional.

Una funcién distancia 4 que cumple la desigualdad
del tridngulo (para todaa,b,c e R"d (a,b) <d (a,c) + d
(¢, b)) la llamamos premétrica.

Una funcién distancia es completa si todo par
ordenado de puntos a, b en R" estd conectado por un
arco 4-inducido.

Si la funcién distancia 4 es completa y cumple la
desigualdad del tridngulo, es decir, 4 es una premétrica
completa, entonces los arcos 4-inducidos son arcos de
minima d-longitud, y la funcién distancia 4 esta deter-
minada por su derivada direccional unilateral F.

La dltima afirmacién implica que 4 y F contienen la
“misma informacién”, donde 4 proporciona “informa-
cién global”, ya que su valor depende de dos puntos
localizados arbitrariamente en R*, y F proporciona “in-
formacién local” porque su valor depende del punto y la
direccién considerados.
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Es inmediato que una funcién distancia 4:R"xR"—R sa-
tisface la desigualdad del tridngulo, d(a, b) < d(a, c¢) +
d(c,b) para toda a, beR", siy sélo si, para toda sucesién
P = (a = xy, Xy, Xy,..., X, X,,; = b) la d-distancia entre
los puntos extremos P es menor o igual que la d-longi-
tud de la sucesion de P, es decir, si y s6lo si

k
d(a,b) < Zd(xi X))
i=0
paratoda P =(a=x,,X, ,X,,...,X,,X, , =b).

Sea d: R" x R" — R una funcién distancia tal que su
derivada direccional unilateral F es una funcién conti-
nua. Six: [a, b] — R" es un camino clase C' de a a b que
resuelve

b
min | F(x(s),x(s))ds paratodaa,beR",

Y€, p ’

entonces se dice que la imagen de x, C(a,b) €Q [, ), s
un arco de minima d-longitud o arco d-minimal. Por las
propiedades de las integrales, todos los subarcos de un
arco d-minimal son arcos 4-minimales.

Teorema 3
(Para cualquier premétrica los arcos 4-inducidos
son arcos d-minimales)

Sid: R* x R" — R es una premétrica con una derivada
direccional unilateral F(x, v) continua en x para cada

v € R" entonces:

a) F: R* x R — R es continua, y por tanto, la longitud de
arco de C(a,b) esta dada por (2);

b) Si P, QeP[C(a,b)] son dos particiones de un arco
C(a,b), tales que P es un refinamiento de Q,

entonces A(Q)< A(P);

c) Para todo arco C(a,b) clase C1, /,(C(a,b)) =sup{A(P):
PeP[C(a,b)]};

d) (a,b)<A(P)< /,(C(a,b)) para toda particién PeP
[C(a,b)] de un arco d-rectificable clase C;

e) Para todo arco C(a,b) clase C', d(a,b) = /,(C(a,b)) siy sélo
si C(a,b) es un arco 4-inducido;

f) Todo arco 4-inducido es un arco 4-minimal;
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g) Sid es completa, entonces
b

d(a,b) = min | F(x(s),x(s))ds, para toda a,beR"

xEQ[

a,b)

)
donde el minimo se alcanza para un arco d-inducido de
aab.

Demostracién

a) d cumple la desigualdad del tridngulo y, por (e) del
teorema 2, F(x, v) es una funcién convexa en v para

cada x € R». Por tanto, F es una funcién continua
(Rockafellar, 1970).

b) Se puede probar directamente de la desigualdad del
tridngulo.

c) Sea C(a,b) un arco clase C'. Entonces C(a,b) es
d-rectificable con una longitud que denotamos por
L. Por tanto, para todo ¢>0 existe una particién P,
de C(a,b) tal que |L —-A(P)|< ¢ para todo refina-
miento P de P,. En particular, |L-A (P,) |<e. Se
tienen dos casos, L > A (P,), o bien, L <A(P,). El se-
gundo caso se descarta porque si C(a,b) no es un
arco d-inducido se llega a una contradiccién: existe
una ¢ > 0y una particién Q de C(a,b) (la particién
trivial, por ejemplo), de la cual P, es un refinamiento
y tal que A(Q)-L>¢; estollevaa A (P,)<e+L<A (Q),
en donde (b) contradice que P, es una particién de QQ.
Por tanto, si d es una premétrica, entonces A(P) <L
para toda particién PeP[C(a,b)] de C(ab), y la
longitud de un arco es L si para todo € > 0 existe una
particién P, de C(a,b) tal que L — A (P) < & para todo
refinamiento P de P. Por tanto, L=sup{A(P):
PeP[C(a,b)]}.

d) Cualquier particién de C(a,b) es un refinamiento de
la particién trivial; por (b) d(a,b) < A (P). Por A(c),
(P) <1,(C(ab)).

e) Sea C(a,b) clase C*. Si C(a,b) es un arco d-inducido,
entonces d(a,b)=/,(C(a,b)). Reciprocamente, si
d(a,b)=/,(C(a,b)), entonces por (d) se tiene 4(a,b)=
A(P) para toda PeP[C(a,b)], y por tanto, C(a,b) es
un arco d-inducido.

f) Si C(a,b) un arco 4-inducido que no es un arco
d-minimal, entonces 4(a,b)=/,(C(a,b)) y [, (C*
(a,b)) </,(C(a,b)) para algtin arco C*(a,b). Entonces
se obtiene /,(C*(a,b)) <d(a,b), lo que contradice (d).
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Por tanto, todo arco d-inducido es un arco
Ad-minimal.

g) 4 completa implica que para todo par ordenado de
puntos a y b existe un arco 4-inducido C(a,b) que
los conecta, el cual por (e) tiene d-longitud 4(a,b).
Por (f), C(a,b) es un arco d-minimal, y por lo que
resuelve (3).

Q.E.D.

Por el teorema 1, la longitud de un arco respecto de una
funcién distancia d es la integral (2) de la derivada direc-
cional unilateral F(x, v) de 4 a lo largo del arco. Explora-
mos ahora la relacién reciproca entre las funciones F y
d: Sead: R" x R" — R la funcién distancia definida por

b
d(a,b) = rgin _[Fo (x(s),x(s))ds, para toda a,b € R"
xeQq, 5 e

donde Fy: R" x R" — R es una funcién dada a priori que
satisface las condiciones (a)-(c) del teorema 2, llamada
funcion fundamental de d. El problema de minimizacién
(4) se denomina problema variacional correspondiente a la
funcion F.

Interesa ahora saber qué condiciones adicionales de-
be cumplir F, para que ésta sea la derivada direccional
unilateral de 4 dada por (1). En primer lugar, para que la
funcién 4 esté bien definida, F, debe ser tal que el pro-
blema de céalculo de variaciones (4) tenga una solucién
para cada par ordenado a, b € R".

En segundo lugar, por las propiedades de las
integrales de linea, la funcién 4 dada por (4), cumple la
desigualdad del tridngulo, y por tanto, segin (e) del teo-
rema 2, F, debe ser una funcién convexa con respecto a
la variable direccion.

Ya sea que F = Fy o F # Fy, se cumple que

b b
d(aB) = min [F,(x(s) xs))ds = min [ FOx(s) X(5)ds.

Tenemos entonces el siguiente teorema.

Teorema 4
(Premétrica definida a partir de una funcién
fundamental)

Sea Fy: R* x R" — R una funcién positivamente homogé-
nea de grado uno con Fy(x, 0) = 0 para todo x € R", y tal
que cumple la siguiente condicién de solubilidad: para
cada par ordenado a, b € R” existe un camino

x: [a,b] - R" de a a b clase C! que resuelve el problema
de célculo de variaciones

b
rg[ln] j F, (x(s), %(s))ds.
Sead: R"x R" — R la funcién dada por (3). Entonces:

a) d es una premétrica sobre R, la cual es completa si F, es
la derivada direccional unilateral de 4.

b) F, es la derivada direccional unilateral de 4 si y sola-
mente si, F(X, v) es convexa en v.

Demostracién

La homogeneidad positiva de F, implica que toda trans-
formacién continua que preserva la orientacién de un
camino x: [a, b] — R" que resuelve (4) es un camino que
también resuelve (4), teniendo ambos caminos la
misma imagen.

Por tanto, dados a y b, cada solucién de (4) depende
sélo del arco y no de la eleccién particular de su
representacién paramétrica. Entonces, la funcién 4
dada por (3) esta bien definida.

a) Por las propiedades de las integrales, la funcién 4
dada por (4) cumple la propiedad de identidad y la
desigualdad del tridngulo, y por tanto 4 es una
premétrica. Si F = F,, entonces para cada par orde-
nado de puntos a y b existe un arco C(a,b) que
cumple d(a,b) = /,(C(a,b)), y por (e) del teorema 3,
C(a,b) es un arco d-inducido. Asi que 4 es una
premétrica completa.

b) La homogeneidad positiva de F, implica que la conve-
xidad de F, se reduce a:
Fo(x, vi+ v,) < Fy(x, v;) + Fy(x, v,) para todo
vy, v,€ Re. Por tanto, la convexidad de F, implica
que la derivada direccional unilateral F de la funcién
d dada por (1) es la funcién F:

F(x,v) = lim[l min x]v%()(x(s),;’((s))dsJ —F,(x,v).

h=0" fpxeQ o

La Gltima igualdad se puede explicar como sigue. En el
limite cuando & — 0%, x(s) se puede considerar constan-
te, y por tanto, el integrando F (x(s), X(s)) s6lo depende
de x(s). Debido a la convexidad de F, la integral alcanza
su valor minimo si x(s) tiene la direccién de v en todos
los puntos a lo largo del arco que va de x a x + vh. Por
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tanto, el integrando F(x(s), X(s)) permanece constante
a lo largo del arco que va de x a x + v/ y toma el valor
Fy(x, v). Para demostrar la afirmacién reciproca, su-
péngase que la funcién F, que define a 4 a través de (4)
es igual a la derivada direccional unilateral de 4. Por (a) 4
es una premeétrica, es decir, 4 cumple la desigualdad del
tridngulo, y por (e) del teorema 2, F, es una funcién
convexa.

QED

El teorema 3 expresa que para toda premétrica con
derivada direccional unilateral continua, la distancia de
un punto a otro es igual a la d-longitud del arco mdés
corto que los conecta, y el teorema 4 establece que si la
d-distancia desde un punto hasta otro se define como
“el minimo de la longitud de los arcos que los conectan”,
entonces la funcién distancia resultante es una premétrica.

Cabe mencionar que en la métrica de Finsler, las
condiciones sobre la funcién fundamental F, son mas
restrictivas que en el teorema 4, pide que Fy(x, v) sea
estrictamente convexa, no negativa y suave sobre su
dominio (Anastasiei, 2004 y Chern, 2005).

Conclusiones

Se propone una definicién de funcién distancia genera-
lizada como una funcién binaria que cumple la
propiedad de identidad, pero que no requiere satisfacer
la desigualdad del tridngulo ni las propiedades de
simetrfa y no negatividad requeridas por las métricas,
como es el caso de las métricas Ly y sus combinaciones

lineales positivas usadas tradicionalmente en el mo-
delado de funciones distancia. También se definié la
longitud de arco, la cual permite asociar longitudes de
arco a funciones distancia generalizadas. Se encontrd
que toda funcién distancia generalizada 4 determina
ciertos arcos, los cuales satisfacen una ley de con-
servacién de las d-distancias. Se demostré que para
cualquier premétrica (funcién distancia que cumple la
desigualdad del tridngulo), la distancia desde un punto
hasta otro se puede expresar como el minimo de la inte-
gral de linea de su derivada direccional unilateral para
los caminos que unen dichos puntos. Esta relacién entre
las premétricas y sus derivadas direccionales unila-
terales asegura que cualquier premétrica se puede de-
finir por su derivada direccional unilateral a través de
un problema de calculo de variaciones.
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